
Exercises: Line Integral by Length

Problem 1. Let C be the curve from point p(0, 0) to point q(1, 1) on the parabola y = x2.
Calculate

∫
C x ds.

Solution: First, write C into its parametric form: r(t) = [x(t), y(t)] where x(t) = t, and y(t) = t2.
Points p and q are given by t = 0 and 1, respectively. Thus:∫

C
x ds =

∫ 1

0
x(t)

ds

dt
dt

=

∫ 1

0
x(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 1

0
t
√

1 + 4t2 dt

=
1

12
(1 + 4t2)3/2

∣∣∣1
0

=
5
√

5− 1

12
.

Problem 2. Let C be the line segment from point p(1, 2, 3) to point q(8, 7, 6). Calculate
∫
C x+z2 ds.

Solution: Vector q−p = [8, 7, 6]− [1, 2, 3] = [7, 5, 3] gives the direction of the line segment. Hence,
C can be written into its parametric form: r(t) = [x(t), y(t), z(t)] where x(t) = 1+7t, y(t) = 2+5t,
and z(t) = 3 + 3t. Points p and q are given by t = 0 and t = 1, respectively. Thus:∫

C
x+ z2 ds =

∫ 1

0
(x(t) + (z(t))2)

ds

dt
dt

=

∫ 1

0
(1 + 7t+ (3 + 3t)2)

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ 1

0
(10 + 25t+ 9t2)

√
72 + 52 + 32dt

=
√

83

∫ 1

0
(10 + 25t+ 9t2)dt

=
51
√

83

2
.

Problem 3. Let C be the circle x2 + y2 = 1. Calculate
∫
C y ds.

Solution: Introduce the parametric form of C: r(t) = [x(t), y(t)] where x(t) = cos(t) and y(t) =
sin(t). Pick an arbitrary point on C, e.g., p(1, 0). Let q = p, i.e., another copy of the same point.
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View p as being given by t = 0, and q as being given by t = 2π.

∫
C
y ds =

∫ 2π

0
sin(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2π

0
sin(t)

√
(− sin(t))2 + (cos(t))2dt

=

∫ 2π

0
sin(t) dt

= − cos(t)
∣∣∣2π
0

= 0.

Problem 4. Let C be the boundary of the square shown below:

1−1

1

−1

Calculate
∫
C y ds.

Solution. C is a piecewise-smooth curve. Define:

• C1: the bottom edge of C.

• C2: the right edge of C.

• C3: the top edge of C.

• C4: the left edge of C.

We have: ∫
C
y ds =

∫
C1

y ds+

∫
C2

y ds+

∫
C3

y ds+

∫
C4

y ds

Next, we compute each integral on the right hand side in turn:∫
C1

y ds = −
∫
C1

ds = −2.

C2 can be represented as {[x(t) = 1, y(t) = t] | −1 ≤ t ≤ 1}.

∫
C2

y ds =

∫ 1

−1
y ·
√(

dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 1

−1
t ·
√

0 + 1 dt =
t2

2

∣∣∣1
−1

= 0
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Similarly, we can get: ∫
C3

y ds = 2∫
C4

y ds = 0.

Therefore,
∫
C y ds = 0.

Remark. Interestingly,
∫
C y ds = 0 can also be inferred directly from the definition of line integral

by arc length. Hint: break each edge into subintervals, and argue that each subinterval will get
“canceled” by another subinterval in the summation that defines the line integral.

Problem 5. Let C be the intersection of two surfaces: sphere x2 + y2 + z2 = 3 and plane x = y.
Calculate

∫
C x

2ds.

Solution: Observe first that the intersection is a circle, which is a closed curve. Introduce

x(t) = y(t) =
√
3√
2

cos(t) and z(t) =
√

3 sin(t). Pick a point on C by setting t = 0, which gives

p(
√

3/2,
√

3/2, 0). What is the smallest t that will give the same p? Clearly, the answer is t = 2π.
Define q = p, and view q as being given by t = 2π. Thus, C can be regarded as the trail of
[x(t), y(t), z(t)] as t grows from 0 to 2π.

∫
C
x2 ds =

∫ 2π

0

3

2
(cos(t))2

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ 2π

0

3

2
(cos(t))2

√√√√(−√3√
2

sin(t)

)2

+

(
−
√

3√
2

sin(t)

)2

+
(√

3 cos(t)
)2
dt

=
3
√

3

2

∫ 2π

0
(cos(t))2 dt

=
3
√

3

2

(
t

2
+

sin(2t)

4

) ∣∣∣2π
0

=
3
√

3

2
π.
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