Exercises: Eigenvalues and Eigenvectors

Problem 1. Find all the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Solution. Let λ be an eigenvalue of A. To obtain all possible λ , we solve the characteristic equation of A (let I be the 3×3 identity matrix):

$$\begin{array}{c|ccc} det(\boldsymbol{A} - \lambda \boldsymbol{I}) &=& 0 \Rightarrow \\ \hline -\lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{array} &=& 0 \Rightarrow \\ (\lambda - 1)^2 (\lambda + 1) &=& 0 \end{array}$$

Hence, \boldsymbol{A} has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$.

To find all the eigenvectors of
$$\lambda_1 = 1$$
, we need to solve $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ from:
 $(\boldsymbol{A} - \lambda_1 \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0} \Rightarrow$
 $\begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
The set of solutions to the above equation— $EigenSpace(\lambda_1)$ —includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying
 $x_1 = u$
 $x_2 = v$
 $x_3 = u$

for any $u, v \in \mathbb{R}$. Any non-zero vector in $EigenSpace(\lambda_1)$ is an eigenvector of A corresponding to λ_1 .

Similarly, to find all the eigenvectors of
$$\lambda_2 = -1$$
, we need to solve $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ from:
 $(\boldsymbol{A} - \lambda_2 \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0} \Rightarrow$
 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
The set of solutions to the above equation— $EigenSpace(\lambda_2)$ —includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying
 $x_1 = u$
 $x_2 = 0$
 $x_3 = -u$

for any $u \in \mathbb{R}$. Any non-zero vector in *EigenSpace*(λ_2) is an eigenvector of **A** corresponding to λ_2 .

Problem 2. Let A be an $n \times n$ square matrix. Prove: A and A^T have exactly the same eigenvalues.

Proof. Recall that an eigenvalue of a matrix is a root of the matrix's characteristic equation, which equates the matrix's characteristic polynomial to 0. It suffices to show that the characteristic polynomial of \boldsymbol{A} is the same as that of \boldsymbol{A}^T . In other words, we want to show that $det(\boldsymbol{A} - \lambda \boldsymbol{I}) = det(\boldsymbol{A}^T - \lambda \boldsymbol{I})$. This is true because $\boldsymbol{A} - \lambda \boldsymbol{I} = (\boldsymbol{A}^T - \lambda \boldsymbol{I})^T$.

Problem 3 (Hard). Let A be an $n \times n$ square matrix. Prove: A^{-1} exists if and only if 0 is not an eigenvalue of A.

Proof. <u>If-Direction</u>. The objective is to show that if 0 is not an eigenvalue of A, then A^{-1} exists, namely, the rank of A is n. Suppose, on the contrary, that the rank of A is less than n. Consider the linear system Ax = 0 where x is an $n \times 1$ matrix. The hypothesis that rank A < n indicates that the system has infinitely many solutions. In other words, there exists a non-zero x satisfying Ax = 0x = 0. This, however, indicates that 0 is an eigenvalue of A, which is a contradiction.

<u>Only-If Direction</u>. The objective is to show that if A^{-1} exists, then 0 is not an eigenvalue of A. The existence of A^{-1} means that the rank of A is n, which in turn indicates that Ax = 0 has a unique solution x = 0. In other words, there is no non-zero x' satisfying Ax' = 0x', namely, 0 is not an eigenvalue of A.

Problem 4. Let A be an $n \times n$ square matrix such that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} .

Proof. Since λ is an eigenvalue of A, there is a non-zero $n \times 1$ matrix x satisfying

$$egin{array}{rcl} m{A}m{x}&=&\lambdam{x}\Rightarrow\ m{A}^{-1}m{A}m{x}&=&\lambdam{A}^{-1}m{x}&\Rightarrow\ m{x}&=&\lambdam{A}^{-1}m{x}&\Rightarrow\ m{A}^{-1}m{x}&=&(1/\lambda)m{x} \end{array}$$

which completes the proof.

Problem 5. Prove: if $A^2 = I$, then the eigenvalues of A must be 1 or -1.

Proof. Consider any eigenvalue λ of A, and let x be an arbitrary eigenvector of A corresponding to λ . Hence, we have:

$$egin{array}{rcl} Ax&=&\lambda x\Rightarrow\ A^2x&=&\lambda Ax\Rightarrow\ Ix&=&\lambda Ax\Rightarrow\ x&=&\lambda Ax \end{array}$$

Note that $\lambda(\mathbf{A}\mathbf{x}) = \lambda(\lambda\mathbf{x}) = \lambda^2\mathbf{x}$. Hence, we have

$$\boldsymbol{x} = \lambda^2 \boldsymbol{x}.$$

As x is not 0, it follows that $\lambda^2 = 1$, which completes the proof.

Problem 6. Suppose that λ_1 and λ_2 are two distinct eigenvalues of matrix A. Furthermore, suppose that x_1 is an eigenvector of A under λ_1 , and that x_2 is an eigenvector of A under λ_2 . Prove: there does not exist any real number c such that $cx_1 = x_2$.

Proof. Assume, on the contrary, that such a *c* exists. Since $Ax_1 = \lambda_1 x_1$, we have $A(cx_1) = \lambda_1(cx_1)$, which leads to $Ax_2 = \lambda_1 x_2$.

On the other hand, $Ax_2 = \lambda_2 x_2$. Therefore, $\lambda_1 = \lambda_2$ (remember x_2 cannot be **0**), giving a contradiction.

Problem 7. Suppose that λ_1 and λ_2 are two distinct eigenvalues of matrix \boldsymbol{A} . Furthermore, suppose that \boldsymbol{x}_1 is an eigenvector of \boldsymbol{A} under λ_1 , and that \boldsymbol{x}_2 is an eigenvector of \boldsymbol{A} under λ_2 . Prove: $\boldsymbol{x}_1 + \boldsymbol{x}_2$ is not an eigenvector of \boldsymbol{A} .

Proof. Assume, on the contrary, that $x_1 + x_2$ is an eigenvector under some eigenvalue λ_3 . This means that

$$egin{array}{rcl} oldsymbol{A}(oldsymbol{x}_1+oldsymbol{x}_2)&=&\lambda_3(oldsymbol{x}_1+oldsymbol{x}_2)\Rightarrow\ oldsymbol{A}oldsymbol{x}_1+oldsymbol{A}oldsymbol{x}_2&=&\lambda_3(oldsymbol{x}_1+oldsymbol{x}_2)\Rightarrow\ (\lambda_1-\lambda_3)oldsymbol{x}_1&=&(\lambda_3-\lambda_2)oldsymbol{x}_2. \end{array}$$

As $\lambda_1 \neq \lambda_2$, at least one of $\lambda_1 - \lambda_3$ and $\lambda_3 - \lambda_2$ is non-zero. Without loss of generality, suppose $\lambda_3 - \lambda_2 \neq 0$, which gives:

$$rac{\lambda_1-\lambda_3}{\lambda_3-\lambda_2}m{x_1} = m{x_2}.$$

In Problem 6, we already showed that the above is impossible, thus giving a contradiction.