Exercises: Path Independence

For Problems 1-4, first decide whether the line integral is path independent. If so, calculate the integral on a piecewise smooth arc from point $(0,0)$ to point $(1,1)$ in 2 d , or from point $(0,0,0)$ to point ($1,1,1$) in 3d.

Problem 1. $\int_{C} 2 e^{x^{2}}(x \cos (2 y) d x-\sin (2 y) d y)$.
Solution: Let $f_{1}(x, y)=2 e^{x^{2}} \cdot x \cos (2 y)$ and $f_{2}(x, y)=-2 e^{x^{2}} \cdot \sin (2 y)$. Thus, $\frac{\partial f_{1}}{\partial y}=-4 x e^{x^{2}} \sin (2 y)$ and $\frac{\partial f_{2}}{\partial x}=-4 x e^{x^{2}} \sin (2 y)$. Hence, the integral is path independent.

If you can observe that $g(x, y)=e^{x^{2}} \cos (2 y)$ satisfies $\frac{\partial g}{\partial x}=f_{1}$ and $\frac{\partial g}{\partial y}=f_{2}$, the value of the integral can be computed directly as $g(1,1)-g(0,0)=e \cos (2)-1$.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the concatenation of two curves: C_{1} from $(0,0)$ to $(1,0)$, and C_{2} from $(1,0)$ to $(1,1)$. We have

$$
\begin{aligned}
\int_{C_{1}} 2 e^{x^{2}}(x \cos (2 y) d x-\sin (2 y) d y) & =\int_{C_{1}} 2 e^{x^{2}} x \cos (2 y) d x \\
& =\int_{0}^{1} 2 e^{x^{2}} x \cos (2 \cdot 0) d x \\
& =\int_{0}^{1} 2 e^{x^{2}} x d x \\
& =\int_{0}^{1} e^{x^{2}} d\left(x^{2}\right)=e-1
\end{aligned}
$$

Also,

$$
\begin{aligned}
\int_{C_{2}} 2 e^{x^{2}}(x \cos (2 y) d x-\sin (2 y) d y) & =-\int_{C_{2}} 2 e^{x^{2}} \sin (2 y) d y \\
& =-\int_{0}^{1} 2 e \sin (2 y) d y=e \cos (2)-e
\end{aligned}
$$

Hence, $\int_{C} 2 e^{x^{2}}(x \cos (2 y) d x-\sin (2 y) d y)$ equals $e-1+e \cos (2)-e=e \cos (2)-1$.
Problem 2. $\int_{C}\left(x^{2} y d x-4 x y^{2} d y+8 z^{2} x d z\right)$.
Solutions: Let $f_{1}=x^{2} y, f_{2}=-4 x y^{2}$, and $f_{3}=8 z^{2} x$. Hence, $\frac{\partial f_{1}}{\partial y}=x^{2}$ and $\frac{\partial f_{2}}{\partial x}=-4 y^{2}$. Since $\frac{\partial f_{1}}{\partial y} \neq \frac{\partial f_{2}}{\partial x}$, we conclude that the integral is not path independent.

Problem 3. $\int_{C}\left(e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z\right)$.
Solutions: Let $f_{1}=e^{y}, f_{2}=x e^{y}-e^{z}$, and $f_{3}=-y e^{z}$. Thus, $\frac{\partial f_{1}}{\partial y}=\frac{\partial f_{2}}{\partial x}=e^{y}, \frac{\partial f_{1}}{\partial z}=\frac{\partial f_{3}}{\partial x}=0$, and $\frac{\partial f_{2}}{\partial z}=\frac{\partial f_{3}}{\partial y}=-e^{z}$. Hence, the integral is path independent.

If you can observe that $g(x, y, z)=x e^{y}-y e^{z}$ satisfies $\frac{\partial g}{\partial x}=f_{1}, \frac{\partial g}{\partial y}=f_{2}$, and $\frac{\partial g}{\partial z}=f_{3}$, the value of the integral can be computed directly as $g(1,1,1)-g(0,0,0)=0$.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the concatenation of three curves: C_{1} from $(0,0,0)$ to $(0,0,1), C_{2}$ from $(0,0,1)$ to $(0,1,1)$, and C_{3} from
$(0,1,1)$ to $(1,1,1)$. We have

$$
\begin{aligned}
\int_{C_{1}}\left(e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z\right) & =-\int_{C_{1}} y e^{z} d z \\
& =-\int_{0}^{1} 0 e^{z} d z=0 .
\end{aligned}
$$

