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Upper bound for the success probability of unambiguous discrimination among quantum states
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One strategy to the discrimination problem is to identify the state with certainty, leaving a possibility of
undecidability. This paper gives an upper bound for the maximal success probability of unambiguous discrimi-
nation amongn states. This bound coincides with the known IDP limit when two states are considered.
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Quantum state discrimination is a classically interest
and important problem@1#. A quantum system is prepared
a number of known, finite set of states, and we hope to
termine what quantum state the system was actually in w
the minimum probability of error. Ivanovic@2#, Dieks @3#,
and Peres@4# consider the problem under the special requi
ment that one must identify the state with certainty, leavin
possibility of undecidability. They find a higher probabilit
of discrimination than merely using von Neumann measu
ment on a single-qubit state by adding an auxiliary quant
system, and the best result along their approach in the ca
discrimination between two quantum states is 12u^puq&u,
wherep andq are the two states to be distinguished. Jae
and Shimony extend the problem in Ref.@5# to the case of
unequal priori probabilities, and get the result as
22Arsu^puq&u, wherer ands are thepriori probabilities of
the two states. This result is also discussed by Ban in Ref@6#
in the context of quantum communications. However,
these papers are along the Ivanovic’s approach and dem
strate only as far as their approach is considered that
probability of correct classification they get is the optim
one. This paper extends their work by showing that
bound they obtain is also the best one in a more gen
context: if one wants to unambiguously distinguish tw
quantum states only by arbitrary generalized measurem
~POVMs!, then the maximal probability of successful clas
fication is 122Arsu^puq&u.

Another naturally intriguing extension is to prepare mo
than two states to be discriminated. Peres and Terno@7# give
a solution to the problem of optimal distinction of thre
states having arbitrarypriori probabilities and arbitrary de
tection values. More generally, for the distinction ofn quan-
tum states, an important fact shown by Chefles in Ref.@8# is
that only linear independent states can be unambiguo
discriminated. Another result, which solves a kind of spec
case known as equally probable symmetrical states,
given in Ref.@9#. But the optimal unambiguous distinction o
arbitraryn quantum states is still unknown. This note giv
an upper bound on this optimal value, and shows that
upper bound coincides with the known result
22Arsu^puq&u in the two-state case.
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In what follows, we assume a quantum system is prepa
in one of then statesuc1&, . . . ,ucn& in a k-dimension Hilbert
space with probabilitiesp1 , . . . ,pn , respectively, wherek is
an arbitrary positive integer. We hope to identify the state
the system by one or more measurements. A measureme
described by a set of linear operators$Mm% such that
(mMm

† Mm5I . If the state of the quantum system isuc&
before the measurement then the probability that resulm
occurs is^cuMm

† Mmuc&, and the post-measurement state

Mmuc&

A^cuMm
† Mmuc&

.

A measurement can also be described by a POVM m
surement, which is a set of positive operators$Em% such that
(mEm5I . Similarly, If the state of the quantum system
uc& before the measurement then the probability that resu
occurs is^cuEmuc& , and the post-measurement state is

AEmuc&

A^cuEmuc&
.

To present our results formally, we need an auxiliary de
nition. The definition gives the probability of unambiguou
identification among uc1&, . . . ,ucn& by measuremen
$Mm%.

Definition 1. Suppose a quantum system is prepared
one of then statesuc1&, . . . ,ucn& in a k-dimension Hilbert
space with probabilities ofp1 , . . . ,pn , respectively. The
probability of unambiguous identification by measureme
$Mm% is defined as follows:

D~p1 , . . . ,pn ,uc1&, . . . ,ucn&,$Mm%)

5(
i 51

n

(
Mmuc i &Þ0

Mmuc j &50,; j Þ i

pi^c i uMm
† Mmuc i&.

