Exercises: Matrix Basic Operations and Gauss Elimination

Problem 1. Let \boldsymbol{A} be a square $n \times n$ matrix, and \boldsymbol{I} an identity $n \times n$ matrix. Prove $\boldsymbol{A} \boldsymbol{I}=\boldsymbol{A}$, and $\boldsymbol{I} \boldsymbol{A}=\boldsymbol{A}$.

Proof: We will prove only $\boldsymbol{A I}=\boldsymbol{A}$ because the argument for $\boldsymbol{I} \boldsymbol{A}=\boldsymbol{A}$ is similar. Denote by \boldsymbol{B} the product of $\boldsymbol{A I I}$. Let $\boldsymbol{A}=\left[a_{i j}\right], \boldsymbol{B}=\left[b_{i j}\right]$, and $\boldsymbol{I}=\left[e_{i j}\right]$. We have:

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} e_{k j}
$$

As \boldsymbol{I} is an identity matrix, we know that $e_{k j}=1$ if $k=j$, while $e_{k j}=0$ if $k \neq j$. Therefore, the right hand side of the above equals $a_{i j}$.

Problem 2. Calculate $\boldsymbol{A} \boldsymbol{B}, \boldsymbol{B} \boldsymbol{A}$, and $\boldsymbol{A}^{T} \boldsymbol{B}^{T}$, where

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & 1 \\
-1 & -2 & 1
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

Solution.

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
5 & -1 & 1 \\
4 & 1 & 2 \\
-4 & -2 & -1
\end{array}\right], \boldsymbol{B} \boldsymbol{A}=\left[\begin{array}{ccc}
3 & 4 & 6 \\
1 & 3 & 2 \\
-2 & 0 & -1
\end{array}\right], \boldsymbol{A}^{T} \boldsymbol{B}^{T}=\left[\begin{array}{ccc}
3 & 1 & -2 \\
4 & 3 & 0 \\
6 & 2 & -1
\end{array}\right]
$$

Problem 3. $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are $m \times n, n \times p$, and $p \times q$ matrices. Prove: $(\boldsymbol{A B C})^{T}=\boldsymbol{C}^{T} \boldsymbol{B}^{T} \boldsymbol{A}^{T}$.
Proof.

$$
\begin{aligned}
(\boldsymbol{A B} \boldsymbol{B})^{T} & =\boldsymbol{C}^{T}(\boldsymbol{A} \boldsymbol{B})^{T} \\
& =\boldsymbol{C}^{T} \boldsymbol{B}^{T} \boldsymbol{A}^{T} .
\end{aligned}
$$

Problem 4. What is \boldsymbol{A}^{T} if \boldsymbol{A} is (i) symmetric, and (ii) anti-symmetric?
Solution. \boldsymbol{A} is symmetric if and only if $\boldsymbol{A}=\boldsymbol{A}^{T}$. Also, \boldsymbol{A}^{T} is anti-symmetric if and only if $\boldsymbol{A}=-\boldsymbol{A}^{T}$.

Problem 5. \boldsymbol{A} and \boldsymbol{B} are both $n \times n$ symmetric matrices. Prove: $A B$ is symmetric if and only if $A B=B A$.

Proof. $A B$ is symmetric if and only if $A B=(A B)^{T}=B^{T} A^{T}=B A$.
Problem 6. Consider the following recurrence for $i \geq 1$:

$$
x_{i+1}=A x_{i}
$$

where \boldsymbol{A} is an 3×3 matrix, and $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}$ are 3×1 matrices. Knowing:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \text { and } \boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

what is the value of x_{3} ?

Solution 1.

$$
\begin{aligned}
\boldsymbol{x}_{2} & =\boldsymbol{A} \boldsymbol{x}_{1} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] . \\
x_{3} & =\boldsymbol{A} \boldsymbol{x}_{2} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right] .
\end{aligned}
$$

Solution 2.

$$
\begin{aligned}
x_{3} & =\boldsymbol{A} \boldsymbol{x}_{2} \\
& =\boldsymbol{A}^{2} x_{1} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

Problem 7. Convert the following matrix into row echelon form with elementary row operations:

$$
\left[\begin{array}{cccc}
0 & 3 & 1 & 1 \\
0 & 0 & 5 & 5 \\
1 & -1 & 3 & 3 \\
3 & 3 & -7 & -7
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & 0 & 5 & 5 \\
0 & 3 & 1 & 1 \\
1 & -1 & 3 & 3 \\
3 & 3 & -7 & -7
\end{array}\right] } & \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 3 & 3 \\
3 & 3 & -7 & -7 \\
0 & 3 & 1 & 1 \\
0 & 0 & 5 & 5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 3 & 3 \\
0 & 6 & -16 & -16 \\
0 & 3 & 1 & 1 \\
0 & 0 & 5 & 5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 3 & 3 \\
0 & 6 & -16 & -16 \\
0 & 0 & 9 & 9 \\
0 & 0 & 5 & 5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & -1 & 3 & 3 \\
0 & 6 & -16 & -16 \\
0 & 0 & 9 & 9 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Problem 8. Solve the following linear system with Gauss Elimination

$$
\begin{aligned}
4 y+3 z & =8 \\
2 x-z & =-2 \\
x+2 z & =5 .
\end{aligned}
$$

Solution. First, obtain the augmented matrix:

$$
\left[\begin{array}{cccc}
0 & 4 & 3 & 8 \\
2 & 0 & -1 & -2 \\
1 & 0 & 2 & 5
\end{array}\right]
$$

Next, convert the matrix into row echelon form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & 4 & 3 & 8 \\
2 & 0 & -1 & -2 \\
1 & 0 & 2 & 5
\end{array}\right] } & \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
1 & 0 & 2 & 5 \\
0 & 4 & 3 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
0 & 0 & 5 / 2 & 6 \\
0 & 4 & 3 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
0 & 4 & 3 & 8 \\
0 & 0 & 5 / 2 & 6
\end{array}\right]
\end{aligned}
$$

Now apply back substitution to obtain the solution of x, y, z. Specifically, from

$$
(5 / 2) z=6
$$

we get $z=12 / 5$. From

$$
4 y+3 z=8
$$

we get $y=1 / 5$. From

$$
2 x-z=-2
$$

we get $x=1 / 5$.
Problem 9. Decide if the following linear system is consistent.

$$
\begin{aligned}
4 y+3 z & =8 \\
2 x-z & =-2 \\
x+2 y+z & =3 .
\end{aligned}
$$

If it is, give all the solutions to the system.
Solution. Augmented matrix:

$$
\left[\begin{array}{cccc}
0 & 4 & 3 & 8 \\
2 & 0 & -1 & -2 \\
1 & 2 & 1 & 3
\end{array}\right]
$$

Convert it to row echelon form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & 4 & 3 & 8 \\
2 & 0 & -1 & -2 \\
1 & 2 & 1 & 3
\end{array}\right] } & \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
1 & 2 & 1 & 3 \\
0 & 4 & 3 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
0 & 2 & 3 / 2 & 4 \\
0 & 4 & 3 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
2 & 0 & -1 & -2 \\
0 & 2 & 3 / 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The corresponding linear system:

$$
\begin{aligned}
2 x-z & =-2 \\
2 y+(3 / 2) z & =4
\end{aligned}
$$

It is thus clear that the system has infinitely many solutions. To find them all, introduce a parameter t. Then we know that any $x=(t / 2)-1, y=2-3 t / 4$, and $z=t$ is a solution of the original system.

