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Set discrimination of quantum states
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We introduce a notion of set discrimination, which is an interesting extension of quantum state discrimina-
tion. A state is secretly chosen from a number of quantum states, which are partitioned into some disjoint sets.
A set discrimination is required to identify which set the given state belongs to. Several essential problems are
addressed in this paper, including the condition of perfect set discrimination, unambiguous set discrimination,
and in the latter case, the efficiency of the discrimination. This generalizes some important results on quantum
state discrimination in the literature. A combination of state and set discrimination and the efficiency are also
studied.
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Quantum state discrimination is a basic and interestingem is in. However, there are some limitations and disadvan-
problem in quantum information. The scenario is that a quantages in state discrimination. For example, sometimes it may
tum system is prepared in a state secretly chosen from ke very difficult to decide the exact state of a system, and the
number of known quantum states, and one is required tsuccess probability will be very low. On the other hand, it
obtain as much information about the identification of themay not be necessary to find the exact state, and we are only
state as possibld]. Previous work mainly aims at determin- required to know a certain range of states. This leads us to
ing the state. While perfect state discrimination turns out taconsider an alternative. It is a natural extension of state dis-
be impossible unless the states to be distinguished are ogfimination thoroughly discussed in the previous literature,
thogonal with each other, several strategies exist for nonorand it is to allow one to tell that the state belongs to some set
thogonal states. The first one, advanced by Helstrom andf states. This kind of identification up to set granularity,
historically known asquantum hypothesis testiri@], re-  rather than up to state granularity, is called the set discrimi-
quires one to make a decision in any event, telling which onéation. There are at least three motivations for considering
the state is. Unambiguous discrimination, which goes to anthe set discrimination besides the pure mathematical exten-
other extreme by demanding the identification error-free busion. One is that when a s8tof quantum states are linearly
leaving an inconclusive possibility, receives more attentiordependent, they cannot be unambiguously distinguished. But
recently. It was first considered by IvanoVig], and then by the linear dependence may hlxeal, i.e., only caused by a
Dieks[4] and Pere§5], all of whom focused on the two-state few of states, say states # (S;CS). And other states§
case. They found the optimal efficiency, i.e., the success S;) are highly independent. In this case, we naturally hope
probability, to be |(p|q)|, conventionally called IDP to be able to at least unambiguously identify the stateS in
limit, where p and g are the two states to be distinguished. —S;. Even if a state ir§; is prepared, when it is impossible
Later, Jaeger and Shimong] extended the result by aug- to be unambiguously identified, we hope to unambiguously
menting unequad priori probabilities to the two states, and know it is fromS; but not fromS—S;. Set discrimination is
Peres and Ternf/] dealt with the three-state case. The gen-for these hopes. Later we can see that by set discrimination,
eraln-state case has also been considered. In[BeChefles  when one fails in the state discrimination, sometimes he may
showed the important fact that the linear independence of theave the chance to unambiguously know that the state is in
states is a sufficient and necessary condition for them to bsome set. Second, in some other cases, some states, again say
unambiguously discriminated. He and Barnett also got thetates inS;, are rather close to each other, though linearly
optimal efficiency in a special cag®], known as equally independent. At this time unambiguous discrimination does
probable symmetrical states. In R¢f0], Duan and Guo exist, but the success probabilities for these near states are
gave a neat, sufficient and necessary conditiomfoumbers  awfully low. Since generally the task of discrimination is to
being the efficiency of the unambiguous discriminatiomof obtain the information of a prepared state as much as pos-
given states. In a recent paprl], Zhanget al. gave an sible, and chances of knowing the exact state are quite slim,
upper bound for the optimal average efficiency of thetate  one may like to compromise by accepting a report with a
case, and in Ref12], Sunet al. pointed out the mathemati- relatively high success probability that the state is fr8m
cal nature of and gave a family of lower bounds for theThis can be also fulfilled by set discriminations. Finally,
optimal average efficiency. sometimes we just need to identify an unknown state at set

