Exercises: Line Integral by Length

Problem 1. Let C be the curve from point $p(0,0)$ to point $q(1,1)$ on the parabola $y=x^{2}$. Calculate $\int_{C} x d s$.

Solution: First, write C into its parametric form: $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=t$, and $y(t)=t^{2}$. Points p and q are given by $t=0$ and 1 , respectively. Thus:

$$
\begin{aligned}
\int_{C} x d s & =\int_{0}^{1} x(t) \frac{d s}{d t} d t \\
& =\int_{0}^{1} x(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{1} t \sqrt{1+4 t^{2}} d t \\
& =\left.\frac{1}{12}\left(1+4 t^{2}\right)^{3 / 2}\right|_{0} ^{1}=\frac{5 \sqrt{5}-1}{12} .
\end{aligned}
$$

Problem 2. Let C be the line segment from point $p(1,2,3)$ to point $q(8,7,6)$. Calculate $\int_{C} x+z^{2} d s$.
Solution: Vector $\boldsymbol{q}-\boldsymbol{p}=[8,7,6]-[1,2,3]=[7,5,3]$ gives the direction of the line segment. Hence, C can be written into its parametric form: $\boldsymbol{r}(t)=[x(t), y(t), z(t)]$ where $x(t)=1+7 t, y(t)=2+5 t$, and $z(t)=3+3 t$. Points p and q are given by $t=0$ and $t=1$, respectively. Thus:

$$
\begin{aligned}
\int_{C} x+z^{2} d s & =\int_{0}^{1}\left(x(t)+(z(t))^{2}\right) \frac{d s}{d t} d t \\
& =\int_{0}^{1}\left(1+7 t+(3+3 t)^{2}\right) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{1}\left(10+25 t+9 t^{2}\right) \sqrt{7}^{2}+5^{2}+3^{2} \\
& \\
& =\sqrt{83} \int_{0}^{1}\left(10+25 t+9 t^{2}\right) d t \\
& =\frac{51 \sqrt{83}}{2}
\end{aligned}
$$

Problem 3. Let C be the circle $x^{2}+y^{2}=1$. Calculate $\int_{C} y d s$.
Solution: Introduce the parametric form of $C: \boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=$ $\sin (t)$. Pick an arbitrary point on C, e.g., $p(1,0)$. Let $q=p$, i.e., another copy of the same point.

View p as being given by $t=0$, and q as being given by $t=2 \pi$.

$$
\begin{aligned}
\int_{C} y d s & =\int_{0}^{2 \pi} \sin (t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sin (t) \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}} d t \\
& =\int_{0}^{2 \pi} \sin (t) d t \\
& =-\left.\cos (t)\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

Problem 4. Let C be the boundary of the square shown below:

Calculate $\int_{C} y d s$.
Solution. C is a piecewise-smooth curve. Define:

- C_{1} : the bottom edge of C.
- C_{2} : the right edge of C.
- C_{3} : the top edge of C.
- C_{4} : the left edge of C.

We have:

$$
\int_{C} y d s=\int_{C_{1}} y d s+\int_{C_{2}} y d s+\int_{C_{3}} y d s+\int_{C_{4}} y d s
$$

Next, we compute each integral on the right hand side in turn:

$$
\int_{C_{1}} y d s=-\int_{C_{1}} d s=-2 .
$$

C_{2} can be represented as $\{[x(t)=1, y(t)=t] \mid-1 \leq t \leq 1\}$.

$$
\begin{aligned}
\int_{C_{2}} y d s & =\int_{-1}^{1} y \cdot \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{-1}^{1} t \cdot \sqrt{0+1} d t=\left.\frac{t^{2}}{2}\right|_{-1} ^{1}=0
\end{aligned}
$$

Similarly, we can get:

$$
\begin{aligned}
& \int_{C_{3}} y d s=2 \\
& \int_{C_{4}} y d s=0 .
\end{aligned}
$$

Therefore, $\int_{C} y d s=0$.
Remark. Interestingly, $\int_{C} y d s=0$ can also be inferred directly from the definition of line integral by arc length. Hint: break each edge into subintervals, and argue that each subinterval will get "canceled" by another subinterval in the summation that defines the line integral.

Problem 5. Let C be the intersection of two surfaces: sphere $x^{2}+y^{2}+z^{2}=3$ and plane $x=y$. Calculate $\int_{C} x^{2} d s$.

Solution: Observe first that the intersection is a circle, which is a closed curve. Introduce $x(t)=y(t)=\frac{\sqrt{3}}{\sqrt{2}} \cos (t)$ and $z(t)=\sqrt{3} \sin (t)$. Pick a point on C by setting $t=0$, which gives $p(\sqrt{3 / 2}, \sqrt{3 / 2}, 0)$. What is the smallest t that will give the same p ? Clearly, the answer is $t=2 \pi$. Define $q=p$, and view q as being given by $t=2 \pi$. Thus, C can be regarded as the trail of $[x(t), y(t), z(t)]$ as t grows from 0 to 2π.

$$
\begin{aligned}
\int_{C} x^{2} d s & =\int_{0}^{2 \pi} \frac{3}{2}(\cos (t))^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \frac{3}{2}(\cos (t))^{2} \sqrt{\left(-\frac{\sqrt{3}}{\sqrt{2}} \sin (t)\right)^{2}+\left(-\frac{\sqrt{3}}{\sqrt{2}} \sin (t)\right)^{2}+(\sqrt{3} \cos (t))^{2} d t} \\
& =\frac{3 \sqrt{3}}{2} \int_{0}^{2 \pi}(\cos (t))^{2} d t \\
& =\left.\frac{3 \sqrt{3}}{2}\left(\frac{t}{2}+\frac{\sin (2 t)}{4}\right)\right|_{0} ^{2 \pi} \\
& =\frac{3 \sqrt{3}}{2} \pi
\end{aligned}
$$

