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Set discrimination of quantum states
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We introduce a notion of set discrimination, which is an interesting extension of quantum state discrimina-
tion. A state is secretly chosen from a number of quantum states, which are partitioned into some disjoint sets.
A set discrimination is required to identify which set the given state belongs to. Several essential problems are
addressed in this paper, including the condition of perfect set discrimination, unambiguous set discrimination,
and in the latter case, the efficiency of the discrimination. This generalizes some important results on quantum
state discrimination in the literature. A combination of state and set discrimination and the efficiency are also
studied.
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Quantum state discrimination is a basic and interes
problem in quantum information. The scenario is that a qu
tum system is prepared in a state secretly chosen fro
number of known quantum states, and one is required
obtain as much information about the identification of t
state as possible@1#. Previous work mainly aims at determin
ing the state. While perfect state discrimination turns ou
be impossible unless the states to be distinguished are
thogonal with each other, several strategies exist for no
thogonal states. The first one, advanced by Helstrom
historically known asquantum hypothesis testing@2#, re-
quires one to make a decision in any event, telling which o
the state is. Unambiguous discrimination, which goes to
other extreme by demanding the identification error-free
leaving an inconclusive possibility, receives more attent
recently. It was first considered by Ivanovic@3#, and then by
Dieks@4# and Peres@5#, all of whom focused on the two-stat
case. They found the optimal efficiency, i.e., the succ
probability, to be 12u^puq&u, conventionally called IDP
limit, where p and q are the two states to be distinguishe
Later, Jaeger and Shimony@6# extended the result by aug
menting unequala priori probabilities to the two states, an
Peres and Terno@7# dealt with the three-state case. The ge
eraln-state case has also been considered. In Ref.@8# Chefles
showed the important fact that the linear independence of
states is a sufficient and necessary condition for them to
unambiguously discriminated. He and Barnett also got
optimal efficiency in a special case@9#, known as equally
probable symmetrical states. In Ref.@10#, Duan and Guo
gave a neat, sufficient and necessary condition forn numbers
being the efficiency of the unambiguous discrimination on
given states. In a recent paper@11#, Zhang et al. gave an
upper bound for the optimal average efficiency of then-state
case, and in Ref.@12#, Sunet al. pointed out the mathemati
cal nature of and gave a family of lower bounds for t
optimal average efficiency.

