Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point $p=(0,0)$ to $q=(2,4)$ on the parabola $y=x^{2}$. Calculate $\int_{C}\left(x^{2}-y^{2}\right) d x$.

Problem 2. Let $\boldsymbol{r}(t)=\left[t, t^{2}, t^{3}\right]$ and $\boldsymbol{f}(x, y, z)=[x-y, y-z, z-x]$. Let C be the curve from the point of $t=0$ to the point of $t=1$. Calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$.

Problem 3. Same as in Problem 2, except that C is defined by decreasing t from 1 to 0 (i.e., reversing the direction as in Problem 2).

Problem 4. Calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$ where $\boldsymbol{f}(x, y)=\left[y^{2},-x^{2}\right]$, and C is the arc from $(0,0)$ to (1,4) on the curve $y=4 x^{2}$.

Problem 5. Calculate

$$
\int_{C} x y d x+x^{2} y^{2} d y
$$

where C is the quarter-arc from $(1,0)$ to $(0,1)$ on the circle $x^{2}+y^{2}=1$.
Problem 6. Let $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Let p be the point given by $t=\pi / 4$. Calculate $\frac{d x}{d s}$ at p.

Problem 7. Let $\boldsymbol{r}(t)=[x(t), y(t), z(t)]$. Let p be the point given by $t=t_{0}$. Prove that $\left[\frac{d x}{d s}\left(t_{0}\right), \frac{d y}{d s}\left(t_{0}\right), \frac{d z}{d s}\left(t_{0}\right)\right]$ is a unit tangent vector at p.

Problem 8. This problem allows you to see the equivalence of line integral by arc length and line integral by coordinate. Let $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Convert $\int_{C} x d x+\int_{C} y^{2} d y$ to line integral by arc length.

