Exercises: Green's Theorem

Problem 1. Calculate

$$
\oint_{C} \boldsymbol{f}(\boldsymbol{r}) d \boldsymbol{r}
$$

where $\boldsymbol{f}=[y,-x]$, and C is the circle $x^{2}+y^{2}=1$ in the positive direction.
Remark: The sign \oint has the same meaning as \int except that the former emphasizes that C is a closed curve.

Problem 2. Define Q as the square in \mathbb{R}^{2} enclosing all the points (x, y) satisfying $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Calculate $\oint_{C} \boldsymbol{f}(\boldsymbol{r}) d \boldsymbol{r}$, where $\boldsymbol{f}=\left[6 y^{2}, 2 x-2 y^{4}\right]$, and C is the boundary of Q in the positive direction.

Problem 3. Calculate

$$
\oint_{C} x^{2} e^{y} d x+y^{2} e^{x} d y
$$

where C is the same as in the previous problem.
Problem 4. Define Q as the square in \mathbb{R}^{2} enclosing all the points (x, y) satisfying $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$. Calculate

$$
\oint_{C}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

where C is the boundary of Q in the positive direction. You can use the fact that

$$
\int_{-1}^{1} \frac{2}{x^{2}+1} d x=\pi
$$

Problem 5. Prof. Goofy applies the following argument to "show" that the integral in Problem 4 equals 0 . But his argument is wrong. Point out the place where he makes a mistake.

Prof. Goofy's solution: Set $f_{1}=\frac{-y}{x^{2}+y^{2}}$ and $f_{2}=\frac{x}{x^{2}+y^{2}}$. Thus:

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial y} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial f_{2}}{\partial x} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Let D be the area enclosed by Q. By Green's theorem, we have:

$$
\oint_{C}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y=\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y=\iint_{D} 0 d x d y=0 .
$$

Problem 6. Suppose that C is the union of the two arcs C_{1} and C_{2} as shown in the following figure:

Calculate

$$
\int_{C}(-y) d x+x d y
$$