All the previous work is mostly concerned with state d
crimination, where one needs to report whichstatethe sys-
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tem is in. However, there are some limitations and disadv
tages in state discrimination. For example, sometimes it m
be very difficult to decide the exact state of a system, and
success probability will be very low. On the other hand,
may not be necessary to find the exact state, and we are
required to know a certain range of states. This leads u
consider an alternative. It is a natural extension of state
crimination thoroughly discussed in the previous literatu
and it is to allow one to tell that the state belongs to some
of states. This kind of identification up to set granulari
rather than up to state granularity, is called the set discri
nation. There are at least three motivations for consider
the set discrimination besides the pure mathematical ex
sion. One is that when a setS of quantum states are linearl
dependent, they cannot be unambiguously distinguished.
the linear dependence may belocal, i.e., only caused by a
few of states, say states inS1 (S1,S). And other states (S
2S1) are highly independent. In this case, we naturally ho
to be able to at least unambiguously identify the states iS
2S1 . Even if a state inS1 is prepared, when it is impossibl
to be unambiguously identified, we hope to unambiguou
know it is fromS1 but not fromS2S1 . Set discrimination is
for these hopes. Later we can see that by set discrimina
when one fails in the state discrimination, sometimes he m
have the chance to unambiguously know that the state i
some set. Second, in some other cases, some states, aga
states inS1 , are rather close to each other, though linea
independent. At this time unambiguous discrimination do
exist, but the success probabilities for these near states
awfully low. Since generally the task of discrimination is
obtain the information of a prepared state as much as p
sible, and chances of knowing the exact state are quite s
one may like to compromise by accepting a report with
relatively high success probability that the state is fromS1 .
This can be also fulfilled by set discriminations. Final
sometimes we just need to identify an unknown state at
granularity level. For example, in Ref.@1#, Chefles designed
a thought experiment in which Alice and Bob share an
tangled pair and Alice can make measurement in differ
basisU or V. This will cause Bob’s particle collapse touu& or
uu8&, if Alice choosesU, anduv& or uv8&, if Alice choosesV.
If Bob can distinguish statesuu&, uu8&, uv&, uv8& perfectly,
©2002 The American Physical Society22-1
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then Alice can transmit one-bit information by choosing b
sis U or V, and this transmission is instantaneous, thus
perluminal, because the collapse needs no time. Of cou
perfect state discrimination here is impossible because
states in a two-dimensional Hilbert space are definitely
early dependent. But in fact, to receive the bit, Bob ne
only to know whether his particle is in$uu&,uu8&% or in
$uv&,uv8&%. So this is a typical set discrimination. Later w
will show that even with the requirement loosened in t
way, Bob could not receive the bit perfectly~or even unam-
biguously! either. Another example, which is less fictive,
the error correction in communication. Sometimes Ali
transmits a state in$uc1&,...,ucn&% to Bob. The state may be
disturbed in the transference and the received state is
large probability a state near the original one. Hoping
correct the possible error, Bob partitions the received-s
space into several subsets according to the distances o
received state and the original ones. The error correctio
not to identify the received state, but to identify the origin
state by determining which subset the received state belo
to. In this kind of context, the goal of discrimination is not
identify the state itself, which is the goal of state discrimin
tion, but to tell which set it is in.

It should be pointed that this idea of set discrimination
quantum states are not absolutely new. In Ref.@7#, the au-
thors paid some attention to the information carried by
inclusive answer in the state discrimination. A similar idea
also mentioned in Ref.@1#. However, they did not study th
set discrimination formally and systematically, which is ju
the aim of this paper.

In what follows, we denoteS5ø i 51
n Si and Si

5$uc ik&:k51,2,...,ki%, whereSiùSjÞ0 for all iÞ j . Assume
that a quantum system is secretly prepared in one of
states inS. We are to tell which setSi , the unknown state, is
in. Obviously, when each setSi is a singleton, the set dis
crimination is reduced to a classical problem of quant
state discrimination. Another extreme is the special case
n51. We exclude this trivial case, and assumen>2 below.

A discrimination can be represented in two equivale
ways. One is by a generalized measurement, which is a s
linear operators$M1 ,M2 ,...,Mk% such that( i 51

k M i
†Mi5I .

In this paper we sometimes use$A0 ,A1 ,...,An% to represent
a state or set discrimination, where the outcomei ( i
51,...,n) indicates the state is thei th state~in state discrimi-
nation! or the state is inSi ~in set discrimination!. A0 is for
the inconclusive report, and may be absent sometim
meaning that the undecidability is forbidden. Another w
for describing a discrimination is to think of it as an arbitra
operation in quantum mechanics, which can be represe
by an ancillary system introduced, a unitary evolution, an
von Neumann measurement@13#.

We shall begin with considering the condition for perfe
set discrimination. A state or set discrimination is said to
perfectly performed if we can always get the correct res
without error. It is known that state discrimination is possib
if and only if the states are orthogonal. In Ref.@7#, it is
mentioned that in a three-state case if one state is orthog
to the other two, then the first state can be detected w
certainty. For the general case, the following result holds
06232
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Theorem 1. The setsS1 ,...,Sn can be perfectly discrimi-
nated if and only if the subspaces they span are orthogo
i.e., ^c i uc j&50 for all uc i&PSi and uc j&PSj , iÞ j .

Proof. If the subspaces thatS1 ,...,Sn span are orthogonal
we can choose an projective measurementP1 ,...,Pn , where
Pi is the projector onto span (Si). Obviously if the stateuc&
is in Si , then the probability of occurring outcomej is
^cuPi uc&5d i j . So the outcomei is sure to occur, indicating
that the stateuc& is in Si .

