Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point $p=(0,0)$ to $q=(2,4)$ on the parabola $y=x^{2}$. Calculate $\int_{C}\left(x^{2}-y^{2}\right) d x$.

Solution: First, write C into its parametric form: $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=t$, and $y(t)=t^{2}$. Points p and q are given by $t=0$ and 2 , respectively. Thus:

$$
\begin{aligned}
\int_{C}\left(x^{2}-y^{2}\right) d x & =\int_{0}^{2}\left(t^{2}-t^{4}\right) \frac{d x}{d t} d t \\
& =\int_{0}^{2}\left(t^{2}-t^{4}\right) d t \\
& =8 / 3-32 / 5 .
\end{aligned}
$$

Problem 2. Let $\boldsymbol{r}(t)=\left[t, t^{2}, t^{3}\right]$ and $\boldsymbol{f}(x, y, z)=[x-y, y-z, z-x]$. Let C be the curve from the point of $t=0$ to the point of $t=1$. Calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$.

Solution:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{0}^{1} \boldsymbol{f}(\boldsymbol{r}) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left[t-t^{2}, t^{2}-t^{3}, t^{3}-t\right] \cdot\left[1,2 t, 3 t^{2}\right] d t \\
& =\int_{0}^{1} t-t^{2}+2 t^{3}-2 t^{4}+3 t^{5}-3 t^{3} d t \\
& =\int_{0}^{1} t-t^{2}-t^{3}-2 t^{4}+3 t^{5} d t \\
& =1 / 60 .
\end{aligned}
$$

Problem 3. Same as in Problem 2, except that C is defined by decreasing t from 1 to 0 (i.e., reversing the direction as in Problem 2).

Solution: When the direction of the arc is reversed, the value of the integer integral (by coordinate) is reversed. Hence, the answer is $-1 / 60$.

Solution:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{0}^{1} \boldsymbol{f}(\boldsymbol{r}) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left[t-t^{2}, t^{2}-t^{3}, t^{3}-t\right] \cdot\left[1,2 t, 3 t^{2}\right] d t \\
& =\int_{0}^{1} t-t^{2}+2 t^{3}-2 t^{4}+3 t^{5}-3 t^{3} d t \\
& =\int_{0}^{1} t-t^{2}-t^{3}-2 t^{4}+3 t^{5} d t \\
& =1 / 60
\end{aligned}
$$

Problem 4. Calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$ where $\boldsymbol{f}(x, y)=\left[y^{2},-x^{2}\right]$, and C is the arc from $(0,0)$ to (1,4) on the curve $y=4 x^{2}$.

Solution. Let us first represent the curve $y=x^{2}$ in its parametric form: $\boldsymbol{r}(t)=\left[t, 4 t^{2}\right] . C$ is defined by increasing t from 0 to 1 . Hence:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{0}^{1} \boldsymbol{f}(\boldsymbol{r}) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left[y(t)^{2},-x(t)^{2}\right] \cdot[1,8 t] d t \\
& =\int_{0}^{1} y(t)^{2}-8 t \cdot x(t)^{2} d t \\
& =\int_{0}^{1}\left(4 t^{2}\right)^{2}-8 t \cdot t^{2} d t \\
& =\int_{0}^{1} 16 t^{4}-8 t^{3} d t \\
& ==6 / 5 .
\end{aligned}
$$

Problem 5. Calculate

$$
\int_{C} x y d x+x^{2} y^{2} d y
$$

where C is the quarter-arc from $(1,0)$ to $(0,1)$ on the circle $x^{2}+y^{2}=1$.
Solution. Let us first represent the circle in its parametric form: $\boldsymbol{r}(t)=[\cos t, \sin t] . C$ is defined by increasing t from 0 to $\pi / 2$. Hence:

$$
\begin{aligned}
\int_{C} x y d x+x^{2} y^{2} d y & =\int_{0}^{\pi / 2}\left(x y \frac{d x}{d t}+x^{2} y^{2} \frac{d y}{d t}\right) d t \\
& =\int_{0}^{\pi / 2}\left(\cos t \sin t \cdot(-\sin t)+\left(\cos ^{2} t\right)\left(\sin ^{2} t\right) \cos t\right) d t \\
& =-\int_{0}^{\pi / 2} \sin ^{4} t \cos t d t \\
& =-\int_{0}^{\pi / 2} \sin ^{4} t d(\sin t) \\
& =-1 / 5
\end{aligned}
$$

Problem 6. Let $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Let p be the point given by $t=\pi / 4$. Calculate $\frac{d x}{d s}$ at p.

Solution:

$$
\begin{aligned}
\frac{d x}{d s} & =\frac{d x / d t}{d s / d t} \\
& =\frac{d x / d t}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}} \\
& =\frac{x^{\prime}(t)}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}} \\
& =\frac{-\sin (t)}{\sqrt{(-\sin (t))^{2}+(\cos (t))^{2}}} \\
& =-\sin (t) .
\end{aligned}
$$

Hence, the value of $\frac{d x}{d s}$ at p is $-\sin (\pi / 4)=-1 / \sqrt{2}$.
Problem 7. Let $\boldsymbol{r}(t)=[x(t), y(t), z(t)]$. Let p be the point given by $t=t_{0}$. Prove that $\left[\frac{d x}{d s}\left(t_{0}\right), \frac{d y}{d s}\left(t_{0}\right), \frac{d z}{d s}\left(t_{0}\right)\right]$ is a unit tangent vector at p.

Proof:

$$
\frac{d x}{d s}=\frac{d x / d t}{d s / d t}=\frac{d x / d t}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}}
$$

Similarly:

$$
\begin{aligned}
& \frac{d y}{d s}=\frac{d y / d t}{d s / d t}=\frac{d y / d t}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}} \\
& \frac{d z}{d s}=\frac{d z / d t}{d s / d t}=\frac{d z / d t}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}}
\end{aligned}
$$

Therefore:

$$
\left[\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right]=\frac{\left[x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right]}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}}
$$

which proves that $\left[\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right]$ is a tangent vector. Furthermore:

$$
\left|\left[\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right]\right|^{2}=\frac{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}{(d x / d t)^{2}+(d y / d t)^{2}+(d z / d t)^{2}}=1
$$

which means that $\left[\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right]$ is a unit vector.
Problem 8. This problem allows you to see the equivalence of line integral by arc length and line integral by coordinate. Let $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Convert $\int_{C} x d x+\int_{C} y^{2} d y$ to line integral by arc length.

Solution:

$$
\begin{align*}
\int_{C} x d x+\int_{C} y^{2} d y & =\int_{C} x \frac{d x}{d s} d s+\int_{C} y^{2} \frac{d y}{d s} d s \\
& =\int_{C} x \frac{d x}{d s}+y^{2} \frac{d y}{d s} d s \tag{1}
\end{align*}
$$

In Problem 4, we have shown that $\frac{d x}{d s}=-\sin (t)=-y(t)$. Similarly:

$$
\begin{aligned}
\frac{d y}{d s} & =\frac{d y / d t}{d s / d t} \\
& =\frac{d y / d t}{\sqrt{(d x / d t)^{2}+(d y / d t)^{2}}} \\
& =\frac{y^{\prime}(t)}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}} \\
& =\frac{\cos (t)}{\sqrt{(-\sin (t))^{2}+(\cos (t))^{2}}} \\
& =x(t) .
\end{aligned}
$$

Hence:

$$
(1)=\int_{C}-x y+y^{2} x d s
$$

