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Mathematical nature of and a family of lower bounds for the success probability of unambiguous
discrimination
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Unambiguous discrimination is a strategy to the discrimination problem that identifies the state with cer-
tainty, leaving a possibility of undecidability. This paper points out that the optimal success probability of
unambiguous discrimination is mathematically the well-known semidefinite programming problem. A family
of lower bounds of the optimal success probability is also given.
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Unambiguous discrimination is one of the most importa
strategies to the problem of quantum state discrimination@1#.
It describes the situation that a quantum system is sec
prepared in one of the finite known states, and we hope
identify the state which the system is actually in. Sometim
we prefer the requirement that once a result is reported
must be true. This kind of discrimination is conventiona
called unambiguous discrimination, and we sometimes
the success probability the efficiency of the discriminatio
Unambiguous discrimination was first considered
Ivanovic @2#, and then by Dieks@3# and Peres@4#, all of
which focused on the two-state case. The optimal efficie
they got is 12u^puq&u, later known as IDP-limit, wherep
andq are the two states to be distinguished. Jaeger and
mony in @5# extended the result by augmenting unequaa
priori probabilities to the two states. Peres and Terno@7#
gave a discussion of the three-state case, but unfortuna
they did not give an explicit expression as the result. A m
interesting and important extension is the generaln-state
case. In@8# Chefles showed that only linearly independe
states can be unambiguously discriminated. Chefles and
nett also considered a special case, known as equally p
able symmetrical states, in@9#. For the generaln-state dis-
crimination, Duan and Guo gave a beautiful equivale
condition to the efficiency of the discrimination@10#. In a
rather recent paper@11#, Zhang, Feng, and Sun gave a ne
upper bound for the optimal success probability of then-state
case. But what is the problem in a mathematical sense?
paper points out that the problem of success probability
unambiguous discrimination is the semidefinite progra
ming ~SDP! problem—a well-known mathematical problem
We first give a different proof from the one in@10#, and then
present a brief introduction of the SDP problem. Finally,
show a family of lower bounds for the optimal efficiency@6#.

In what follows, we assume that a quantum system
secretly prepared in one of the statesuw1&,uw2&,...,uwn&,
which are linearly independent vectors inm-dimensional Hil-
bert space wherem>n. We shall discriminate the states by
general measurement. A general measurement is a set o
ear operators$M1 ,M2 ,...,Mk% such that S i 51

k M i
†Mi5I .
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Without loss of generosity, we can further consider a m
surement in the form of$M0 ,M1 ,...,Mn% such that
S i 50

n Mi
†Mi5I and ^w i uM j

†M j uw i&50, if i, j 51, . . . ,n, i
Þ j . Intuitively, if outcome i ( iÞ0) occurs, one may claim
with certainty that the system is originally in the stateuw i&; if
outcome 0 occurs, the identification fails to give a report. W
begin with Lemma 1, which intuitively reduces the origin
problem to the discrimination within the subspace span
by uw1&,uw2&,...,uwn&. We denote them-dimensional Hilbert
space and its subspacespan$uw1&,uw2&,...,uwn&% by Vm and
Vn, respectively.

Lemma 1. For any measurement$Mi :Vm→Vmu i
50,1, . . . ,n% such that I m2S i 51

n Mi
†Mi is positive and

^w i uM j
†M j uw i&50 for all iÞ j , there exists a measureme

$M̃ i :Vn→Vnu i 50,1, . . . ,n% such that I n2S i 51
n M̃ i

†M̃ i is

positive and̂ w i uM j
†M j uw i&5^w i uM̃ j

†M̃ j uw i& for all i and j.

Proof. Let Ṽn denotespan$M1uw1&,M2uw2&,...,Mnuwn&%,
thenṼn has the dimensionality less than or equal ton. So any
linear operatorf :Ṽn→Vn mapping a orthonormal basis ofṼn

to a set of orthonormal vectors inVn preserves the norm o
all vectors inṼn. Now let M̃ i5 f +Mi uṼn. We have

^w i uM̃ j
†M̃ j uw i&5uM̃ j uw i&u25u f +M j uw i&u2

5uM j uw1&u25^w i uM j
†M j uw i&

by noting that wheniÞ j , uM j uw i&u50PVñ, thus f +M j uw i&
50. And what is more, for alluw&PVn, we have

^wuw&2(
i 51

n

^wuM̃ i
†M̃ i uw&5^wuw&2(

i 51

n

uM̃ iw&u2

5^wuw&2(
i 51

n

uMiw&u2

5^wuw&2(
i 51

n

^wuMi
†Mi uw&>0,

which indicates thatI n2S i 51
n M̃ i

†M̃ i is positive and con-
cludes the proof.