Now we assume setsS1 ,...,Sn can be perfectly discrimi-
nated. Then there existA1 ,...,An , ( i 51

n Ai
†Ai5I , such that

^c j uAi
†Ai uc j&5d i j . Thus for all uc i&PSi and uc j&PSj , i

Þ j ,

^c i uc j&5^c i uI uc j&5K c iU(
k51

n

Ak
†AkUc j L 50,

which concludes the proof. j

Note that the condition ofS1 ,...,Sn being orthogonal is
much looser than the condition of all the states inS being
orthogonal. In fact,S1 ,...,Sn may be orthogonal even whe
the states inS are linearly dependent. Of course, the line
dependence lies in some setSi . One of the advantages of se
discrimination is that it can put the dependent states toge
to form a set. Note that after such a measurement as in
proof , we know whichSi the state is in, and the state
unchanged for further discrimination or other kind of pr
cessing.

If S1 ,...,Sn are not orthogonal, one important strategy
as in state discrimination, unambiguous discriminatio
While a number of states can be unambiguously discri
nated if and only if they are linearly independent@8#, the
unambiguous set discrimination has a similar result.

Theorem 2.For setsS1 ,...,Sn , the following two state-
ments are equivalent.

~1! They can be unambiguously discriminated, i.e., th
exist linear operatorsA0 ,...,An , such that ( i 50

n Ai
†Ai5I ,

and for all i, j 51,...,n and all uc ik&PSi , ^c ikuAj
†Aj uc ik&

5d i j g ik , where g ik.0 is the success probability of sta
uc ik& being unambiguously discriminated;

~2! S1 ,...,Sn are linearly independent, i.e., each state c
not be linearly generated by states in all other sets. To
more precise, for eachi 51,...,n, if uc i&PSi , there are no
such cjk’s such that uc i&5( j Þ i ;k51,...,kj

cjkuc jk&, where

uc jk&PSj .
Proof. (1)⇒(2). Suppose uc i l &PSi , and uc i l &

5( j Þ i ,k51,...,kj
cjkuc jk&. Then

0,g i l 5^0uAm
† Amu0&

5 (
j , j 8Þ i ; k,k851,...,kj

cjk* cj 8k8^c jkuAi
†Ai uc j 8k8&

50

a contradiction. The last equality is due to the fact th
Ai uc j&50 wheneveruc j&PSj and iÞ j .
2-2
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SET DISCRIMINATION OF QUANTUM STATES PHYSICAL REVIEW A65 062322
(2)⇒(1). It is sufficient to show that there ar
A1 ,...,An , such that~i! I 2( i 51

n Ai
†Ai>0 ~a matrix A>0

means it is positive!, ~ii ! Ai uc j l &50 for iÞ j , and Ai uc ik&
Þ0 for all i 51,...,n. In fact, requirement~i! can be easily
satisfied if we have foundA1 ,...,An satisfying requiremen
~ii !, because ifI 2( i 51

n Ai
†Ai is not positive, we can letAi8

5«Ai with « being a positive number small enough. So b
low we aim at findingA1 ,...,An such that requirement~ii !
holds. We shall first findA1 , thenA2 ,...,An can be found in
the same way.

We denote span(ø i 52
n Si) by V22n , and span(ø i 51

n Si) by
V, and further denote byW1 the orthogonal complementar
space ofV22n in V. Now we need to find a vectoruv& in W1 ,
such that ^vuc1k&Þ0 for all k51,...,k1 , then let A1
5uv&^vu, which obviously satisfies requirement~ii !. Let the
projection of uc1k& on W1 be uwk&, then it holds that
^vuc1k&5^vuwk&. BecauseS1 ,...,Sn are linearly indepen-
dent, eachuwk& is not the zero vector. So now the problem
reduced to finding a vectoruv& in W1 so that it is not or-
thogonal to each of finite known statesuw1&,...,uwk1