All the previous work is mostly concerned with state dis- granularity level. For example, in RdfL], Chefles designed
crimination, where one needs to report whitatethe sys- a thought experiment in which Alice and Bob share an en-

tangled pair and Alice can make measurement in different

basisU or V. This will cause Bob’s particle collapse fig) or
*Email address: ssy99@mails.tsinghua.edu.cn |u”), if Alice choosedJ, and|v) or |v”), if Alice choosesV.
"Email address: yingmsh@tsinghua.edu.cn If Bob can distinguish state, [u'), |v), |v’) perfectly,
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then Alice can transmit one-bit information by choosing ba- Theorem 1The setsS;,...,S, can be perfectly discrimi-
sisU or V, and this transmission is instantaneous, thus sunated if and only if the subspaces they span are orthogonal,
perluminal, because the collapse needs no time. Of coursee., (4| ¢;)=0 for all [¢;)e S and|y;)eS;, i #].

n
> AlA
&1

perfect state discrimination here is impossible because four Proof. If the subspaces th&;,...,S, span are orthogonal,
states in a two-dimensional Hilbert space are definitely linwe can choose an projective measurentent..,P,,, where
early dependent. But in fact, to receive the bit, Bob need$; is the projector onto sparg(). Obviously if the state)
only to know whether his particle is ifju),[u’)} or in  is in S, then the probability of occurring outcomjeis
{lv),|v")}. So this is a typical set discrimination. Later we (|P;|#)= &; . So the outcoméis sure to occur, indicating
will show that even with the requirement loosened in thisthat the statgy) is in S;.
way, Bob could not receive the bit perfectlgr even unam- Now we assume sef§,,...,S, can be perfectly discrimi-
biguously either. Another example, which is less fictive, is nated. Then there exiy,....A,, Ei”:lAiTAiz I, such that
the error correction in communication. Sometimes Alice<¢j|AiTAi|¢j>:5”_ Thus for all [¢)e S and ¢S, i
transmits a state il 1),...,| )} to Bob. The state may be £,
disturbed in the transference and the received state is with
large probability a state near the original one. Hoping to
correct the possible error, Bob partitions the received-state Nt N — o N | . N
space into several subsets according to the distances of the (Wilv)=Cnlllgs) < v ¢J> 0.
received state and the original ones. The error correction is
not to identify the received state, but to identify the originalwhich concludes the proof. [}
state by determining which subset the received state belongs Note that the condition 08,,...,S, being orthogonal is
to. In this kind of context, the goal of discrimination is not to much looser than the condition of all the statesSibeing
identify the state itself, which is the goal of state discrimina-orthogonal. In factS;,...,S, may be orthogonal even when
tion, but to tell which set it is in. the states ir are linearly dependent. Of course, the linear
It should be pointed that this idea of set discrimination Ofdependence lies in some st One of the advantages of set
quantum states are not absolutely new. In R@f, the au-  discrimination is that it can put the dependent states together
thors paid some attention to the information carried by theo form a set. Note that after such a measurement as in the
inclusive answer in the state discrimination. A similar idea isproof , we know whichS, the state is in, and the state is
also mentioned in Ref1]. However, they did not study the ynchanged for further discrimination or other kind of pro-
set discrimination formally and systematically, which is just cessing.
the aim of this paper. If S;,...,S, are not orthogonal, one important strategy is,
In what follows, we denoteS=U{_; S and S as in state discrimination, unambiguous discrimination.
={|):k=1,2,..ki}, whereSNS;+#0 for alli#j. Assume  While a number of states can be unambiguously discrimi-
that a quantum system is secretly prepared in one of thaated if and only if they are linearly independdsi, the
states inS We are to tell which se§;, the unknown state, is unambiguous set discrimination has a similar result.
in. Obviously, when each s&; is a singleton, the set dis- Theorem 2For setsS,,...,S,, the following two state-
crimination is reduced to a classical problem of quantumments are equivalent.
state discrimination. Another extreme is the special case of (1) They can be unambiguously discriminated, i.e., there
n=1. We exclude this trivial case, and assun¥e2 below. exist linear operatord\,,...,A,, such thatEirLoAiTAi:l,
A discrimination can be represented in two equivalentang for all i, j=1,...n and all i) e S, (l//ik|AjTAj|l//ik>
ways. One is by a generalized measurement, which is a set 0_1‘5” i, Where ;>0 is the success probability of state
linear operatordM;, M5, ..., M} such thatS{_;M{M;=1. |y} being unambiguously discriminated;
In this paper we sometimes u§&, Ay, ..., Ap} to represent (2) S;,...,S, are linearly independent, i.e., each state can-
a state or set discrimination, where the outcomgi  not be linearly generated by states in all other sets. To be
=1,..n) indicates the state is théh state(in state discrimi-  more precise, for each=1,...n, if |4y eS;, there are no
nation or the state is ir§; (in set discrimination Ag is for  gych cy’s such that |‘/’i>zzj#i'k=l...k-Cjk|¢jk>a where
the inconclusive report, and may be absent sometime?wm €S, oo
meaning that the undecidability is forbidden. Another way _ _
for describing a discrimination is to think of it as an arbitrary _;rqof. (12:%>|(2)' TSth?]pose ) €S, and [yy)
operation in quantum mechanics, which can be represented <1 7#1k=1--kj~Ik Vi)
by an ancillary system introduced, a unitary evolution, and a

