Exercises: Path Independence

For Problems 1-4, first decide whether the line integral is path independent. If so, calculate the integral on a piecewise smooth arc from point (0,0) to point (1,1) in 2d, or from point (0,0,0) to point (1,1,1) in 3d.

Problem 1. $\int_C 2e^{x^2} (x \cos(2y) \, dx - \sin(2y) \, dy).$

Solution: Let $f_1(x, y) = 2e^{x^2} \cdot x \cos(2y)$ and $f_2(x, y) = -2e^{x^2} \cdot \sin(2y)$. Thus, $\frac{\partial f_1}{\partial y} = -4xe^{x^2} \sin(2y)$ and $\frac{\partial f_2}{\partial x} = -4xe^{x^2} \sin(2y)$. Hence, the integral is path independent.

If you can observe that $g(x,y) = e^{x^2} \cos(2y)$ satisfies $\frac{\partial g}{\partial x} = f_1$ and $\frac{\partial g}{\partial y} = f_2$, the value of the integral can be computed directly as $g(1,1) - g(0,0) = e \cos(2) - 1$.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the concatenation of two curves: C_1 from (0,0) to (1,0), and C_2 from (1,0) to (1,1). We have

$$\int_{C_1} 2e^{x^2} (x\cos(2y) \, dx - \sin(2y) \, dy) = \int_{C_1} 2e^{x^2} x\cos(2y) \, dx$$
$$= \int_0^1 2e^{x^2} x\cos(2 \cdot 0) \, dx$$
$$= \int_0^1 2e^{x^2} x \, dx$$
$$= \int_0^1 e^{x^2} d(x^2) = e - 1$$

Also,

$$\int_{C_2} 2e^{x^2} (x\cos(2y) \, dx - \sin(2y) \, dy) = -\int_{C_2} 2e^{x^2} \sin(2y) \, dy$$
$$= -\int_0^1 2e \sin(2y) \, dy = e \cos(2) - e^{x^2} \sin(2y) \, dy$$

Hence, $\int_C 2e^{x^2}(x\cos(2y)\,dx - \sin(2y)\,dy)$ equals $e - 1 + e\cos(2) - e = e\cos(2) - 1$.

Problem 2. $\int_C (x^2 y \, dx - 4xy^2 \, dy + 8z^2 x \, dz)$.

Solutions: Let $f_1 = x^2 y$, $f_2 = -4xy^2$, and $f_3 = 8z^2 x$. Hence, $\frac{\partial f_1}{\partial y} = x^2$ and $\frac{\partial f_2}{\partial x} = -4y^2$. Since $\frac{\partial f_1}{\partial y} \neq \frac{\partial f_2}{\partial x}$, we conclude that the integral is not path independent.

Problem 3. $\int_C (e^y dx + (xe^y - e^z) dy - ye^z dz).$

Solutions: Let $f_1 = e^y$, $f_2 = xe^y - e^z$, and $f_3 = -ye^z$. Thus, $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} = e^y$, $\frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x} = 0$, and $\frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y} = -e^z$. Hence, the integral is path independent.

If you can observe that $g(x, y, z) = xe^y - ye^z$ satisfies $\frac{\partial g}{\partial x} = f_1$, $\frac{\partial g}{\partial y} = f_2$, and $\frac{\partial g}{\partial z} = f_3$, the value of the integral can be computed directly as g(1, 1, 1) - g(0, 0, 0) = 0.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the concatenation of three curves: C_1 from (0,0,0) to (0,0,1), C_2 from (0,0,1) to (0,1,1), and C_3 from

(0, 1, 1) to (1, 1, 1). We have

$$\int_{C_1} (e^y \, dx + (xe^y - e^z) \, dy - ye^z \, dz) = -\int_{C_1} ye^z \, dz$$
$$= -\int_0^1 0e^z \, dz = 0$$

