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Lower bound on inconclusive probability of unambiguous discrimination
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We derive a lower bound on the inconclusive probability of unambiguous discrimination amlarearly
independent quantum states by using the constraint of no signaling. It improves the bound presented in the
paper of Zhang, Feng, Sun, and Yiffghys. Rev. A64, 062103(2001)], and when the optimal discrimination
can be reached, these two bounds coincide with each other. An alternative method of constructing an appro-
priate measurement to prove the lower bound is also presented.
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I. INTRODUCTION nation by using the constraint of no signaling and discuss the

condition under which the lower bound can be reached. The

As we all know, precise quantum discrimination amongcomparison between our bound and the one presented in Ref.
nonorthogonal quantum states is forbidden by the laws of7] is also drawn. Section Ill aims at proposing an alternative

quantum mechanics. However, if a nonzero probability ofmethod by constructing an appropriate measurement to prove
inconclusive answer is allowed, we can distinguish with certhe bound stated in Sec. Il. Section IV concludes this paper

tainty linearly independent quantum states. This strategy iand points out a topic for further studies.
usually calledunambiguous discriminationUnambiguous

discrimination among two equally probable nonorthogonal
guantum states was originally addressed by IvangMicand Il. LOWER BOUND ON PROBABILITY

then by Dieks[2] and Pereq3]. Jaeger and Shimonj4] OF INCONCLUSIVE ANSWER
extended their result to the case of two nonorthogonal states

with unequal prior probabilities. Chefl¢§] showed than Suppose a quantum system is prepared in one ofnthe
quantum states can be unambiguously discriminated if angtates|y,),| ), . .. ,|#,) in ak-dimensional Hilbert space
only if they are independent. In another paper, Chefles angith probabilitiesp;,p,, ... ,p,, respectively, wher&=n
Barnett[6] proposed an optimal unambiguous discriminationjs an arbitrary positive integer. What we wish to do is to
for equally probable symmetrical states. For the general mulgentify which state the system is prepared in with no errors.
tistate cases, Zhangf al.[7] gave an upper bound for suc- opyjously, we cannot hope to give an answer at any time
cess probability of unambiguous discrimination, but the conyecayse of the constraint of the laws of quantum mechanics.

dition under which the upper bound can be reached was ngf, ¢ is, there will be a nonzero probability that we get an

p][esented. In f%CtB.'It.twa‘;‘ showrl;_ln Rm]dthat _th(_a ptr_oble_mth inconclusive result. The optimal strategies to unambiguously
of success probabiiity Of unambiguous discrimination IS €y ;mina1e independent quantum states are the ones which
semidefinite programming problem, which is well known but

' S . minimize the probability of inconclusive result. In the previ-
at present has only numerical solution in mathematics. . . S
ous literature, e.g., Refg1-8], unambiguous discrimination

The methods to cope with optimal unambiguous discrimi-, . . .
nation presented in the above literature are the same, namel ’usually carried by constructing a generalized measurement

first consider the unitary interaction between the system ofOMPosed of a set of linear transformation operators
interest and an ancilla, then measure both systems. HowevéfMm M=0.,1, ... n} satisfying the properties
Barnett and Anderssd®] proposed an interesting alternative
viewpoint by using the no-signaling condition to deal with
unambiguous discrimination among two quantum states. ! +
Here naturally arises a question: can we extend the idea to mE:O MaMn=1,
the most general case of unambiguous discrimination among
n independent quantum states? In this paper, we give a “yes”
answer to this question by deriving a lower bound on the +
probability of inconclusive answer when independent (MM [ 1) =P8 (M>0). D)
guantum states are discriminated. It coincides with the
known bound when the case pf2 is considered.
We organize this paper as follows. In Sec. Il, we derive a Intuitively, the first property makes the sg¥l ..} a gener-
lower bound on failure probability of unambiguous discrimi- alized measurement and the second one ensures that if the

outcome of the measurementnis we can definitely say that
the system is in the state,,). HereP,, is the success prob-
*Corresponding author. Email address: ability of |¢,,) being identified. By using the measurement
fengy99g@mails.tsinghua.edu.cn above, we can easily transform the optimal unambiguous dis-
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crimination problem to the problem of solving the following n
semidefinite programming: pa= 2, Pili)(il+Pop, (6)
=1
n
maximize >, p;P, wherep=Z3; ;g;|i)(j| is the density matrix of Alice’s system
i=1 corresponding to the inconclusive result of Bob’s discrimina-

tion. Theith summand of the first term on the right-hand side

subjectto X—-I'=0, I'=0, 2 above shows that if Bob correctly identifies the state),
_ o N then Alice’s system is definitely in the stdfie.
where X=[(#i|#);)]nxn is the matrix with the i,j)th entry According to the no-signaling constraint, any operators

being (¢i|¢;) and I'=diag{P;,P,, ... Py} [8]. Unfortu-  performed on Bob's system will not change the density ma-
nately, it has been shown that the semidefinite programmingix of Alice’s system, namely,
problem above seems hard to find analytic solutions, and
only numerical methods are known up to npl0]. i o

