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Mathematical nature of and a family of lower bounds for the success probability of unambiguous
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Unambiguous discrimination is a strategy to the discrimination problem that identifies the state with cer-
tainty, leaving a possibility of undecidability. This paper points out that the optimal success probability of
unambiguous discrimination is mathematically the well-known semidefinite programming problem. A family
of lower bounds of the optimal success probability is also given.
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Unambiguous discrimination is one of the most importantWithout loss of generosity, we can further consider a mea-
strategies to the problem of quantum state discrimindtign  surement in the form of{My,M4,....M,} such tha
It describes the situation that a quantum system is secretlﬁ{‘:oM?MFI and ((pi|M]TM,-|goi>=O, ifi, j=1,...n, i
prepared in one of the finite known states, and we hope te*j. Intuitively, if outcomei(i#0) occurs, one may claim
identify the state which the system is actually in. Sometimesvith certainty that the system is originally in the statg); if
we prefer the requirement that once a result is reported, iutcome 0 occurs, the identification fails to give a report. We
must be true. This kind of discrimination is conventionally begin with Lemma 1, which intuitively reduces the original
called unambiguous discrimination, and we sometimes calproblem to the discrimination within the subspace spanned
the success probability the efficiency of the discrimination.PyY [¢1),[®2),...,|¢q). We denote then-dimensional Hilbert
Unambiguous discrimination was first considered bysPace and its subspaspan{|¢1),|@»).....[¢n)} by V™ and
Ivanovic [2], and then by Diekg3] and Pereq4], all of V7, respectively. _
which focused on the two-state case. The optimal efficiency Leémma 1 For any mer?sur?menF{Mi VIV
they got is -|(p|q)|, later known as IDP-limit, wherp ~ =0:1..... n} such thatl,—3{";M{M; is positive and
andq are the two states to be distinguished. Jaeger and Shi¢ilMjM;le;)=0 for all i#], there exists a measurement
mony in [5] extended the result by augmenting unegaal {M;:V"—V"i=0,1,...n} such thatl,—3" MM, is
priori probabilities to the two states. Peres and Teffib  positive and{e;|M M ;|e;)=(ei| MW, ¢;) for all i andj.
gave a dISCUS.SIOH of thg Fhree—stat(_a case, but unfortunately, pyoof LetVn denotespan{M|@1),My|@2),....Mul @)},
they did not give an explicit expression as the result. A more, . gn
interesting and important extension is the genaratate
case. In[8] Chefles showed that only linearly independent
states can be unambiguously discriminated. Chefles and BaP ~ =
nett also considered a special case, known as equally proBll vectors inV". Now let M; = foM;[n. We have
able symmetrical states, {®]. For the generah-state dis-

has the dimensionality less than or equaht&o any

linear operatof :V"— V" mapping a orthonormal basis gf'
a set of orthonormal vectors M" preserves the norm of

crimination, Duan and Guo gave a beautiful equivalent (@il MM @iy =M;| @) [2=]foM;| ;)|
condition to the efficiency of the discriminatiddQ]. In a ) t
rather recent papdill], Zhang, Feng, and Sun gave a neat =IMjlen)[*=(¢i[M{M[¢i)

upper bound for the optimal success probability ofriketate —
case. But what is the problem in a mathematical sense? Thigy noting that wheri#j, |[M;|¢;)|=0e V", thusfoM;|¢;)
paper points out that the problem of success probability of=0. And what is more, for all¢) e V", we have
unambiguous discrimination is the semidefinite program-
ming (SDP problem—a well-known mathematical problem. " e noo
We first give a different proof from the one ja0], and then <¢>|<P>_Z <‘P|MiTMi|(P>:<QD|‘P>_Z M e)|?
present a brief introduction of the SDP problem. Finally, we 1 -
show a family of lower bounds for the optimal efficien@|. n
In what follows, we assume that a quantum system is =(¢le)— > IM;g)|?
secretly prepared in one of the states)),|¢,),...,|en), =1
which are linearly independent vectorsnirdimensional Hil- n
bert space whemm=n. We shall discriminate the states by a =(ele)— 2 (¢|M[M;|¢)=0,
general measurement. A general measurement is a set of lin- i=1
ear operators{M;,M,,....M,} such thatS* MM,=1. o
which indicates that ,—3!" ,M[M; is positive and con-
cludes the proof.
*Email address: sunx_m@hotmail.com For a diagonal matriX’=diag{y;,v>, - - . ,¥n}, We say a
"Email address: yingmsh@tsinghua.edu.cn measuremen{M;:i=0,1,...n} can unambiguously dis-
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criminate states|¢q),|®s),....|¢,) with efficiency I if
(@iM{Mjle)=0 (i#]), and(¢|M{M;| @)= . The fol-

lowing Lemma 2 reduces the problem to an algebra one with

a simple form.

