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Upper bound for the success probability of unambiguous discrimination among quantum states
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One strategy to the discrimination problem is to identify the state with certainty, leaving a possibility of
undecidability. This paper gives an upper bound for the maximal success probability of unambiguous discrimi-
nation amongn states. This bound coincides with the known IDP limit when two states are considered.
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Quantum state discrimination is a classically interesting In what follows, we assume a quantum system is prepared
and important problerfil]. A quantum system is prepared in in one of then stateg ), . .. ,|#,) in ak-dimension Hilbert
a number of known, finite set of states, and we hope to despace with probabilitiep,, . .. .p,, respectively, wher& is
termine what quantum state the system was actually in witlan arbitrary positive integer. We hope to identify the state of
the minimum probability of error. Ivanovif2], Dieks [3],  the system by one or more measurements. A measurement is
and Pere$4] consider the problem under the special require-described by a set of linear operatofd,,} such that
ment that one must identify the state with certainty, leaving & MM =1 . If the state of the quantum system |i&)
possibility of undecidability. They find a higher probability pefore the measurement then the probability that result

of discrimination than merely using von Neumann measurepccuyrs is(y|M! M| ), and the post-measurement state is
ment on a single-qubit state by adding an auxiliary quantum

system, and the best result along their approach in the case of M | )
discrimination between two quantum states is |{p|q)|, __m

wherep andq are the two states to be distinguished. Jaeger V(HIM M | )

and Shimony extend the problem in Rg#] to the case of

unequal priori probabilities, and get the result as 1 A measurement can also be described by a POVM mea-
—24rs|(p|q)|, wherer ands are thepriori probabilities of ~ surement, which is a set of positive operatfffs,} such that

the two states. This result is also discussed by Ban in[Rgf. 2 En=1 . Similarly, If the state of the quantum system is
in the context of quantum communications. However, all|y) before the measurement then the probability that result m
these papers are along the Ivanovic’s approach and demoaecurs is{i/|E,|#) , and the post-measurement state is
strate only as far as their approach is considered that the

probability of correct classification they get is the optimal N )
one. This paper extends their work by showing that the —.
bound they obtain is also the best one in a more general V(| Em| )

context: if one wants to unambiguously distinguish two - ]
quantum states only by arbitrary generalized measurements 10 present our results formally, we need an auxiliary defi-
(POVMS), then the maximal probability of successful classi- ition. The definition gives the probability of unambiguous

fication is 1— 2+rs|(p|q)|. identification among |¢1), ....|¢,) by measurement
Another naturally intriguing extension is to prepare more{Mm}-. . ] ]
than two states to be discriminated. Peres and TEfhgive Definition 1. Suppose a quantum system is prepared in
a solution to the problem of optimal distinction of three ONe of then states|yr), ... [¢) in a k-dimension Hilbert
states having arbitrarpriori probabilities and arbitrary de- SPace with probabilities of,, ... ,p,, respectively. The

tection values. More generally, for the distinctionrouan-  Probability of unambiguous identification by measurement
tum states, an important fact shown by Chefles in Rgifis  {Mm/ is defined as follows:
that only linear independent states can be unambiguously

discriminated. Another result, which solves a kind of special D(p1, -« Pl 1), -+ [ M)

case known as equally probable symmetrical states, was n

given in Ref[9]. But the optimal unambiguous distinction of _ gt _

arbitrary n quantum states is still unknown. This note gives 21 Mm%>#o Pyl MmM | 7).

