
Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point p = (0, 0) to q = (2, 4) on the parabola y = x2.
Calculate

∫
C(x2 − y2)dx.

Solution: First, write C into its parametric form: r(t) = [x(t), y(t)] where x(t) = t, and y(t) = t2.
Points p and q are given by t = 0 and 2, respectively. Thus:∫

C
(x2 − y2)dx =

∫ 2

0
(t2 − t4)dx

dt
dt

=

∫ 2

0
(t2 − t4)dt

= 8/3− 32/5.

Problem 2. Let r(t) = [t, t2, t3] and f(x, y, z) = [x− y, y− z, z − x]. Let C be the curve from the
point of t = 0 to the point of t = 1. Calculate

∫
C f(r) · dr.

Solution: ∫
C
f(r) · dr =

∫ 1

0
f(r) · r′(t) dt

=

∫ 1

0
[t− t2, t2 − t3, t3 − t] · [1, 2t, 3t2] dt

=

∫ 1

0
t− t2 + 2t3 − 2t4 + 3t5 − 3t3 dt

=

∫ 1

0
t− t2 − t3 − 2t4 + 3t5 dt

= 1/60.

Problem 3. Same as in Problem 2, except that C is defined by decreasing t from 1 to 0 (i.e.,
reversing the direction as in Problem 2).

Solution: When the direction of the arc is reversed, the value of the integer integral (by coordinate)
is reversed. Hence, the answer is −1/60.

Solution: ∫
C
f(r) · dr =

∫ 1

0
f(r) · r′(t) dt

=

∫ 1

0
[t− t2, t2 − t3, t3 − t] · [1, 2t, 3t2] dt

=

∫ 1

0
t− t2 + 2t3 − 2t4 + 3t5 − 3t3 dt

=

∫ 1

0
t− t2 − t3 − 2t4 + 3t5 dt

= 1/60.
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Problem 4. Calculate
∫
C f(r) · dr where f(x, y) = [y2,−x2], and C is the arc from (0, 0) to (1, 4)

on the curve y = 4x2.

Solution. Let us first represent the curve y = x2 in its parametric form: r(t) = [t, 4t2]. C is
defined by increasing t from 0 to 1. Hence:∫

C
f(r) · dr =

∫ 1

0
f(r) · r′(t) dt

=

∫ 1

0
[y(t)2,−x(t)2] · [1, 8t] dt

=

∫ 1

0
y(t)2 − 8t · x(t)2 dt

=

∫ 1

0
(4t2)2 − 8t · t2 dt

=

∫ 1

0
16t4 − 8t3 dt

= = 6/5.

Problem 5. Calculate ∫
C
xy dx+ x2y2 dy

where C is the quarter-arc from (1, 0) to (0, 1) on the circle x2 + y2 = 1.

Solution. Let us first represent the circle in its parametric form: r(t) = [cos t, sin t]. C is defined
by increasing t from 0 to π/2. Hence:∫

C
xy dx+ x2y2 dy =

∫ π/2

0

(
xy

dx

dt
+ x2y2

dy

dt

)
dt

=

∫ π/2

0

(
cos t sin t · (− sin t) + (cos2 t)(sin2 t) cos t

)
dt

= −
∫ π/2

0
sin4 t cos t dt

= −
∫ π/2

0
sin4 t d(sin t)

= −1/5.

Problem 6. Let r(t) = [x(t), y(t)] where x(t) = cos(t) and y(t) = sin(t). Let p be the point given
by t = π/4. Calculate dx

ds at p.
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Solution:

dx

ds
=

dx/dt

ds/dt

=
dx/dt√

(dx/dt)2 + (dy/dt)2

=
x′(t)√

(x′(t))2 + (y′(t))2

=
− sin(t)√

(− sin(t))2 + (cos(t))2

= − sin(t).

Hence, the value of dx
ds at p is − sin(π/4) = −1/

√
2.

Problem 7. Let r(t) = [x(t), y(t), z(t)]. Let p be the point given by t = t0. Prove that
[dxds (t0),

dy
ds (t0),

dz
ds (t0)] is a unit tangent vector at p.

Proof:

dx

ds
=

dx/dt

ds/dt
=

dx/dt√
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

Similarly:

dy

ds
=

dy/dt

ds/dt
=

dy/dt√
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

dz

ds
=

dz/dt

ds/dt
=

dz/dt√
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

.

Therefore: [
dx

ds
,
dy

ds
,
dz

ds

]
=

[x′(t), y′(t), z′(t)]√
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

which proves that [dxds ,
dy
ds ,

dz
ds ] is a tangent vector. Furthermore:∣∣∣∣[dxds , dyds , dzds

]∣∣∣∣2 =
(dx/dt)2 + (dy/dt)2 + (dz/dt)2

(dx/dt)2 + (dy/dt)2 + (dz/dt)2
= 1

which means that [dxds ,
dy
ds ,

dz
ds ] is a unit vector.

Problem 8. This problem allows you to see the equivalence of line integral by arc length and
line integral by coordinate. Let r(t) = [x(t), y(t)] where x(t) = cos(t) and y(t) = sin(t). Convert∫
C x dx+

∫
C y

2 dy to line integral by arc length.

Solution: ∫
C
x dx+

∫
C
y2 dy =

∫
C
x
dx

ds
ds+

∫
C
y2
dy

ds
ds

=

∫
C
x
dx

ds
+ y2

dy

ds
ds (1)
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In Problem 4, we have shown that dx
ds = − sin(t) = −y(t). Similarly:

dy

ds
=

dy/dt

ds/dt

=
dy/dt√

(dx/dt)2 + (dy/dt)2

=
y′(t)√

(x′(t))2 + (y′(t))2

=
cos(t)√

(− sin(t))2 + (cos(t))2

= x(t).

Hence:

(1) =

∫
C
−xy + y2x ds.

4


