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Lower bound on inconclusive probability of unambiguous discrimination
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We derive a lower bound on the inconclusive probability of unambiguous discrimination amongn linearly
independent quantum states by using the constraint of no signaling. It improves the bound presented in the
paper of Zhang, Feng, Sun, and Ying@Phys. Rev. A64, 062103~2001!#, and when the optimal discrimination
can be reached, these two bounds coincide with each other. An alternative method of constructing an appro-
priate measurement to prove the lower bound is also presented.
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I. INTRODUCTION

As we all know, precise quantum discrimination amo
nonorthogonal quantum states is forbidden by the laws
quantum mechanics. However, if a nonzero probability
inconclusive answer is allowed, we can distinguish with c
tainty linearly independent quantum states. This strateg
usually calledunambiguous discrimination. Unambiguous
discrimination among two equally probable nonorthogo
quantum states was originally addressed by Ivanovic@1#, and
then by Dieks@2# and Peres@3#. Jaeger and Shimony@4#
extended their result to the case of two nonorthogonal st
with unequal prior probabilities. Chefles@5# showed thatn
quantum states can be unambiguously discriminated if
only if they are independent. In another paper, Chefles
Barnett@6# proposed an optimal unambiguous discriminati
for equally probable symmetrical states. For the general m
tistate cases, Zhanget al. @7# gave an upper bound for suc
cess probability of unambiguous discrimination, but the c
dition under which the upper bound can be reached was
presented. In fact, it was shown in Ref.@8# that the problem
of success probability of unambiguous discrimination is
semidefinite programming problem, which is well known b
at present has only numerical solution in mathematics.

The methods to cope with optimal unambiguous discrim
nation presented in the above literature are the same, nam
first consider the unitary interaction between the system
interest and an ancilla, then measure both systems. How
Barnett and Andersson@9# proposed an interesting alternativ
viewpoint by using the no-signaling condition to deal wi
unambiguous discrimination among two quantum sta
Here naturally arises a question: can we extend the ide
the most general case of unambiguous discrimination am
n independent quantum states? In this paper, we give a ‘‘y
answer to this question by deriving a lower bound on
probability of inconclusive answer whenn independent
quantum states are discriminated. It coincides with
known bound when the case ofn52 is considered.

We organize this paper as follows. In Sec. II, we deriv
lower bound on failure probability of unambiguous discrim
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nation by using the constraint of no signaling and discuss
condition under which the lower bound can be reached. T
comparison between our bound and the one presented in
@7# is also drawn. Section III aims at proposing an alternat
method by constructing an appropriate measurement to p
the bound stated in Sec. II. Section IV concludes this pa
and points out a topic for further studies.

II. LOWER BOUND ON PROBABILITY
OF INCONCLUSIVE ANSWER

Suppose a quantum system is prepared in one of thn
statesuc1&,uc2&, . . . ,ucn& in a k-dimensional Hilbert space
with probabilitiesp1 ,p2 , . . . ,pn , respectively, wherek>n
is an arbitrary positive integer. What we wish to do is
identify which state the system is prepared in with no erro
Obviously, we cannot hope to give an answer at any ti
because of the constraint of the laws of quantum mechan
That is, there will be a nonzero probability that we get
inconclusive result. The optimal strategies to unambiguou
discriminate independent quantum states are the ones w
minimize the probability of inconclusive result. In the prev
ous literature, e.g., Refs.@1–8#, unambiguous discrimination
is usually carried by constructing a generalized measurem
composed of a set of linear transformation operat
$Mm ,m50,1, . . . ,n% satisfying the properties

(
m50

n

Mm
† Mm5I ,

^c i uMm
† Mmuc i&5Pmdm,i ~m.0!. ~1!

