Exercises: Eigenvalues and Eigenvectors

Problem 1. Find all the eigenvalues and eigenvectors of $\boldsymbol{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Solution. Let λ be an eigenvalue of \boldsymbol{A}. To obtain all possible λ, we solve the characteristic equation of \boldsymbol{A} (let \boldsymbol{I} be the 3×3 identity matrix):

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =0 \Rightarrow \\
\left|\begin{array}{ccc}
-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
1 & 0 & -\lambda
\end{array}\right| & =0 \Rightarrow \\
(\lambda-1)^{2}(\lambda+1) & =0
\end{aligned}
$$

Hence, \boldsymbol{A} has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$.
To find all the eigenvectors of $\lambda_{1}=1$, we need to solve $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ from:

$$
\begin{aligned}
\left(\boldsymbol{A}-\lambda_{1} \boldsymbol{I}\right) \boldsymbol{x} & =\mathbf{0} \Rightarrow \\
{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

The set of solutions to the above equation-EigenSpace $\left(\lambda_{1}\right)$-includes all $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ satisfying

$$
\begin{aligned}
x_{1} & =u \\
x_{2} & =v \\
x_{3} & =u
\end{aligned}
$$

for any $u, v \in \mathbb{R}$. Any non-zero vector in $\operatorname{EigenSpace}\left(\lambda_{1}\right)$ is an eigenvector of \boldsymbol{A} corresponding to λ_{1}.

Similarly, to find all the eigenvectors of $\lambda_{2}=-1$, we need to solve $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ from:

$$
\begin{aligned}
\left(\boldsymbol{A}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{x} & =\mathbf{0} \Rightarrow \\
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

The set of solutions to the above equation-EigenSpace $\left(\lambda_{2}\right)$-includes all $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ satisfying

$$
\begin{aligned}
& x_{1}=u \\
& x_{2}=0 \\
& x_{3}=-u
\end{aligned}
$$

for any $u \in \mathbb{R}$. Any non-zero vector in EigenSpace $\left(\lambda_{2}\right)$ is an eigenvector of \boldsymbol{A} corresponding to λ_{2}.
Problem 2. Let \boldsymbol{A} be an $n \times n$ square matrix. Prove: \boldsymbol{A} and \boldsymbol{A}^{T} have exactly the same eigenvalues.
Proof. Recall that an eigenvalue of a matrix is a root of the matrix's characteristic equation, which equates the matrix's characteristic polynomial to 0 . It suffices to show that the characteristic polynomial of \boldsymbol{A} is the same as that of \boldsymbol{A}^{T}. In other words, we want to show that $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=$ $\operatorname{det}\left(\boldsymbol{A}^{T}-\lambda \boldsymbol{I}\right)$. This is true because $\boldsymbol{A}-\lambda \boldsymbol{I}=\left(\boldsymbol{A}^{T}-\lambda \boldsymbol{I}\right)^{T}$.

Problem 3 (Hard). Let \boldsymbol{A} be an $n \times n$ square matrix. Prove: \boldsymbol{A}^{-1} exists if and only if 0 is not an eigenvalue of \boldsymbol{A}.

Proof. If-Direction. The objective is to show that if 0 is not an eigenvalue of \boldsymbol{A}, then \boldsymbol{A}^{-1} exists, namely, the rank of \boldsymbol{A} is n. Suppose, on the contrary, that the rank of \boldsymbol{A} is less than n. Consider the linear system $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{x} is an $n \times 1$ matrix. The hypothesis that rank $\boldsymbol{A}<n$ indicates that the system has infinitely many solutions. In other words, there exists a non-zero \boldsymbol{x} satisfying $\boldsymbol{A} \boldsymbol{x}=\mathbf{0} \boldsymbol{x}=\mathbf{0}$. This, however, indicates that 0 is an eigenvalue of \boldsymbol{A}, which is a contradiction.

Only-If Direction. The objective is to show that if \boldsymbol{A}^{-1} exists, then 0 is not an eigenvalue of \boldsymbol{A}. The existence of \boldsymbol{A}^{-1} means that the rank of \boldsymbol{A} is n, which in turn indicates that $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ has a unique solution $\boldsymbol{x}=\mathbf{0}$. In other words, there is no non-zero \boldsymbol{x}^{\prime} satisfying $\boldsymbol{A} \boldsymbol{x}^{\prime}=\mathbf{0} \boldsymbol{x}^{\prime}$, namely, 0 is not an eigenvalue of \boldsymbol{A}.

Problem 4. Let \boldsymbol{A} be an $n \times n$ square matrix such that \boldsymbol{A}^{-1} exists. Prove: if λ is an eigenvalue of \boldsymbol{A}, then $1 / \lambda$ is an eigenvalue of \boldsymbol{A}^{-1}.

