Exercises: Green's Theorem

Problem 1. Calculate

$$
\oint_{C} \boldsymbol{f}(\boldsymbol{r}) d \boldsymbol{r}
$$

where $\boldsymbol{f}=[y,-x]$, and C is the circle $x^{2}+y^{2}=1$ in the positive direction.
Remark: The sign \oint has the same meaning as \int except that the former emphasizes that C is a closed curve.

Solution: Let $f_{1}(x, y)=y$ and $f_{2}(x, y)=-x$. Let D be the region enclosed by C. By Green's theorem, we know

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{C}\left(f_{1} d x+f_{2} d y\right) \\
& =\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y \\
& =\iint_{D}-1-1 d x d y=-2 \pi
\end{aligned}
$$

Problem 2. Define Q as the square in \mathbb{R}^{2} enclosing all the points (x, y) satisfying $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Calculate $\oint_{C} \boldsymbol{f}(\boldsymbol{r}) d \boldsymbol{r}$, where $\boldsymbol{f}=\left[6 y^{2}, 2 x-2 y^{4}\right]$, and C is the boundary of Q in the positive direction.

Solution: Let $f_{1}(x, y)=6 y^{2}$ and $f_{2}(x, y)=2 x-2 y^{4}$. Let D be the region enclosed by C. By Green's theorem, we know

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) d \boldsymbol{r} & =\int_{C}\left(f_{1} d x+f_{2} d y\right) \\
& =\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y \\
& =\iint_{D} 2-12 y d x d y \\
& =2-12 \int_{0}^{1} y\left(\int_{0}^{1} d x\right) d y \\
& =2-12 \int_{0}^{1} y d y=-4
\end{aligned}
$$

Problem 3. Calculate

$$
\oint_{C} x^{2} e^{y} d x+y^{2} e^{x} d y
$$

where C is the same as in the previous problem.
Solution: Let $f_{1}(x, y)=x^{2} e^{y}$ and $f_{2}(x, y)=y^{2} e^{x}$. Let D be the region enclosed by C. By Green's
theorem, we know

$$
\begin{aligned}
\int_{C}\left(f_{1} d x+f_{2} d y\right) & =\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y \\
& =\iint_{D} y^{2} e^{x}-x^{2} e^{y} d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{1} y^{2} e^{x}-x^{2} e^{y} d x\right) d y \\
& =\int_{0}^{1}\left(\left.\left(y^{2} e^{x}-\frac{e^{y}}{3} x^{3}\right)\right|_{x=0} ^{x=1}\right) d y \\
& =\int_{0}^{1} y^{2} e-\frac{e^{y}}{3}-y^{2} d y=0
\end{aligned}
$$

Problem 4. Define Q as the square in \mathbb{R}^{2} enclosing all the points (x, y) satisfying $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$. Calculate

$$
\oint_{C}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

where C is the boundary of Q in the positive direction. You can use the fact that

$$
\int_{-1}^{1} \frac{2}{x^{2}+1} d x=\pi
$$

Solution: Break C into four directed segments $C_{1}, C_{2}, \ldots, C_{4}$ as shown below:

$$
\begin{aligned}
& \oint_{C}\left(\frac{-y}{x^{2}+y^{2}}\right) d x \\
= & \int_{C_{1}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\int_{C_{2}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\int_{C_{3}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\int_{C_{4}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x \\
= & \int_{C_{1}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\int_{C_{3}}\left(\frac{-y}{x^{2}+y^{2}}\right) d x \\
= & \int_{-1}^{1}\left(\frac{1}{x^{2}+1}\right) d x+\int_{1}^{-1}\left(\frac{-1}{x^{2}+1}\right) d x \\
= & \int_{-1}^{1}\left(\frac{1}{x^{2}+1}\right) d x-\int_{-1}^{1}\left(\frac{-1}{x^{2}+1}\right) d x \\
= & \int_{-1}^{1}\left(\frac{2}{x^{2}+1}\right) d x=\pi .
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& \oint_{C}\left(\frac{x}{x^{2}+y^{2}}\right) d y \\
= & \int_{C_{1}}\left(\frac{x}{y^{2}+x^{2}}\right) d y+\int_{C_{2}}\left(\frac{x}{y^{2}+x^{2}}\right) d y+\int_{C_{3}}\left(\frac{x}{y^{2}+x^{2}}\right) d y+\int_{C_{4}}\left(\frac{x}{y^{2}+x^{2}}\right) d y \\
= & \int_{C_{2}}\left(\frac{x}{y^{2}+x^{2}}\right) d y+\int_{C_{4}}\left(\frac{x}{y^{2}+x^{2}}\right) d y \\
= & \int_{-1}^{1}\left(\frac{1}{y^{2}+1}\right) d y+\int_{1}^{-1}\left(\frac{-1}{y^{2}+1}\right) d y \\
= & \int_{-1}^{1}\left(\frac{1}{y^{2}+1}\right) d y-\int_{-1}^{1}\left(\frac{-1}{y^{2}+1}\right) d y \\
= & \int_{-1}^{1}\left(\frac{2}{y^{2}+1}\right) d y=\pi .
\end{aligned}
$$

Therefore, the original integral equals 2π.
Problem 5. Prof. Goofy applies the following argument to "show" that the integral in Problem 4 equals 0 . But his argument is wrong. Point out the place where he makes a mistake.

Prof. Goofy's solution: Set $f_{1}=\frac{-y}{x^{2}+y^{2}}$ and $f_{2}=\frac{x}{x^{2}+y^{2}}$. Thus:

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial y} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial f_{2}}{\partial x} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Let D be the area enclosed by Q. By Green's theorem, we have:

$$
\oint_{C}\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y=\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y=\iint_{D} 0 d x d y=0 .
$$

Solution. To apply Green's theorem, the functions f_{1} and f_{2} need to be defined everywhere in D. This is not true: the two functions are undefined at the origin $(0,0)$!

Problem 6. Suppose that C is the union of the two arcs C_{1} and C_{2} as shown in the following figure:

Calculate

$$
\int_{C}(-y) d x+x d y
$$

Solution. Set $f_{1}=-y$ and $f_{2}=x$. Let D be the gray region as shown in the figure below:

By Green's theorem, we have:

$$
\int_{C}(-y) d x+x d y=2 \iint_{D} d x d y
$$

which is twice the area of D, namely, 6 .