Also

$$\int_{C_2} (e^y \, dx + (xe^y - e^z) \, dy - ye^z \, dz) = \int_{C_2} (xe^y - e^z) \, dy$$
$$= \int_0^1 -e \, dy = -e.$$

Finally

$$\int_{C_3} (e^y \, dx + (xe^y - e^z) \, dy - ye^z \, dz) = \int_{C_3} e^y \, dx$$
$$= \int_0^1 e \, dx = e.$$
(1)

Hence, $\int_C (e^y dx + (xe^y - e^z) dy - ye^z dz) = 0 - e + e = 0.$

Problem 4. $\int_C (4y \, dx + (4x + z) \, dy + (y - 2z) \, dz).$

Solutions: Let $f_1 = 4y$, $f_2 = 4x + z$, and $f_3 = y - 2z$. Thus, $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x} = 4$, $\frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x} = 0$, and $\frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y} = 1$. Hence, the integral is path independent.

If you can observe that $g(x, y, z) = 4xy + yz - z^2$ satisfies $\frac{\partial g}{\partial x} = f_1$, $\frac{\partial g}{\partial y} = f_2$, and $\frac{\partial g}{\partial z} = f_3$, the value of the integral can be computed directly as g(1, 1, 1) - g(0, 0, 0) = 4.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the line segment given by $\mathbf{r}(t) = [x(t), y(t), z(t)]$ with x(t) = y(t) = z(t) = t, and $t \in [0, 1]$. Then

$$\int_{C} (4y \, dx + (4x + z) \, dy + (y - 2z) \, dz) = \int_{0}^{1} (4t \, \frac{dx}{dt} + (4t + t) \, \frac{dy}{dt} + (t - 2t) \, \frac{dz}{dt}) dt$$
$$= \int_{0}^{1} (4t + 5t - t) \, dt = 4.$$

Solve Problems 5-8 by resorting to path independence.

Problem 5. Calculate $\int_C d\mathbf{r} = \int_C dx + \int_C dy$ where C is a smooth curve from point p = (1, 2) to q = (3, 4).

Solution: Introduce g(x, y) = x + y. Clearly, $\frac{\partial g}{\partial x} = 1$ and $\frac{\partial g}{\partial y} = 1$. Hence, $\int_C dx + \int_C dy = g(3, 4) - g(1, 2) = 4$.

Problem 6. Calculate $\int_C 2xy \, dx + \int_C x^2 \, dy$ where C is a smooth curve from point p = (1, 2) to q = (3, 4).

Solution: Introduce $g(x, y) = x^2 y$. Clearly, $\frac{\partial g}{\partial x} = 2xy$ and $\frac{\partial g}{\partial y} = x^2$. Hence, $\int_C 2xy \, dx + \int_C x^2 \, dy = g(3, 4) - g(1, 2) = 34$.

Problem 7. Calculate $\int_C yz \, dx + \int_C xz \, dy + \int_C xy \, dz$ where C is a smooth curve from point p = (1, 2, 3) to q = (3, 4, 5).

Solution: Introduce g(x, y, z) = xyz. Clearly, $\frac{\partial g}{\partial x} = yz$, $\frac{\partial g}{\partial y} = xz$, and $\frac{\partial g}{\partial z} = xy$. Hence, $\int_C yz \, dx + \int_C xz \, dy + \int_C xy \, dz = g(3, 4, 5) - g(1, 2, 3) = 54$.

Problem 8. Calculate $\int_C yz \, dx + \int_C xz \, dy + \int_C xy \, dz$ where C is the curve given by $\mathbf{r}(t) = [\cos(t), \sin(t), 1]$ with $t \in [0, 2\pi]$.

Solution: We already know that $\int_C yz \, dx + \int_C xz \, dy + \int_C xy \, dz$ is path independent. Also observe that *C* is a closed curve (because $\mathbf{r}(0) = \mathbf{r}(2\pi)$). In this case, it must hold that $\int_C yz \, dx + \int_C xz \, dy + \int_C xy \, dz = 0$.