Intuitively, the first property makes the set$Mm% a gener-
alized measurement and the second one ensures that
outcome of the measurement ism, we can definitely say tha
the system is in the stateucm&. HerePm is the success prob
ability of ucm& being identified. By using the measureme
above, we can easily transform the optimal unambiguous
©2002 The American Physical Society13-1
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crimination problem to the problem of solving the followin
semidefinite programming:

maximize (
i 51

n

pi Pi

subject to X2G>0, G>0, ~2!

whereX5@^c i uc j&#n3n is the matrix with the (i , j )th entry
being ^c i uc j& and G5diag$P1 ,P2 , . . . ,Pn% @8#. Unfortu-
nately, it has been shown that the semidefinite programm
problem above seems hard to find analytic solutions,
only numerical methods are known up to now@10#.

Although the optimal strategies for unambiguous d
crimination amongn quantum states are hard or, be mo
pessimistic, impossible to obtain, we can simplify the m
general problem to consider two easier questions inst
One question is for some special quantum states and p
probabilities, how to derive the optimal discrimination stra
egies. Chefles considered the case ofn symmetric indepen-
dent quantum states with equal prior probabilities and
tained the maximum probability to unambiguous
discriminate them. The other question is that we can de
upper bounds on the optimal success probability of discri
nation. One example is, by using a series of proper inequ
ties, Zhanget al. @7# derived an upper bound on succe
probability Ps of unambiguous discrimination as follows:

Ps<12
1

n21 (
iÞ j

Apipj u^c i uc j&u. ~3!

Since the upper bound is for the most general case of un
biguous discrimination, it is important and interesting to im
prove it. Fortunately, by using the constraint of no signalin
which was originally presented by Barnett and Anderss
@9#, we can derive a better lower bound on inconclus
probability of discrimination.

Suppose Alice and Bob shared a quantum system c
posed of two separated particles which is prepared in
entangled state

uF&5(
i 51

n

Api u i &Auc i&B , ~4!

where the subscriptsA and B denote the particles held b
Alice and Bob, respectively, andu i &,i 51,2, . . . ,n are ortho-
normal basis states for Alice’s system.

The reduced density matrix of Bob’s system is

rB5trAuF&^Fu5(
i 51

n

pi uc i&^c i u. ~5!

That is, Bob’s system is in a mixture ofuc i& with respective
prior probabilitiespi . Suppose Bob tries to unambiguous
distinguish between these states. The probabilities tha
correctly identifiesuc i& and gets an inconclusive result arePi
and P0, respectively, wherei 51,2, . . . ,n. Then after the
discrimination, the density matrix of Alice’s system is
06231
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rA5(
i 51

n

Pi u i &^ i u1P0r, ~6!

wherer5( i , jei j u i &^ j u is the density matrix of Alice’s system
corresponding to the inconclusive result of Bob’s discrimin
tion. Thei th summand of the first term on the right-hand si
above shows that if Bob correctly identifies the stateuc i&,
then Alice’s system is definitely in the stateu i &.

According to the no-signaling constraint, any operato
performed on Bob’s system will not change the density m
trix of Alice’s system, namely,

rA5trBuF&^Fu5 (
i , j 51

n

Apipj^c j uc i&u i &^ j u. ~7!

Taking Eqs.~6! and ~7! together, we have

(
i 51

n

Pi u i &^ i u1P0 (
i , j 51

n

ei j u i &^ j u5 (
i , j 51

n

Apipj^c j uc i&u i &^ j u.

~8!

Comparing the corresponding terms yields the equati
as follows:

Pi1P0eii 5pi , i 51,2, . . . ,n, ~9!

P0ei j 5Apipj^c j uc i&, iÞ j . ~10!

By the equations in Eq.~10!, it holds that

P0
2(

iÞ j
ei j eji 5(

iÞ j
pipj u^c i uc j&u2. ~11!

Now, we derive the global minimum ofP0 from Eq.~11!.
Since r5( i , jei j u i &^ j u is a density matrix, we have tr(r)
51 and tr(r2)<1, that is,

(
i

eii 51,

(
i

eii
2 1(

iÞ j
ei j eji <1. ~12!

