QUESTION: EXTENSION OF MAXIMAL CODE LEMMA TO TWO RECEIVERS?

CHANDRA NAIR

ABSTRACT. We seek a generalization of the Maximal code lemma[KM77] to the case of two receivers.

1. Maximal Code Lemma

Here is the Maximal code lemma from [KM77] (slight change to modern notation).

A discrete memoryless channel (DMC) is a model of a noisy channel for communication that accepts input x from a discrete set \mathcal{X} and produces an output y, belonging to another discrete set \mathcal{Y} , according to a fixed probability transition matrix $V \equiv [V(y|x)]$. The term memoryless is used when the channel satisfies an additional property $p(y_i|x_1,...,x_i,y_1,...,y_{i-1}) = p(y_i|x_i)$, or in other words the "error events" have no memory (sometimes referred to as random errors).

Let $P = \{P(a) : a \in \mathcal{X}\}$ be a probability distribution on \mathcal{X} , and denote by Q the probability distribution on \mathcal{Y} induced by P and the transition matrix V. Let ϵ_n be a sequence of positive numbers such that $\epsilon_n \to 0$ and $\epsilon_n \sqrt{n} \to \infty$. We define the set of all typical sequences of length n,

$$\Gamma_n(P) := \{ x^n \in \mathcal{X}^n : |\pi(a|x^n) - P(a)| \le \epsilon_n P(a), \forall a \in \mathcal{X} \},$$

where $\pi(a|x^n) = \frac{1}{n} ||\{i : x_i = a\}||$ is the empirical fraction of the letter a in the sequence x^n . In other words, typical sequences are collections of sequences whose empirical fractions match the true probabilities.

Also define the typical output sequences corresponding to an (typical) input sequence $x^n \in \Gamma_n(P)$ according to

$$\Gamma_n(x^n, V) := \{ y^n \in \mathcal{Y}^n : |\pi(ab|x^ny^n) - P(a)V(b|a)| \le \epsilon_n P()V(b|a), \forall (a, b) \in \mathcal{X} \times \mathcal{Y} \}.$$

For
$$\mathcal{F} \subseteq \mathcal{X}^n$$
 and $0 < \eta < 1$, define

$$G_V(\mathcal{F}, \eta) := \min\{Q^n(\mathcal{A}) : \mathcal{A} \subset \mathcal{Y}^n, V^n(\mathcal{A}|x^n) > \eta, \forall x^n \in \mathcal{F}\}.$$

In other words $G_V(\mathcal{F}, \eta)$ is the image (or more precisely contains η -fraction of the image) of the set \mathcal{F} , when transmitted via the channel V, in the space \mathcal{Y}^n .

Now we are ready to state the theorem.

Theorem 1.1. (Maximal Code Lemma) Given a triple of numbers $0 < \epsilon, \delta, \eta < 1$, there exists a number $n_0 = n_0(\epsilon, \delta, \eta)$ such that, for $n \ge n_0$, the following two statements hold:

(1) Direct Part: For any $\mathcal{F} \subseteq \Gamma_n(P)$ there exists a code $\{x_1^n, ..., x_M^n; \mathcal{A}_1, ..., \mathcal{A}_M\}$ for the channel V such that: (i) $x_i^n \in \mathcal{F}, \forall i$; (ii) $\mathcal{A}_i \subseteq \Gamma(x_i^n, V), \forall i$; (iii) $V^n(\mathcal{A}_i|x_i^n) > 1 - \epsilon, \forall i$; (iv) the sets \mathcal{A}_i are disjoint; and (v)

$$M \ge \exp[n(I(X;Y) - \delta)] \cdot G_V(\mathcal{F}, \eta).$$

Date: September 17, 2008.

(2) Converse Part: Let $\{x_1^n, ..., x_M^n; \mathcal{A}_1, ..., \mathcal{A}_M\}$ be a code for the channel V such that $\mathcal{F} := \{x_1^n, ..., x_M^n\} \subseteq \Gamma_n(P)$,

$$V^n(\mathcal{A}_i|x_i^n) > 1 - \epsilon, \quad \forall i,$$

where the sets A_i are disjoint. Then

$$M \le \exp[n(I(X;Y) + \delta)] \cdot G_V(\mathcal{F}, \eta).$$

Remark 1.2. In other, given a subset $\mathcal{F} \subset \mathcal{X}^n$ there exists a codebook of size

$$M \ge \exp[n(I(X;Y) - \delta)] \cdot G_V(\mathcal{F}, \eta)$$

and any codebook whose codewords are in \mathcal{F} must satisfy

$$M \le \exp[n(I(X;Y) + \delta)] \cdot G_V(\mathcal{F}, \eta).$$

1.1. Extension to two receivers. Suppose there are two channels $V_1(y_1|x)$ and $V_2(y_2|x)$, suppose you are given $\mathcal{F} \subseteq \Gamma_n(P)$ (a subset of the typical \mathcal{X}^n sequences). Then $\{x_1^n,...,x_M^n;\mathcal{A}_1,...,\mathcal{A}_M;\mathcal{B}_1,...,\mathcal{B}_M\}$ is a code for channels V_1,V_2 (equivalently receivers $\mathcal{Y}_1,\mathcal{Y}_2$) if (i) $x_i^n \in \mathcal{F}, \forall i$; (ii) $\mathcal{A}_i \subseteq \Gamma(x_i^n,V_1), \forall i$; (iii) $\mathcal{B}_i \subseteq \Gamma(x_i^n,V_2), \forall i$; (iv) $V^n(\mathcal{A}_i|x_i^n) > 1 - \epsilon, \forall i$; (v) $V^n(\mathcal{B}_i|x_i^n) > 1 - \epsilon, \forall i$; (vi) the sets \mathcal{A}_i are disjoint; and (vi) the sets \mathcal{B}_i are disjoint.

Question: What is the tight characterization, similar to Theorem 1.1, for the largest codebook consisting of codewords from a given subset $\mathcal{F} \in \Gamma_n(P)$.

Remark 1.3. We can make the following simple observations

- Taking the minimum of the two channels in question, we obtain that $\min\{\exp[n(I(X;Y_1)+\delta)]\cdot G_{V_1}(\mathcal{F},\eta),\exp[n(I(X;Y_2)+\delta)]\cdot G_{V_2}(\mathcal{F},\eta)\}$ is an upper bound to the size of the largest codebook.
- Lap Chi Lau made a nice observation that a better way to write the upper bound would be the following,

$$\min_{\mathcal{F}_1 \subseteq \mathcal{F}} \{ \exp[n(I(X; Y_1) + \delta)] \cdot G_{V_1}(\mathcal{F}_1, \eta) + \exp[n(I(X; Y_2) + \delta)] \cdot G_{V_2}(\mathcal{F}_1^c, \eta) \}.$$

• Using a random coding argument, we obtain that $\min\{P^n(\mathcal{F})\exp(n(I(X;Y_1)-\delta)), P^n(\mathcal{F})\exp(n(I(X;Y_2)-\delta))\}$ is a lower bound to the size of the largest codebook.

Remark 1.4. Assuming that we are restricting ourselves to a fixed probability distribution P(x) is not a big restriction, as there are at most $(n+1)^{\mathcal{X}}$ empirical distributions of length n and therefore any exponential size codebook must have at least one empirical distribution with the "same" exponential size of codewords belonging to it.

References

[KM77] J Körner and K Marton, Images of a set via two channels and their role in mult-user communication, IEEE Trans. Info. Theory IT-23 (Nov, 1977), 751-761.