Although the optimal strategies for unambiguous dis- PA:”B|‘I’><‘I’|:i21 Vpipi(¥l i) [ (7)
crimination amongn quantum states are hard or, be more !
pessimistic, impossible to obtain, we can simplify the most Taking Eqs.(6) and (7) together, we have
general problem to consider two easier questions instead. )
One question is for some special quantum states and prior
probabilities, how to derive the optimal discrimination strat- > Pili){(i|+Po 2 eli)(il= 2 Vpipy(wilw)li)il-
egies. Chefles considered the caseaymmetric indepen- ' Mt R ®)
dent quantum states with equal prior probabilities and ob-
tained the maximum probability to unambiguously Comparing the corresponding terms yields the equations
discriminate them. The other question is that we can derives follows:
upper bounds on the optimal success probability of discrimi-

n n

nation. One example is, by using a series of proper inequali- Pi+Poei=p;, i=12,...n, 9
ties, Zhanget al. [7] derived an upper bound on success
probability P4 of unambiguous discrimination as follows: Poeij = VRiPi( ¥l i), 1#]. (10

1 By the equations in Eq10), it holds that
Pe=1-1=7 2 Vo l(ilv)l. 3

P2, eijei= > pibl{eilv)l?. (11

Since the upper bound is for the most general case of unam- 1#] 1#]
biguous discrimination, it is important and interesting to im-
prove it. Fortunately, by using the constraint of no signaling, .. NP . .
which was originally presented by Barnett and Anderssor>"C€ P =i i€ili)(j| is a density matrix, we have pj
[9], we can derive a better lower bound on inconclusive:1 and trp%)<1, that is,
probability of discrimination.

Suppose Alice and Bob shared a quantum system com- E ei=1,
posed of two separated particles which is prepared in the i
entangled state

Now, we derive the global minimum d&#, from Eq.(11).

n E eﬁ‘i‘; eijejigl- (12)
|‘D>:i21 Voili)al s, 4 J

Using Cauchy inequality, we have

where the subscriptd and B denote the particles held by 2
Alice and Bob, respectively, arld),i=1,2, ... n are ortho- E eijejiﬁl—E eﬁ$1—(2 e”) / n=(n—1)/n.
normal basis states for Alice’s system. 17 ! !

The reduced density matrix of Bob’s system is (13

N Then from Eq.(11), we get the lower bound of inconclu-
i babilit follows:
pa=tAl®)(®[= 3 pilu)(wil- (5)  Sive probabiliy as follows

opt__ n 2
That is, Bob’s system is in a mixture pf;) with respective Po=PoP'= \/m 2‘] pipi[Cwil )l (14
prior probabilitiesp; . Suppose Bob tries to unambiguously
distinguish between these states. The probabilities that he Now we turn to find the condition under which the lower
correctly identifieg ;) and gets an inconclusive result &g  bound of inconclusive probability in E¢14) can be reached.
and P, respectively, wheré=1,2,...n. Then after the From the procedure we derive the global minimumRy,
discrimination, the density matrix of Alice’s system is we can easily see that it is reached wipeis a pure state and
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ei=1/n. Suppose pure statp=|¢)(¢p| for some |¢) which shows that we derive a more precise bound on the

=3aj|i), then g;=a;a} . Putting the condition thag;; probability of inconclusive answer when an unambiguous

=1/n, we have|a;|=1/\/n for anyi, so discrimination is taken amongindependent states. We may
also note that if the conditions in Eq&l6) and (18) are

(15) sa_ltisﬁed, these two k_)ounqls cqincide w!th egch other, other-
wise the bound obtained in this paper is strictly better than
that given in Ref[7].

|eij|=|aia]-*|=1/n.
From the above equation and E40), we can get

loipi (il )| =C  when i#], (16) Ill. AN ALTERNATIVE METHOD TO
DERIVE THE BOUND

for some constant. Once a discrimination problem satisfy- To discriminate quantum states, we must obtain some in-
ing the constraint$16) is given, we can see from E¢l4)  formation from the system of interest. But the only way for

that us to get information from a system is to apply a measure-
ment on it. So, in principle, any discrimination must be re-

ngt:nc. (17) alized by measurements and, furthermore, the optimal dis-

crimination must also be achieved by a proper measurement.