Using Cauchy inequality, we have

(
iÞ j

ei j eji <12(
i

eii
2<12S (

i
eii D 2Y n5~n21!/n.

~13!

Then from Eq.~11!, we get the lower bound of inconclu
sive probability as follows:

P0>P0
opt5A n

n21 (
iÞ j

pipj u^c i uc j&u2. ~14!

Now we turn to find the condition under which the low
bound of inconclusive probability in Eq.~14! can be reached
From the procedure we derive the global minimum ofP0,
we can easily see that it is reached whenr is a pure state and
3-2
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eii 51/n. Suppose pure stater5uf&^fu for some uf&
5( ia i u i &, then ei j 5a ia j* . Putting the condition thateii

51/n, we haveua i u51/An for any i, so

uei j u5ua ia j* u51/n. ~15!

From the above equation and Eq.~10!, we can get

Apipj u^c i uc j&u[C when iÞ j , ~16!

for some constantC. Once a discrimination problem satisfy
ing the constraints~16! is given, we can see from Eq.~14!
that

P0
opt5nC. ~17!

Furthermore, taking the second condition, sayeii 51/n,
back to Eq.~9!, and noticing thatPi>0 we have, for anyi
and j,

u^c i uc j&u2<pi /pj . ~18!

That is, if the conditions~16! and ~18! hold, P0
opt can be

reached, which corresponds obviously to the best discr
nation strategies.

It is shown from constraints in Eqs.~16! and ~18! that
whether the optimal discrimination can be reached is de
mined by the prior probabilities and the inner product b
tween each pair of the states. If the probability of one stat
very small, then to reach the optimal discrimination, t
norm of the inner product~in other words, the cosine of th
angle between the two states! of this state and each of th
rest states must be close enough to 0, that is, they mus
‘‘almost’’ orthogonal. On the other hand, if some two
these states have very large norm of the inner product,
is, they are ‘‘almost’’ parallel, then the prior probabilities
these two states must be close enough. What we would
to point out still is that sinceu^c i uc j&u<1 for anyi andj, the
constraints in Eq.~18! always hold for the case in which th
prior probabilities of all states are equal, i.e.,pi51/n, which
occurs rather frequently in practice. Furthermore, if all sta
are equally distant to each other, the constraints in Eq.~16!
also hold. For example, in three-dimensional Hilbert st
space, uc1&5u0&, uc2&5 1

2 u0&1A3/2u1&, and uc3&5 1
2 u0&

1A3/6u1&1A6/3u2& with the same prior probability13 sat-
isfy the constraints described in Eqs.~16! and~18!. It is easy
to construct the optimal measurement strategy by the me
introduced in Ref.@5# and the inconclusive probability is12 ,
which coincides with Eq.~14!.

To conclude this section, we draw a comparison betw
the bound we present and the one in Ref.@7#. Using Cauchy
inequality again, we can easily find that

A n

n21 (
iÞ j

pipj u^c i uc j&u2>
1

n21 (
iÞ j

Apipj u^c i uc j&u,

~19!
06231
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which shows that we derive a more precise bound on
probability of inconclusive answer when an unambiguo
discrimination is taken amongn independent states. We ma
also note that if the conditions in Eqs.~16! and ~18! are
satisfied, these two bounds coincide with each other, ot
wise the bound obtained in this paper is strictly better th
that given in Ref.@7#.

III. AN ALTERNATIVE METHOD TO
DERIVE THE BOUND

To discriminate quantum states, we must obtain some
formation from the system of interest. But the only way f
us to get information from a system is to apply a measu
ment on it. So, in principle, any discrimination must be r
alized by measurements and, furthermore, the optimal
crimination must also be achieved by a proper measurem
The philosophical consideration leads us to find an alter
tive derivation of the inconclusive probability bound in term
of quantum measurement. This is exactly the purpose of
section.