von Neumann measuremdi3]. 0< i =(0|Al A,|0)
We shall begin with considering the condition for perfect
set discrimination. A state or set discrimination is said to be * T
. = Ci Cirpr i AA ikt
perfectly performed if we can always get the correct result i E/:lwkj ikCirie S A A1)
without error. It is known that state discrimination is possible
if and only if the states are orthogonal. In RET), it is =0

mentioned that in a three-state case if one state is orthogonal
to the other two, then the first state can be detected witla contradiction. The last equality is due to the fact that
certainty. For the general case, the following result holds. Ai|¢//,->=0 Wheneved¢j> eSjandi#j.
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(2)=(1). 1t is sufficient to show that there are fromS;, and the 6+ 1)th outcome means failure;, here is
Ag,...A,, such that(i) 1-2_;ATA=0 (a matrix A=0 the efficiency for| ;). Now such a unitary operatdf exists
means it is positive (i) Aj|¢;)=0 fori#j, andAj|)  if and only if there argfw{K} and{®{X} so that the fol-
#0 for alli=1,...n. In fact, requirementi) can be easily |owing inter-inner-product equation holds for all,]
satisfied if we have found,,... A, satisfying requirement =1_..n; k=1,...k; I=1,..k [10]:

(i), because it —="_,A'A; is not positive, we can led/

=¢A,; with & being a positive number small enough. So be- ; :

low we aim at fingding;)Al,...,An such that require?ner(ti) (Wil i) =8V riyid VAR RE) + V(1= i) (1= 75)

thhoeldss{;mv:lsV.T,/gall first find\{, thenA,,...,A, can be found in X<¢XIE)|¢(A“B)>- 1)
y.

We denote span(,S;) by V,_,,, and span(!_,S) by , :
V, and further deno'ltezby\/1 the orthogonal comlplémentary Note _that therif ?X'St_s {(I)glé)} such that
space o, in V. Now we need to find a vectdm)y in Wy, V(1= 7% (1= %)(PL|®HE)] is equal to some matri
such that (w|yy)#0 for all k=1,..k;, then let A, !f and only if A=0 and the (k)th entry on the diagonal &
=|w)(w|, which obviously satisfies requiremiit). Let the 1S 1~ ¥ix- (Recall that any positive matriA can be decom-
projection of |#,) on W, be |¢,), then it holds that posed asA=C'C. Viewing every column ofC as a vector
(w| 1) =(w|@y). BecauseS,,...,S, are linearly indepen- will yield the above result. So there exist{\Ifg”é)} and
dent, eache,) is not the zero vector. So now the problem is {<I>(A'_‘,§)} such that Eq(1) holds if and only if there exists
reduced to finding a vectde) in W, so that it is not or-  {W{K¥} such thatX—T'4z=0, whereX=[ (| #;)] andT zg
thogonal to each of finite known stath,sl),...,|qokl>, allof  is a partitioned diagonal matrix with thgh diagonal block
which are inW, . But such vector does exist because for eactbeing[ v yik)/n(‘l’(;{'é)l‘lf(;{'g}]kJ:1,,,,ki. We write the sufficient
low), the vectors orthogonal tdey) in W; form a  and necessary condition formally as the following theorem.
(r,—1)-dimensional subspace. The uni@gmte: not spanof Theorem 3The setsS,,...,S, can be unambiguously dis-
finite such ¢,—1)-dimensional subspaces cannot be thecriminated with efficiency{y;,:i=1,...n;k=1,...k;} if and
whole r; dimensional spac/,. Therefore, there is a state only if the matrixX — " ,g=0.
lw} in Wy such that (w[@)#0 for all k=1,.k, We may further remove the implicif ¥ {5} in the theo-
as desired. o . B rem above by noting tha( Wi Wwi2)] is just a positive

