Exercises: Matrix Basic Operations and Gauss Elimination

Problem 1. Let \boldsymbol{A} be a square $n \times n$ matrix, and \boldsymbol{I} an identity $n \times n$ matrix. Prove $\boldsymbol{A} \boldsymbol{I}=\boldsymbol{A}$, and $\boldsymbol{I} \boldsymbol{A}=\boldsymbol{A}$.

Problem 2. Calculate $\boldsymbol{A} \boldsymbol{B}, \boldsymbol{B} \boldsymbol{A}$, and $\boldsymbol{A}^{T} \boldsymbol{B}^{T}$, where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & 1 \\
-1 & -2 & 1
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

Problem 3. $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are $m \times n, n \times p$, and $p \times q$ matrices. Prove: $(\boldsymbol{A} \boldsymbol{B} \boldsymbol{C})^{T}=\boldsymbol{C}^{T} \boldsymbol{B}^{T} \boldsymbol{A}^{T}$.
Problem 4. What is \boldsymbol{A}^{T} if \boldsymbol{A} is (i) symmetric, and (ii) anti-symmetric?
Problem 5. \boldsymbol{A} and \boldsymbol{B} are both $n \times n$ symmetric matrices. Prove: $A B$ is symmetric if and only if $A B=B A$.

Problem 6. Consider the following recurrence for $i \geq 1$:

$$
x_{i+1}=A x_{i}
$$

where \boldsymbol{A} is an 3×3 matrix, and $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{i + 1}}$ are 3×1 matrices. Knowing:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \text { and } \boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

what is the value of x_{3} ?
Problem 7. Convert the following matrix into row echelon form with elementary row operations:

$$
\left[\begin{array}{cccc}
0 & 3 & 1 & 1 \\
0 & 0 & 5 & 5 \\
1 & -1 & 3 & 3 \\
3 & 3 & -7 & -7
\end{array}\right]
$$

Problem 8. Solve the following linear system with Gauss Elimination

$$
\begin{aligned}
4 y+3 z & =8 \\
2 x-z & =-2 \\
x+2 z & =5 .
\end{aligned}
$$

Problem 9. Decide if the following linear system is consistent.

$$
\begin{aligned}
4 y+3 z & =8 \\
2 x-z & =-2 \\
x+2 y+z & =3 .
\end{aligned}
$$

If it is, give all the solutions to the system.