In what follows, we present the details of such a deriv
tion of the bound stated in Sec. II by constructing an app
priate measurement. First, from Eq.~1!,

S (
i 51

n

pi u^c i uM0
†M0uc i&u D 2

5S (
i

pi uM0uc i&u2D 2

5(
i

pi
2uM0uc i&u4

1(
iÞ j

pipj uM0uc i&u2uM0uc j&u2. ~20!

By Cauchy inequality, we have

(
i

pi
2uM0uc i&u4

>S (
iÞ j

pipj uM0uc i&u2uM0uc j&u2D Y ~n21!

~21!

and

(
iÞ j

pipj uM0uc i&u2uM0uc j&u2>(
iÞ j

pipj u^c i uM0
†M0uc j&u2.

~22!

So, the failure probability of the unambiguous discrimin
tion
3-3
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P05(
i 51

n

pi u^c i uM0
†M0uc i&u

>A n

n21 (
iÞ j

pipj uM0uc i&u2uM0uc j&u2

5A n

n21 (
iÞ j

pipj u^c i uI 2M1
†M12•••2Mn

†Mnuc j&u2

5A n

n21 (
iÞ j

pipj u^c i uc j&u2 ~23!

as desired.
Furthermore, Eq.~23! can be rewritten as follows:

P0>nA 1

n~n21! (
iÞ j

pipj u^c i uc j&u2, ~24!

the second multiplier on the right side of which is just t
arithmetic mean of$(Apipj u^c i uc j&u)2: iÞ j %. But we know
by the power-mean inequality that if we defineP(k) as

Ak 1

n~n21! (
iÞ j

~Apipj u^c i uc j&u!k, ~25!

thenP(k11)>P(k) for k51,2, . . . . It iseasy to find that the
bound obtained in Ref.@7# is nP(1), while the one presente
in this paper is justnP(2).

SinceP(1)<P(2)<P(3)<•••, can we further increase th
lower bound tonP(3) or even greater? Unfortunately, th
turns out to be impossible. In fact, one can find a counter
ample as follows. Suppose$u1&,u2&, . . . ,un&% is an orthonor-
mal basis of the Hilbert space,uc i&5u i & for i 51,2, . . . ,n
21 and ucn&5A12eun21&1Aeun& for a small enough
positive numbere. The prior probability for eachuc i& is pi

51/n. Then we can easily find thatu^c i uM0
†M0uc i&u50 for

i 51,2, . . . ,n22 and u^c i uM0
†M0uc i&u.1 for i 5n21,n.

ThenP052/n and

P(k).
1

n
Ak 2

n~n21!
. ~26!
06231
x-

It is easy to see that whenk>3,

P05
2

n
,nP(k)5Ak 2

n~n21!
, ~27!

so, as claimed, this indicates that we could not improve
result tonP(3). In fact, from Eq.~27! we know that for an
arbitrary positive integern, if

k.r n5 log2/n

2

n~n21!
511 log2/n

1

n21
, ~28!

then there is an example in whichP0,nP(k). Therefore, the
lower bound onP0 could not be greater thannP(r n) . But
what aboutnP(k), where 2,k,r n? The question remain
for further study.

IV. CONCLUSION

In this paper, we derive a lower bound on the inconclus
probability of unambiguous discrimination amongn states by
using the constraint of no signaling. It improves the bou
presented in Ref.@7#, and when the optimal discriminatio
can be reached, these two bounds coincide with each o
An alternative method of constructing an appropriate m
surement to prove the lower bound is also presented.

By carefully observing the format of the probabilit
bound given in this paper and the one in Ref.@7#, we find
they are all special cases of a quantity which is introduced
P(k) in Eq. ~25!. Since the probability bounds in Ref.@7# and
the present paper are, respectively,P(1) and P(2), we natu-
rally want to know whetherP(k) of a larger parameterk can
serve as a better bound of the inconclusive probability in
unambiguous discrimination amongn independent quantum
states. It turns out that we are able to give a negative ans
to this question wheneverk>3, but the case for 2,k,r n is
still open.
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