&, all of

which are inW1 . But such vector does exist because for ea
uwk&, the vectors orthogonal touwk& in W1 form a
(r 121)-dimensional subspace. The union~note: not span! of
finite such (r 121)-dimensional subspaces cannot be
whole r 1 dimensional spaceW1 . Therefore, there is a stat
uv& in W1 such that ^vuwk&Þ0 for all k51,...,k1 ,
as desired. j

This theorem also implies that in Chefles’s thought e
periment, Bob cannot make unambiguous discrimination
tween sets$uu&,uu8&% and $uv&,uv8&% because the space
spanned by$uu&,uu8&% and$uv&,uv8&% are linearly dependen
~in fact the same!. This means that even if Bob hopes
receive one-bit always-correct information with some po
tive probability, he cannot succeed. In other words, proba
listic error-free superluminal communication cannot
implemented in this way. This is consistent with the theo
of relativity, because even if Bob can make error-free sup
luminal communication with little positive success probab
ity, he then can make it with near 100% success probab
by repeating the course until success outcome occurs.

Having known what kind of sets of quantum states can
unambiguously discriminated, another question is the
crimination efficiency, i.e., the success probability. In st
unambiguous discrimination, linearly independent sta
uc1&,...,ucn& can be unambiguously discriminated with th
success probability ofuc i& being g i if and only if X2G
>0, where X5u^c i uc j&u i , j 51,...,n and G5diag(g1,...,gn)
@10,12#. Now we consider the problem for set discriminatio

Suppose the setsS1 ,...,Sn can be unambiguously dis
criminated. We can represent the discrimination as a uni
evolution

U~ uc ik&uCBP&)5Ag ikuCAB
~ ik !&uPi&1A12g ikuFAB

~ ik !&uPn11&

together with a von Newmann measurement on the probP
@10#. HereuP1&,...,uPn11& aren11 orthonormal states, an
B is an auxiliary system. We perform a measurement oP
after the evolution. Outcomei indicates the original state i
06232
-

h

e

-
e-

-
i-

y
r-

ty

e
s-
e
s

.

ry

from Si , and the (n11)th outcome means failure.g ik here is
the efficiency foruc ik&. Now such a unitary operatorU exists
if and only if there are$CAB

( ik)% and $FAB
( ik)% so that the fol-

lowing inter-inner-product equation holds for alli , j
51,...,n; k51,...,ki ; l 51,...,kj @10#:

^c ikuc j l &5d i jAg ikg j l ^CAB
~ ik !uCAB

~ j l !&1A~12g ik!~12g j l !

3^FAB
~ ik !uFAB

~ j l !&. ~1!

Note that there exists $FAB
( ik)% such that

@A(12g ik)(12g j l )^FAB
( ik)uFAB

( j l )&# is equal to some matrixA
if and only if A>0 and the (ik)th entry on the diagonal ofA
is 12g ik . ~Recall that any positive matrixA can be decom-
posed asA5C†C. Viewing every column ofC as a vector
will yield the above result.! So there exist$CAB

( ik)% and
$FAB

( ik)% such that Eq.~1! holds if and only if there exists
$CAB

( ik)% such thatX2GAB>0, whereX5@^c ikuc j l &# andGAB

is a partitioned diagonal matrix with thei th diagonal block
being@Ag ikg i l ^CAB

( ik)uCAB
( i l )&#k,l 51,...,ki

. We write the sufficient
and necessary condition formally as the following theore

Theorem 3.The setsS1 ,...,Sn can be unambiguously dis
criminated with efficiency$g ik : i 51,...,n;k51,...,ki% if and
only if the matrixX2GAB>0.

We may further remove the implicit$uCAB
( ik)&% in the theo-

rem above by noting that@^CAB
( ik)uCAB

( i l )&# is just a positive
matrix with all diagonal entries being 1.