an upper bound on this optimal value, and shows that the M ml) =0V #i

upper bound coincides with the known result 1

—24rs|(p|@)| in the two-state case. Intuitively, theith summand of the right-hand side of the

defining equation is the probability with which one can assert
with certainty that the system is prepared in statg. Thus
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For simplicity, we often writeD({M,}) instead of n
D(P1s - - Pnsl1), - ) {M}) if no confusion is Z (il 2 MIMg)
caused. = Mplvi)#0
One of our main results is the following theorem, which Mml ) =0V #1
gives an upper bound fdd ({M.}).
Theorem 1For any measuremefiM .}, we have +{| >, . IE . MM 1)
i’ £i mlin)#
Ml ¢y =0Vj#i’
Dn({Mmh)=1= =7 2% Voip,Kurlw)l. :
Proof. It follows from Definition 1 that ! (n-1)
i =2 Pi(wilE™ )
Dn{Me)=2 2 pi(tilMiMy[u)
=1 Mg
Mol )= 0¥ #1 n

:21 pi(i|l —EM—E| ),

=}

E |<¢|| 2 MTmMm|¢i>

i=1 Ml i) #0

Ml ) =0 #i where we write

EQ=2 {M] M :the number ofy;)’s with M| ;) =0 is exactlyk},

andE=3]_2EW, 1

Intuitively, E® denotes the summation &fi{M, that ~ Pm({Mm})=1={=7 2 (p (il El i)+ pi(u | El )
there are exactlk |;)’s such thatM | 4;)=0.

Then

1
" <1-5=7 2 VPipl(wilElv;)]
Dm({Mm}>=i§1 pi( il —EM—Eyy)
" —1——2 Vi1 —E®
:1_21 Pi{ il E| )

—EC V)]
1S (il El)+ Py EL )
=l=-—= 2 5(Pi¥i i) T Pi{¥ i) 1
n—-17 2 e :1_ﬁ§j Voipi ol ) = (i EDl )
Note that allEW’s and E are positive. Hence — ([ EC D] gy
Pl El )+ i o [E L) = pi| VEL )|+ pj | VE )2 1
iVl Bl i J = ——1; Vi [Cuil ).

=2pip; | VE| i) | VE| )]

Note that in the above proof, we make no assumption of
the dimensionality of the prepared states. So the result can be

=2\pip; (i VEVE )] applied to systems of any number of qubits.
In the case of discrimination of two states, ie= 2, the
above bound is exactly the extended IDP limit in Ré&.

=2pip;|[(Wi[El¥y)]. This shows that the IDP limit reserves in the looser require-

ment. In other words, by general measurements one cannot

The latter equality is derived from Cauchy-Schwartz in-distinguish two states better than extended IDP limit. Note

equality. Now

that the result holds for any dimension of the prepared states,
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therefore, the method of adding quantum systems, as asbility of unambiguous discrimination. The bound coincides
sumed in[2-5], cannot get higher value than the above up-with the known extended IDP limit when two states are con-

per bound. cerned. Many times of measurements cannot ameliorate the
Another concern about the question is to consider the disresult.
crimination by more than once. Because any sequence of ACKNOWLEDGMENTS

measurements can be formulated as a single generalized
measurement, to which Definition 1 and Theorem 1 apply, This work was supported by the National Foundation for
one cannot achieve a better result by performing measurdistinguished Young ScholaréGrant No. 69725004 the
ments more than once. National Key Project for Basic ResearcfGrant No.

In conclusion, we examine the general distinctionnof 6982300}, and the National Foundation of Natural Sciences
guantum states, and give an upper bound for success profisrant No. 69823001

[1] A. Chefles, Contemp. Phy41, 401 (2000. [6] M. Ban, Phys. Lett. 213 235(1996.

[2] I.D. Ivanovic, Phys. Lett. AL23 257 (1987). [7] A. Peres and D. Terno, J. Phys.34, 7105(1998.

[3] D. Dieks, Phys. Lett. AL26, 303 (1988. [8] A. Chefles, Phys. Lett. 39 239(1998.

[4] A. Peres, Phys. Lett. A28 19 (1988. [9] A. Chefles and S.M. Barnett, Phys. Lett250, 223 (1998.

[5] G. Jaeger and A. Shimony, Phys. Lett187, 83 (1995.

062103-3