Lemma 2 For linearly independent

states
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X—=T'=X —diag\,/q1, ... \n/0n}

=diag Vay,...,.Vq,) " {diag Vay,..., Va,)

l@1),|@2),....l@n), there is a measurement to unambigu-gq

ously discriminate them with efficiencly if and only if X
—TI' andI are both positive, wher¥= ({¢i|¢j))nxn -

Proof. Based on Lemma 1, we can consider the measure-

ment{M;:i=0,1,...n}in V". Becausde;),|¢5),...,|¢n)
are linearly independent, it is easy to see nlvlldl\/li has the

form of a;|w;){w;| where|w;) is in the one-dimensional
subspace vertical to eadkm(ja&i). We set the length of

|w;) such that{wi|¢;)=1. Then theith efficiency y;
=<(pi|ai|wi><wi|(pi>=ai. Now, HMi, such that
{Mg,M4,....M,} is a measurement if and only if,
—3"_,MM; is positive, i.e., for anye)=3"_,ci|¢;),

n

0$<‘P||n_i21 MM @)= (el e)
_i=21 ;1 ¢l yici{ @il )l ¢i)

=(C} ,...Cr)X(c; ,...,cn)T—Z1 yick e
=(ct,...CH)(X=T)(Cy,...en) T,

which just says X—T" is positive. |

X X diag\/a,. .. \an) — Al ntdiag Vg, ... VG L,
X—T=0ediag \dq,...,Va,) X diag Vay,....\an) — Nl
=0.
Because M\.,...\, are the eigenvalues of

diag/qy,...,v/a,) X diag(/q,..../q,), there must exist a
unitary matrix U such that diag(qy,....\/q,) X

diag(yqy,...,v/g,) =U'diag\, . . . AptU. So
diag Vay,....Va,) X diag Vo, ...,V — Al y
=UTdiag\;—\p,....Ap—1— A0} U.

Following the definition of\; we havex;=---=\,,, and
it follows that A\;—\,,=0. This indicatesX—I"'=0 is posi-
tive.

In particular, if we letg=(1, ...,1), then it follows that
Nn(X) is a special lower bound. |
Note that whenp;=p,=1/2, n=2, )\n:)\z([z;jgl";zi])

=1—|{¢1]¢,)|, which coincides with the IDP limit.

We conclude the paper with some remarks about the
mathematical problem reduced in Lemma 2. Mathematically
this is a well-known minimal trace problem. The general
form is as follows:

minimize c'x,

It should be noted that this result has been got by Duan

and Guo in[10]. They derived the result from the falc2]

that a general measurement on sysi&man be represented

by a unitary operatioty on the composite systeABP, suc-
ceeded by von Neumann’'s measurement on pi@bklere

subject to F(x)=0,

where F(x)=Fy+3X",x;F; and where the vectoce R™
and m+1 symmetric matrices,...,F,e R"™". The in-

we do not introduce the auxiliary system and consider thequality sign inF(x)=0 means thaF(x) is positive.
problem by a general measurement. The two ways are A special case is the following one:
equivalent, and our lemma can serve as another proof of the
problem. n
In the rest of the paper, we give a family of lower bounds maximize Z di,
to the optimal mean efficiency, i.&," ,p;y; . We denote the =t

ith largest eigenvalue of by \;(A), Ni(A)=N,(A)="-- _ A
\ k Y MR M(A=Ra(A) subject to 2 —diag(d)=0,

d=0.
=N, (A).
:1Theorﬁ)m 1 For any g=(d...Gn). @G>0 It is easy to see that the problem of maximizing the opti-

p=N\n(diag \ay, ..., \am) Xdiag Vay, ...,.\Va) S pi fa;,

is a lower bound of the optimal mean efficienEy_,p;y; .
In particular,\ ,(X) is a lower bound.

Proof. We write N for
Ni(diag(/dy, .., Van) Xdiag/dy,... \Gn).  If  we et
Yi=NalQi, then X py=\32_pi/gi=p. So in
the rest we only need to prove&X—I' is positive.

In fact,

mal mean efficiency just belongs to the second one. Both the
two have been studied for about two decafded, and have
applications in many areas. There are even web sites and
softwares for numerical computation, all of which can di-
rectly serve as numerical solutions for our unambiguous dis-
crimination problem.
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