Proof. Since λ is an eigenvalue of \boldsymbol{A}, there is a non-zero $n \times 1$ matrix \boldsymbol{x} satisfying

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{x} \Rightarrow \\
\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{A}^{-1} \boldsymbol{x} \Rightarrow \\
\boldsymbol{x} & =\lambda \boldsymbol{A}^{-1} \boldsymbol{x} \Rightarrow \\
\boldsymbol{A}^{-1} \boldsymbol{x} & =(1 / \lambda) \boldsymbol{x}
\end{aligned}
$$

which completes the proof.
Problem 5. Prove: if $\boldsymbol{A}^{2}=\boldsymbol{I}$, then the eigenvalues of \boldsymbol{A} must be 1 or -1 .
Proof. Consider any eigenvalue λ of \boldsymbol{A}, and let \boldsymbol{x} be an arbitrary eigenvector of \boldsymbol{A} corresponding to λ. Hence, we have:

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{x} \Rightarrow \\
\boldsymbol{A}^{2} \boldsymbol{x} & =\lambda \boldsymbol{A x} \Rightarrow \\
\boldsymbol{I} \boldsymbol{x} & =\lambda \boldsymbol{A x} \Rightarrow \\
\boldsymbol{x} & =\lambda \boldsymbol{A} \boldsymbol{x}
\end{aligned}
$$

Note that $\lambda(\boldsymbol{A} \boldsymbol{x})=\lambda(\lambda \boldsymbol{x})=\lambda^{2} \boldsymbol{x}$. Hence, we have

$$
\boldsymbol{x}=\lambda^{2} \boldsymbol{x}
$$

As \boldsymbol{x} is not $\mathbf{0}$, it follows that $\lambda^{2}=1$, which completes the proof.

Problem 6. Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix \boldsymbol{A}. Furthermore, suppose that \boldsymbol{x}_{1} is an eigenvector of \boldsymbol{A} under λ_{1}, and that \boldsymbol{x}_{2} is an eigenvector of \boldsymbol{A} under λ_{2}. Prove: there does not exist any real number c such that $c \boldsymbol{x}_{1}=\boldsymbol{x}_{2}$.

Proof. Assume, on the contrary, that such a c exists. Since $\boldsymbol{A} \boldsymbol{x}_{1}=\lambda_{1} \boldsymbol{x}_{1}$, we have $\boldsymbol{A}\left(c \boldsymbol{x}_{1}\right)=$ $\lambda_{1}\left(c \boldsymbol{x}_{1}\right)$, which leads to $\boldsymbol{A} \boldsymbol{x}_{2}=\lambda_{1} \boldsymbol{x}_{2}$.

On the other hand, $\boldsymbol{A} \boldsymbol{x}_{2}=\lambda_{2} \boldsymbol{x}_{2}$. Therefore, $\lambda_{1}=\lambda_{2}$ (remember \boldsymbol{x}_{2} cannot be $\mathbf{0}$), giving a contradiction.

Problem 7. Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix \boldsymbol{A}. Furthermore, suppose that \boldsymbol{x}_{1} is an eigenvector of \boldsymbol{A} under λ_{1}, and that \boldsymbol{x}_{2} is an eigenvector of \boldsymbol{A} under λ_{2}. Prove: $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ is not an eigenvector of \boldsymbol{A}.

Proof. Assume, on the contrary, that $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ is an eigenvector under some eigenvalue λ_{3}. This means that

$$
\begin{aligned}
\boldsymbol{A}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right) & =\lambda_{3}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right) \Rightarrow \\
\boldsymbol{A} \boldsymbol{x}_{1}+\boldsymbol{A} \boldsymbol{x}_{2} & =\lambda_{3}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right) \Rightarrow \\
\lambda_{1} \boldsymbol{x}_{1}+\lambda_{2} \boldsymbol{x}_{2} & =\lambda_{3}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right) \Rightarrow \\
\left(\lambda_{1}-\lambda_{3}\right) \boldsymbol{x}_{\mathbf{1}} & =\left(\lambda_{3}-\lambda_{2}\right) \boldsymbol{x}_{\mathbf{2}} .
\end{aligned}
$$

As $\lambda_{1} \neq \lambda_{2}$, at least one of $\lambda_{1}-\lambda_{3}$ and $\lambda_{3}-\lambda_{2}$ is non-zero. Without loss of generality, suppose $\lambda_{3}-\lambda_{2} \neq 0$, which gives:

$$
\frac{\lambda_{1}-\lambda_{3}}{\lambda_{3}-\lambda_{2}} \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{2}}
$$

In Problem 6, we already showed that the above is impossible, thus giving a contradiction.

