Exercises: Matrix Basic Operations and Gauss Elimination

Problem 1. Let A be a square $n \times n$ matrix, and I an identity $n \times n$ matrix. Prove AI = A, and IA = A.

Problem 2. Calculate AB, BA, and A^TB^T , where

	1	3	2 -		2	1	1]	
A =	2	0	1	, B =	1	0	0	
	-1	-2	1		0	-1	0	

Problem 3. A, B, and C are $m \times n$, $n \times p$, and $p \times q$ matrices. Prove: $(ABC)^T = C^T B^T A^T$.

Problem 4. What is A^T if A is (i) symmetric, and (ii) anti-symmetric?

Problem 5. *A* and *B* are both $n \times n$ symmetric matrices. Prove: *AB* is symmetric if and only if AB = BA.

Problem 6. Consider the following recurrence for $i \ge 1$:

 $x_{i+1} = Ax_i$

where A is an 3×3 matrix, and x_i and x_{i+1} are 3×1 matrices. Knowing:

	1	0	1		1	1
A =	0	1	0	, and $\boldsymbol{x_1} =$	1	
	1	1	0		1	

what is the value of x_3 ?

Problem 7. Convert the following matrix into row echelon form with elementary row operations:

$$\begin{bmatrix} 0 & 3 & 1 & 1 \\ 0 & 0 & 5 & 5 \\ 1 & -1 & 3 & 3 \\ 3 & 3 & -7 & -7 \end{bmatrix}$$

Problem 8. Solve the following linear system with Gauss Elimination

$$\begin{array}{rcl}
4y + 3z &=& 8\\ 2x - z &=& -2\\ x + 2z &=& 5.
\end{array}$$

Problem 9. Decide if the following linear system is consistent.

$$4y + 3z = 8$$

$$2x - z = -2$$

$$x + 2y + z = 3.$$

If it is, give all the solutions to the system.