Theorem 4.The setsS1 ,...,Sn can be unambiguously dis
criminated with efficiency$g ik : i 51,...,n;k51,...,ki% if and
only if there are matricesG1 ,...,Gn such thatG i is a ki
3ki , positive matrix withkth diagonal entry beingg ik , and
the matrixX2diag$G1,...,Gn%>0.

There are two special cases of$uCAB
( ik)&% in Theorem 3.

One is that uCAB
( i l )&,...,uCAB

( iki )& are orthogonal with each
other, in which caseGAB is a diagonal matrix diag$gik :i
51,...,n;k51,...,ki%. This means a clear fact that if all th
states inS5ø i 51

n Si can be state unambiguously discrim
nated with efficiency $g ik : i 51,...,n;k51,...,ki% then
S1 ,...,Sn can be set unambiguously discriminated with t
same efficiency. It is obvious because if we know exac
what the originally unknown state is, we certainly kno
which set it belongs to. Another special case is that we let
the uCAB

( ik)& ’s be the same. Then every^CAB
( ik)uCAB

( i l )&51, and
we get a proposition as follows.

Proposition 1. If X2diag$G1* ,...,Gn* %>0, where G i*
5@Ag ikg i l #k,l 51,...,ki

, then setsS1 ,...,Sn can be unambigu-

ously discriminated with efficiency$g ik%.
In the rest of the paper, we are mainly concerned with

combination of state and set discrimination. As mentioned
the beginning of the paper, one of the main benefits of
discrimination is for distinguishing linearly dependent stat
One of the meaningful situations is about state discrimi
tion. In Ref.@8#, Chefles pointed out that unambiguous sta
discrimination with maximal average efficiency results in t
inconclusive statesuw1&,...,uwn& being linearly dependen
and thus making any attempt to further unambiguous d
2-3
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SHENGYU ZHANG AND MINGSHENG YING PHYSICAL REVIEW A65 062322
crimination impossible. But generally, the linear depende
of the inconclusive states may be local. In this case, furt
set discrimination may be possible. Even if the inconclus
states are globally dependent, there may be a partition am
these states such that the subsets are linearly indepen
according to the definition in Theorem 2. This means t
after the state discrimination fails, we may still have chan
to extract some information about the unknown state. H
the information is that we decrease the nondetermination
excluding some impossible candidates.

The two-step measurements can be represented by
measurement, which is actually the combination of state
crimination and set discrimination. The situation is that
some statesS5ø i 51

n Si , we design to get some informatio
about the identification of an unknown stateuc&PS by tell-
ing which stateuc& is or telling which setSi the stateuc&
belongs to. Generally, for S5ø i 51

n Si , Si5$uc ik&:k
51,2,...,ki%, a state and set combined discrimination can
represented as a measurement

$A0 ;A1 ,...,An ;A11,...,A1k1
,...,An1 ,...Ankn

%,

whereA0 is for reporting the inconclusive result,Ai for re-
porting uc& in set Si , andAik for reporting uc& being uc ik&.
Sometimes certainAik may be missing withAi still remain-
ing, meaning that foruc ik& we only need or hope to know i
is from Si . Similarly, if someAj is absent, we mean that fo
uc j 1&,...,uc jk j

&, we only want state discrimination.
We consider the efficiency problem in this context. W

denote the success probabilities of the unambiguous s
and set identification for stateuc ik8& by g ik andg ik8 , respec-
tively. Similarly, as the analysis of Theorem 3, we repres
the unambiguous discrimination by

U~ uc ik&uCBP&)5Ag ikuCAB
~ ik !&uPik&1Ag ik8 uCAB8~ ik !&uPi&

1A12g ik2g ik8 uFAB
~ ik !&uPn11&,

where i 51,...,n and k51,...,ki . The states $uPik&: i
51,...,n,k51,...,ki%, $uPi&: i 51,...,n%, and uPn11& are or-
thogonal with each other. An inter-inner-product yields t
following equation:

^c ikuc j l &5d i j dklAg ikg j l 1d i jAg ik8 g j l8 ^CAB8~ ik !uCAB8~ j l !&

1A~12g ik!~12g j l !^FAB
~ ik !uFAB

~ j l !&. ~2!