Also

$$
\begin{aligned}
\int_{C_{2}}\left(e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z\right) & =\int_{C_{2}}\left(x e^{y}-e^{z}\right) d y \\
& =\int_{0}^{1}-e d y=-e
\end{aligned}
$$

Finally

$$
\begin{align*}
\int_{C_{3}}\left(e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z\right) & =\int_{C_{3}} e^{y} d x \\
& =\int_{0}^{1} e d x=e \tag{1}
\end{align*}
$$

Hence, $\int_{C}\left(e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z\right)=0-e+e=0$.
Problem 4. $\int_{C}(4 y d x+(4 x+z) d y+(y-2 z) d z)$.
Solutions: Let $f_{1}=4 y, f_{2}=4 x+z$, and $f_{3}=y-2 z$. Thus, $\frac{\partial f_{1}}{\partial y}=\frac{\partial f_{2}}{\partial x}=4, \frac{\partial f_{1}}{\partial z}=\frac{\partial f_{3}}{\partial x}=0$, and $\frac{\partial f_{2}}{\partial z}=\frac{\partial f_{3}}{\partial y}=1$. Hence, the integral is path independent.

If you can observe that $g(x, y, z)=4 x y+y z-z^{2}$ satisfies $\frac{\partial g}{\partial x}=f_{1}, \frac{\partial g}{\partial y}=f_{2}$, and $\frac{\partial g}{\partial z}=f_{3}$, the value of the integral can be computed directly as $g(1,1,1)-g(0,0,0)=4$.

If you cannot, then evaluate the integral on an easy curve C. For example, let C be the line segment given by $\boldsymbol{r}(t)=[x(t), y(t), z(t)]$ with $x(t)=y(t)=z(t)=t$, and $t \in[0,1]$. Then

$$
\begin{aligned}
\int_{C}(4 y d x+(4 x+z) d y+(y-2 z) d z) & =\int_{0}^{1}\left(4 t \frac{d x}{d t}+(4 t+t) \frac{d y}{d t}+(t-2 t) \frac{d z}{d t}\right) d t \\
& =\int_{0}^{1}(4 t+5 t-t) d t=4
\end{aligned}
$$

Solve Problems $5-8$ by resorting to path independence.
Problem 5. Calculate $\int_{C} d \boldsymbol{r}=\int_{C} d x+\int_{C} d y$ where C is a smooth curve from point $p=(1,2)$ to $q=(3,4)$.

Solution: Introduce $g(x, y)=x+y$. Clearly, $\frac{\partial g}{\partial x}=1$ and $\frac{\partial g}{\partial y}=1$. Hence, $\int_{C} d x+\int_{C} d y=$ $g(3,4)-g(1,2)=4$.

Problem 6. Calculate $\int_{C} 2 x y d x+\int_{C} x^{2} d y$ where C is a smooth curve from point $p=(1,2)$ to $q=(3,4)$.

Solution: Introduce $g(x, y)=x^{2} y$. Clearly, $\frac{\partial g}{\partial x}=2 x y$ and $\frac{\partial g}{\partial y}=x^{2}$. Hence, $\int_{C} 2 x y d x+\int_{C} x^{2} d y=$ $g(3,4)-g(1,2)=34$.

Problem 7. Calculate $\int_{C} y z d x+\int_{C} x z d y+\int_{C} x y d z$ where C is a smooth curve from point $p=(1,2,3)$ to $q=(3,4,5)$.

Solution: Introduce $g(x, y, z)=x y z$. Clearly, $\frac{\partial g}{\partial x}=y z, \frac{\partial g}{\partial y}=x z$, and $\frac{\partial g}{\partial z}=x y$. Hence, $\int_{C} y z d x+$ $\int_{C} x z d y+\int_{C} x y d z=g(3,4,5)-g(1,2,3)=54$.

Problem 8. Calculate $\int_{C} y z d x+\int_{C} x z d y+\int_{C} x y d z$ where C is the curve given by $\boldsymbol{r}(t)=$ $[\cos (t), \sin (t), 1]$ with $t \in[0,2 \pi]$.

Solution: We already know that $\int_{C} y z d x+\int_{C} x z d y+\int_{C} x y d z$ is path independent. Also observe that C is a closed curve (because $\boldsymbol{r}(0)=\boldsymbol{r}(2 \pi)$). In this case, it must hold that $\int_{C} y z d x+\int_{C} x z d y+$ $\int_{C} x y d z=0$.