Th|s theorem also implies that in Chefle_s’s 'th'oug'ht &Xmatrix with all diagonal entries being 1.
periment, Bob cannot make unambiguous discrimination be- Theorem 4The setsS,,...,S, can be unambiguously dis-
tween sets{|u),[u’)} and {[v),[v")} because the spaces criminated with efficiency{yi.:i=1,..n;k=1,...k;} if and
spanned byf|u),|u")} and{|v),|v")} are linearly dependent oy if there are matriced’;,....I', such thatl; is a k,

(in fact the same This means that even if Bob hopes t0 5 . nositive matrix withkth diagonal entry being, and
receive one-bit always-correct information with some posi-i,q matrixX — diag{T; ...} =0
yuen nf=V.

tive probability, he cannot succeed. In other words, probabi-
listic error-free superluminal communication cannot be , - iK: ,
implemented in thispway. This is consistent with the theory©On€ 1 that!\PE\IIIB)>""'|\I’S§B')> are orthogonal with each
of relativity, because even if Bob can make error-free superother, in which casd’sg is a diagonal matrix digg i
luminal communication with little positive success probabil- =1..-.n;k=1,...ki}. This means a clear fact that if all the
ity, he then can make it with near 100% success probabilitptates inS=U;_;S; can be state unambiguously discrimi-
by repeating the course until success outcome occurs. ~ hated with efficiency {yy:i=1,..n;k=1,.kj} then
Having known what kind of sets of quantum states can bé ,...,S, can be set unambiguously discriminated with the
unambiguously discriminated, another question is the dissame efficiency. It is obvious because if we know exactly
crimination efficiency, i.e., the success probability. In statewhat the originally unknown state is, we certainly know
unambiguous discrimination, linearly independent stategvhich set it belongs to. Another special case is that we let all
|¢41),....| ) can be unambiguously discriminated with the the [¥{§)’s be the same. Then evef {¥| ¥ J)=1, and
success probability ofy;) being y; if and only if X—T we get a proposition as follows.
=0, where X=[(¢i|¢)ij-1., and I'=diagl,....y) Proposition 1. If X-—diagIy,...I }=0, where T’}
[10,12. Now we consider the problem for set Q|scr|m|nat!on. =[,/7ik7i|]k‘|:l’"_ki, then setsS;,...,S, can be unambigu-
_Suppose the setS, ,...,S, can be unambiguously dis- oygly discriminated with efficienc{yi}.
criminated. We can represent the discrimination as a unitary |, the rest of the paper, we are mainly concerned with the

evolution combination of state and set discrimination. As mentioned in

. . the beginning of the paper, one of the main benefits of set

U(| )| Pgp)) = MN’X‘QM P+ J1— yik|¢>§;‘,§)>| Poi1) discrimination is for distinguishing linearly dependent states.

One of the meaningful situations is about state discrimina-

together with a von Newmann measurement on the pRobe tion. In Ref.[8], Chefles pointed out that unambiguous state

[10]. Here|P4),...,|Pn41) aren+1 orthonormal states, and discrimination with maximal average efficiency results in the
B is an auxiliary system. We perform a measuremenfPon inconclusive statese,),...,|¢,) being linearly dependent

after the evolution. Outcomiindicates the original state is and thus making any attempt to further unambiguous dis-

There are two special cases §f{¥)! in Theorem 3.
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crimination impossible. But generally, the linear dependenceany increase of; will make X—TI" not positive. But we may

of the inconclusive states may be local. In this case, furthefind I 5 such thatX—T" — T, is still positive, which means
set discrimination may be possible. Even if the inconclusivethat a further set discrimination is possible.

states are globally dependent, there may be a partition among Of course, in more cases Theorem 5 implies that the
these states such that the subsets are linearly independgjitater thel is, the lesser th& )z is, and vice versa. So a
according to the definition in Theorem 2. This means thatombination of unambiguous state and set discrimination is a

after the state discrimination fails, we may still have chanceradeoff between pure state discrimination and pure set dis-
to extract some information about the unknown state. Her@rimination.