For a diagonal matrixG5diag$g1,g2, . . . ,gn%, we say a
measurement$Mi : i 50,1, . . . ,n% can unambiguously dis
©2002 The American Physical Society06-1
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criminate statesuw1&,uw2&,...,uwn& with efficiency G if
^w i uM j

†M j uw i&50 (iÞ j ), and^w i uMi
†Mi uw i&5g i . The fol-

lowing Lemma 2 reduces the problem to an algebra one w
a simple form.

Lemma 2. For linearly independent state
uw1&,uw2&,...,uwn&, there is a measurement to unambig
ously discriminate them with efficiencyG if and only if X
2G andG are both positive, whereX5(^w i uw j&)n3n .

Proof. Based on Lemma 1, we can consider the meas
ment $Mi : i 50,1, . . . ,n% in Vn. Becauseuw1&,uw2&,...,uwn&
are linearly independent, it is easy to see thatMi

†Mi has the
form of a i uv i&^v i u where uv i& is in the one-dimensiona
subspace vertical to eachuw j&( j Þ i ). We set the length of
uv i& such that ^v i uw i&51. Then the i th efficiency g i
5^w i ua i uv i&^v i uw i&5a i . Now, 'Mi , such that
$M0 ,M1 ,...,Mn% is a measurement if and only ifI n

2S i 51
n Mi

†Mi is positive, i.e., for anyuw&5S i 51
n ci uw i&,

0<^wuI n2(
i 51

n

Mi
†Mi uw&5^wuw&

2(
i 51

n

(
j 51

n

ci* g j ci^w i uv j&^v j uw i&

5~c1* ,...,cn* !X~cj ,...,cn!T2(
i 51

n

g ici* ci

5~c1* ,...,cn* !~X2G!~c1 ,...,cn!T,

which just says X2G is positive. j

It should be noted that this result has been got by D
and Guo in@10#. They derived the result from the fact@12#
that a general measurement on systemA can be represente
by a unitary operationU on the composite systemABP, suc-
ceeded by von Neumann’s measurement on probeP. Here
we do not introduce the auxiliary system and consider
problem by a general measurement. The two ways
equivalent, and our lemma can serve as another proof o
problem.

In the rest of the paper, we give a family of lower boun
to the optimal mean efficiency, i.e.,S i 51

n pig i . We denote the
i th largest eigenvalue ofA by l i(A), l1(A)>l2(A)>¯

>ln(A).
Theorem 1. For any q5(q1 ,...,qn), qi.0 (i

51, . . . ,n),

r5ln„diag~Aq1,...,Aqn!Xdiag~Aq1,...,Aqn!…S i 51
n pi /qi ,

is a lower bound of the optimal mean efficiencyS i 51
n pig i .

In particular,ln(X) is a lower bound.
Proof. We write l i for

l i„diag(Aq1,...,Aqn)Xdiag(Aq1,...,Aqn)…. If we let
g i5ln /qi , then S i 51

n pig i5lnS i 51
n pi /qi5r. So in

the rest we only need to proveX2G is positive.
In fact,
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X2G5X 2diag$ln /q1 , . . . ,ln /qn%

5diag~Aq1,...,Aqn!21 $diag~Aq1,...,Aqn!

3X diag~Aq1,...,Aqn!2lnI n%diag~Aq1,...,Aqn!21,

so

X2G>0⇔diag~Aq1,...,Aqn!X diag~Aq1,...,Aqn!2lnI n

>0.

Because l1 ,...,ln are the eigenvalues o
diag(Aq1,...,Aqn) X diag(Aq,...,Aqn), there must exist a
unitary matrix U such that diag(Aq1,...,Aqn) X
diag(Aq1,...,Aqn)5U†diag$l1, . . . ,ln%U. So

diag~Aq1,...,Aqn!X diag~Aq1,...,Aqn!2lnI n

5U† diag$l12ln ,...,ln212ln,0% U.

Following the definition ofl i we havel1>¯>ln , and
it follows that l i2ln>0. This indicatesX2G>0 is posi-
tive.

In particular, if we letq5(1, . . .,1), then it follows that
ln(X) is a special lower bound. j

Note that whenp15p251/2, n52, ln5l2(@
^w2uw1& 1
1 ^w1uw2&

#)

512u^w1uw2&u, which coincides with the IDP limit.
We conclude the paper with some remarks about

mathematical problem reduced in Lemma 2. Mathematica
this is a well-known minimal trace problem. The gene
form is as follows:

minimize cTx,

subject to F~x!>0,

where F(x)5F01S i 51
m xiFi and where the vectorcPRm

and m11 symmetric matricesF0 ,...,FmPRn3n. The in-
equality sign inF(x)>0 means thatF(x) is positive.

A special case is the following one:

maximize (
i 51

n

di ,

subject to Ŝ2diag~d!>0, d>0.

It is easy to see that the problem of maximizing the op
mal mean efficiency just belongs to the second one. Both
two have been studied for about two decades@13#, and have
applications in many areas. There are even web sites
softwares for numerical computation, all of which can d
rectly serve as numerical solutions for our unambiguous
crimination problem.
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