A further analysis similar to that of Theorem 3 gives t
following result.

Theorem 5.The states inS5ø i 51
n Si can be unambigu-

ously discriminated with state efficiency$g ik% and set effi-
ciency$g ik8 % if and only if X2G2GAB8 >0.

We give some remarks about the theorem. IfG50, it is
just set discrimination, and Theorem 5 is reduced to Theo
3. If GAB8 50, it is state discrimination. In fact, the two-ste
discriminations mentioned above can also be reflected
Theorem 5. When an unambiguous state discrimination
performed,X2G is positive; if the discrimination is optimal
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any increase ofg i will make X2G not positive. But we may
find GAB8 such thatX2G2GAB8 is still positive, which means
that a further set discrimination is possible.

Of course, in more cases Theorem 5 implies that
greater theG is, the lesser theGAB8 is, and vice versa. So a
combination of unambiguous state and set discrimination
tradeoff between pure state discrimination and pure set
crimination.

We may also get the counterparts of Theorem 4 a
Proposition 1 in the given context but we omit them he
because of the similarity. We conclude the paper with
example showing the meaning and advantage of the com
nation of state and set discrimination. Below is a matr
each row of which is a vector in a nine-dimensional Hilbe
space.

l

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1

&

1

&
0 0 0 0 0 0 0

1

A6
0 0

1

A6
A2

3
0 0 0 0

0 0 0 0 A2

3

1

)
0 0 0

0 0 0
1

&
0

1

&
0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

m

Now we are to identify a stateuc& chosen from the nine
Classical state discrimination will fail to give unambiguo
discrimination because the nine states are linearly depend
But after observation we may find that only the first thr
states are linearly dependent; the middle three~4–6! are lin-
early independent; the last three are orthogonal. And
third cluster is orthogonal to the first two. So we divide t
nine states into three sets, i.e.,S15$uc1&,uc2&,uc3&%, S2
5$uc4&,uc5&,uc6&%, andS35$uc7&,uc8&,uc9&%. Then we can
construct a measurement$A0 ,A1 ,A2 ,A21,A22,A23,A31,
A32,A33%. A0 is the inconclusive result;A1 , A2 report that
the state is inS1 , S2 , respectively; others give the exact sta
identification. Thus the states inS3 can be perfectly identi-
fied; the states inS2 can be unambiguously identified and ca
also be unambiguously told to be inS2 ; the states inS1 can
be unambiguously told to be inS1 . Therefore, by set dis-
crimination together with state discrimination, we can gen
ally get more information about the unknown stateuc&. Fur-
ther analysis by Theorem 5 shows that becauseuc4& anduc5&
are close to each other, the efficiency of state discrimina
of uc4& ~or uc5&! is low. But the efficiency of the state dis
crimination of uc6& can be relatively high because it is fa
from uc4& and uc5&. However, just because of this, the effi
2-4
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SET DISCRIMINATION OF QUANTUM STATES PHYSICAL REVIEW A65 062322
ciency of the set discrimination ofuc6&, i.e., the probability
of reporting uc& is in S2 if uc& is uc6&, is less than the effi-
ciency of set discrimination ofuc4& or uc5&.

In summary, this paper introduces a notion of set discri
nation, and makes some discussions about several b
problems in it. We find that perfect set discrimination can
performed if and only if the sets are orthogonal; unambi
ous set discrimination can be performed if and only if t
sets are linearly independent. State discrimination and
discrimination can be combined. The best efficiency of d
crimination is also derived, both in set discrimination and
combined case.

There is some future work to be done. For instance, i
known that there is an intimate connection between quan
ry
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cloning and the efficiency of the state discrimination~see@1#
and @10#, for example!. Are there some interesting resul
about cloning and efficiency of the set discriminatio
Questions of this kind remain for future study.
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