The philosophical consideration leads us to find an alterna-
tive derivation of the inconclusive probability bound in terms

of quantum measurement. This is exactly the purpose of this

Furthermore, taking the second condition, sy=1/n,
back to Eq.(9), and noticing thaP;=0 we have, for any
andj,

section.
) In what follows, we present the details of such a deriva-
|<lﬁi|¢j>| <pi/p;. (18 tion of the bound stated in Sec. II by constructing an appro-

priate measurement. First, from E@),

That is, if the conditiong16) and (18) hold, P3P' can be
reached, which corresponds obviously to the best discrimi- n 2
nation strategies. VATV _

It is shown from constraints in Eq$16) and (18) that (Z’l p'|<¢'|M°MO|¢'>|)
whether the optimal discrimination can be reached is deter- )
mined by the prior probabilities and the inner product be- :(E P'|Mo|l,0'>|2)
tween each pair of the states. If the probability of one state is T '
very small, then to reach the optimal discrimination, the
norm of the inner produdtin other words, the cosine of the ZE p-2|'\/|o|¢'>|4
angle between the two stajesf this state and each of the T '
rest states must be close enough to 0, that is, they must be
“almost” orthogonal. On the other hand, if some two of . |2 NE
these states have very large norm of the inner product, that +Z’j PipjIMol g " Moly)I". (20
is, they are “almost” parallel, then the prior probabilities of
these two states must be close enough. What we would like
to point out still is that sincé( ;| ;)|<1 for anyi andj, the
constraints in Eq(18) always hold for the case in which the
prior probabilities of all states are equal, ijg;=1/n, which ) .
occurs rather frequently in practice. Furthermore, if all states 2 piIMoly)|
are equally distant to each other, the constraints in(E). '
also hold. For example, in three-dimensional Hilbert state ) 5
space, [1)=[0), |#)=3]0)+3/21), and [y)=3]0) =| 2 PiIMol )l Mol vy ) (=1
+/3/6/1)+ \/6/3]2) with the same prior probabilitg sat- :
isfy the constraints described in E¢$6) and(18). It is easy (21
to construct the optimal measurement strategy by the method
introduced in Ref[5] and the inconclusive probability i, and
which coincides with Eq(14).

To conclude this section, we draw a comparison between
the bound we present and the one in R&f. Using Cauch
inequality agaiﬁ' we can easily find thzt] g Y ~ pipj|M0|¢i>|2|M0|¢j>|22i§j pipj|<¢i|M(T)MO|¢j>|2-

| (22

By Cauchy inequality, we have

n 1
- o W)= —— Jo:o: |
n—1 ;1 Pipi (4] n—1i% Pipi|{wil ). So, the failure probability of the unambiguous discrimina-
(29 tion
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Pozgl pil (i MMl )|

n
=\ no1 ;l Pipj| Mol %) Mol )2

n
Vi1 ;] PP (il =M M= - =M M |y)|?
_n 2
“Vno1 lz*l pip;l <&l ¥ (23
as desired.

Furthermore, Eq(23) can be rewritten as follows:

1
Po>n\/mgj AT (24)

the second multiplier on the right side of which is just the

arithmetic mean of (\/pip;|{ ¥ ¥;)|)%i#]}. But we know
by the power-mean inequality that if we defiR€) as

1

k
\/mE (pipil (il gD, (25)

1#]

thenP®&*D=p® for k=1,2,.... It iseasy to find that the
bound obtained in Ref7] is nP™), while the one presented
in this paper is jushP(®),

SinceP®<pP@<pBx<... can we further increase the
lower bound tonP® or even greater? Unfortunately, this
turns out to be impossible. In fact, one can find a countere
ample as follows. Suppogél),|2), ... |n)} is an orthonor-
mal basis of the Hilbert spacéy;)=|i) for i=1,2,...n
—1 and |¢,)=V1—€/n—1)+ Je|n) for a small enough
positive numbere. The prior probability for eachi;) is p;
=1/n. Then we can easily find thaty;|M{M|¢;)|=0 for
i=1,2,...n—-2 and [(¢|MiMo|g)|=1 for i=n—1n.
ThenPy=2/n and

1 «/ 2
P(k)zﬁ m (26)

X
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It is easy to see that whe=3,

2 w_ K 2
P0=ﬁ<nP = n(n_l), (27)

so0, as claimed, this indicates that we could not improve the
result tonP®). In fact, from Eq.(27) we know that for an
arbitrary positive integen, if

2 1
k>r,= |092/nm =1+ |092/nm, (28)

then there is an example in whighy<nP®. Therefore, the
lower bound onP, could not be greater thanP("» . But
what aboutnP®, where 2<k<r,? The question remains
for further study.

IV. CONCLUSION

In this paper, we derive a lower bound on the inconclusive
probability of unambiguous discrimination amongtates by
using the constraint of no signaling. It improves the bound
presented in Refl7], and when the optimal discrimination
can be reached, these two bounds coincide with each other.
An alternative method of constructing an appropriate mea-
surement to prove the lower bound is also presented.

By carefully observing the format of the probability
bound given in this paper and the one in Réf], we find
they are all special cases of a quantity which is introduced as
P® in Eq. (25). Since the probability bounds in R¢%] and
the present paper are, respectivéi) and P(?), we natu-
rally want to know whetheP® of a larger parametes can
serve as a better bound of the inconclusive probability in the
unambiguous discrimination amomgindependent quantum
states. It turns out that we are able to give a negative answer
to this question whenevée=3, but the case for k<r, is
still open.
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