the information is that we decrease the nondetermination by e may also get the counterparts of Theorem 4 and
excluding some impossible candidates. Proposition 1 in the given context but we omit them here
The two-step measurements can be represented by OBgcause of the similarity. We conclude the paper with an
measurement, which is actually the combination of state dISexamp|e showing the meaning and advantage of the combi-
crimination and set discrimination. The situation is that forpation of state and set discrimination. Below is a matrix,
some state$=U{_;S;, we design to get some information each row of which is a vector in a nine-dimensional Hilbert
about the identification of an unknown stdte) e S by tell-  space.
ing which state|i) is or telling which setS the state|y)

belongs to. Generally, forS=U{_;S, S={|¢i)k 1 0 0 0 o o0 o 0 O
=1,2,..k}, a state and set combined discrimination can be 0 1 0 0
represented as a measurement
1 1
{AO;Al!"'vAn;Alli"'!Alkli nlv . nk} ‘E ‘E 0 0 0 0 000
whereA, is for reporting the inconclusive resul; for re- 1 0 0 1 \F 0 0 0 0
porting |¢) in setS, andA; for reporting|y) being| ;). % % 3
Sometimes certaii;;, may be missing with; still remain-
ing, meaning that fof;,) we only need or hope to know it O 0 0 0 \F 1 00 0
is from S . Similarly, if someA; is absent, we mean that for 3 73
|¢j1>,...,|¢jkj>, we only want state discrimination.
We consider the efficiency problem in this context. We 0 0 0 i 0 i 0 0 0
denote the success probabilities of the unambiguous state V2 V2
and set identification for state;,.) by y; andy;, respec-
. o . 0 0 O O 0 0 1 0 O
tively. Similarly, as the analysis of Theorem 3, we represent
the unambiguous discrimination by 0 0 0 O 0 0 0 1 O
O 0 0 O 0 0 0 0 J

U(| i) P ) = Vrie U A6 Pid + Vi W AS) Py

Now we are to identify a statgs) chosen from the nine.

V1= 7ik_7i,k|(b,(ﬁiB)>|Pn+1>v Classical state discrimination will fail to give unambiguous
) . discrimination because the nine states are linearly dependent.
where i=1,..n and k=1,.k. The states{|Py):i  But after observation we may find that only the first three

=1,.n,k=1,.k}, {|P):i=1,...n}, and [P,,1) are or-  gstates are linearly dependent; the middle threed) are lin-
thogonal with each other. An inter-inner-product yields theearly independent; the last three are orthogonal. And the

following equation: third cluster is orthogonal to the first two. So we divide the
nine states into three sets, i.6;={|y).|¥o).|v3)}, S
(i i) = S S vy + SN vy (P AR W AB") ={lva).[¥s).|6)}, andSy={|17),|s).| o)} Then we can
(|k) <|) construct a measuremenfAq,A;,A5,Az1,A%, A, Az,
V(1= yi) (1= 75 (Pag | DA (2 Agp,Azg. Ay is the inconclusive resulta;, A, report that

the state is ir§;, S,, respectively; others give the exact state

A further analysis similar to that of Theorem 3 gives thejdentification. Thus the states B; can be perfectly identi-
following result. fied; the states i$, can be unambiguously identified and can

Theorem 5The states inrS=U;_;S can be unambigu- also be unambiguously told to be 8 ; the states irS; can
ously discriminated with state efficiendy;} and set effi-  be unambiguously told to be i8,. Therefore, by set dis-
ciency{y;.} if and only if Xx—T'—T,g=0. crimination together with state discrimination, we can gener-

We give some remarks about the theoreml'#0, it is  ally get more information about the unknown state Fur-
just set discrimination, and Theorem 5 is reduced to Theorerther analysis by Theorem 5 shows that because and| 5)
3. If T',5=0, it is state discrimination. In fact, the two-step are close to each other, the efficiency of state discrimination
discriminations mentioned above can also be reflected iof |,) (or |¢s)) is low. But the efficiency of the state dis-
Theorem 5. When an unambiguous state discrimination isrimination of|g) can be relatively high because it is far
performed X—T is positive; if the discrimination is optimal, from |,) and|#s). However, just because of this, the effi-
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ciency of the set discrimination dfj), i.e., the probability cloning and the efficiency of the state discriminatisee[1]

of reporting|#) is in S, if ) is i), is less than the effi- and[10], for examplg. Are there some interesting results

ciency of set discrimination df,) or | ). about cloning and efficiency of the set discrimination?
In summary, this paper introduces a notion of set discrimi-Questions of this kind remain for future study.

nation, and makes some discussions about several basic

problems in it. We find that perfect set discrimination can be ACKNOWLEDGMENTS
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