Intuitively, the i th summand of the right-hand side of th
defining equation is the probability with which one can ass
with certainty that the system is prepared in stateuc i&. Thus
the total summation of the right-hand side is the succ
probability of unambiguous discrimination among sta
uc1&, . . . ,ucn&.
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For simplicity, we often write D($Mm%) instead of
D(p1 , . . . ,pn ,uc1&, . . . ,ucn&,$Mm%) if no confusion is
caused.

One of our main results is the following theorem, whi
gives an upper bound forD($Mm%).

Theorem 1.For any measurement$Mm%, we have

Dm~$Mm%!<12
1

n21 (
iÞ j

Apipj u^c i uc j&u.

Proof. It follows from Definition 1 that

Dm~$Mm%!5(
i 51

n

(
Mmuc i &Þ0

Mmuc j &50,; j Þ i

pi^c i uMm
† Mmuc i&

5(
i 51

n

pi^c i u (
Mmuc i &Þ0

Mmuc j &50,; j Þ i

Mm
† Mmuc i&
in

06210
5(
i 51

n

piS ^c i u (
Mmuc i &Þ0

Mmuc j &50,; j Þ i

Mm
† Mmuc i&

1^c i u (
i 8Þ i

(
Mmuc i 8&Þ0

Mmuc j &50,; j Þ i 8

Mm
† Mmuc i&D

5(
i 51

n

pi^c i uE(n21)uc i&

5(
i 51

n

pi^c i uI 2E(n)2Euc i&,

where we write
E(k)5( $Mm
† Mm :the number ofuc j& ’s with Mmuc j&50 is exactlyk%,
of
n be

ire-
nnot
ote
tes,
andE5(k50
n22E(k).

Intuitively, E(k) denotes the summation ofMm
† Mm that

there are exactlyk uc j& ’s such thatMmuc j&50.
Then

Dm~$Mm%!5(
i 51

n

pi^c i uI 2E(n)2Euc i&

512(
i 51

n

pi^c i uEuc i&

512
1

n21 (
iÞ j

1

2
~pi^c i uEuc i&1pj^c j uEuc j&!.

Note that allE(k)’s andE are positive. Hence

pi^c i uEuc i&1pj^c j uEuc j&5pi uAEuc i&u21pj uAEuc j&u2

>2Apipj uAEuc i&uuAEuc j&u

>2Apipj u^c i uAEAEuc j&u

52Apipj u^c i uEuc j&u.

The latter equality is derived from Cauchy-Schwartz
equality. Now
-

Dm~$Mm%!512
1

n21 (
iÞ j

1

2
~pi^c i uEuc i&1pj^c j uEuc j&!

<12
1

n21 (
iÞ j

Apipj u^c i uEuc j&u

512
1

n21 (
iÞ j

Apipj u^c i uI 2E(n)

2E(n21)uc j&u

512
1

n21 (
iÞ j

Apipj u^c i uI uc j&2^c i uE(n)uc j&

2^c i uE(n21)uc j&u

512
1

n21 (
iÞ j

Apipj u^c i uc j&u.

Note that in the above proof, we make no assumption
the dimensionality of the prepared states. So the result ca
applied to systems of any number of qubits.

In the case of discrimination of two states, i.e.,n52, the
above bound is exactly the extended IDP limit in Ref.@5#.
This shows that the IDP limit reserves in the looser requ
ment. In other words, by general measurements one ca
distinguish two states better than extended IDP limit. N
that the result holds for any dimension of the prepared sta
3-2
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therefore, the method of adding quantum systems, as
sumed in@2–5#, cannot get higher value than the above u
per bound.

Another concern about the question is to consider the
crimination by more than once. Because any sequenc
measurements can be formulated as a single genera
measurement, to which Definition 1 and Theorem 1 ap
one cannot achieve a better result by performing meas
ments more than once.

In conclusion, we examine the general distinction ofn
quantum states, and give an upper bound for success p
06210
s-
-

s-
of
ed

y,
e-

b-

ability of unambiguous discrimination. The bound coincid
with the known extended IDP limit when two states are co
cerned. Many times of measurements cannot ameliorate
result.
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