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Probabilistic cloning and deleting of quantum states
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We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum
state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform
cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines pro-
posed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary
condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily
presumed number of the input states are linearly independent. This simply generalizes some results for cloning.
We also derive an upper bound for the success probability of the cloning and deleting machine.
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In quantum mechanics, one well-known fact is the n
cloning theorem@1,2#, which asserts that, unlike in classic
world, an arbitrary unknown quantum state cannot be clo
perfectly because of the linearity of quantum operatio
However, inaccurate copying is possible@3#. On the other
hand, states chosen from a linearly independent set ca
probabilistically cloned by a unitary-reduction process@4,5#.
This is an impressive result, and, more interestingly, us
the cloning machine introduced in@6#, nonorthogonal state
from a linearly independent set can evolve into a linear
perposition of multiple cloning states.

Recently, deleting unknown quantum states was a
found to be impossible, where ‘‘deleting’’ means ‘‘uncop
ing,’’ that is, deleting one or more copies of the input state
a linear trace preserving operation@7#. At first glance it
seems that copying and deleting should be treated separ
since, as pointed out in Ref.@7#, the deleting process is in
dependent of cloning. In general, deleting is not the inve
of copying; only if copying and deleting are performed
unitary operation is it so. By a careful analysis, however
may be seen that the mechanisms of copying and deleting
quite similar. This suggests that we look for a unified way
dealing with copying and deleting of quantum states.

In this short note, we construct a quantum machine wh
taking several copies of an input quantum state, can outp
linear superposition of multiple cloning states and multip
deleting states. The probabilistic cloning machine of Du
and Guo@4,5# and the cloning machine of Pati@6# can both
be thought of as special cases of our cloning and dele
machine. What we would like to emphasize is that in o
construction both the copying and deleting procedures oc
in a single machine. We show that ifuc i& is chosen fromS
5$uc i&: i 51,2, . . . ,m%, then uc i&

^ k can be probabilistically
cloned and deleted if and onlyuc1&

^ k,uc2&
^ k, . . . ,ucm& ^ k

are linearly independent. We also give an upper bound
the success probability of the quantum machine.

Consider a quantum state setS5$uc1&,uc2&, . . . ,ucm&%
whose elements belong to anNA-dimensional Hilbert space
with NA>m ~the subscriptA is used to indicate that this i
the original system!. A quantum cloning process@4,5# is de-
fined by an evolution as
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uc i&uS&uP0&→uc i&uc i&uPi&,

where uS& is the input state of an ancillary system, andP0
and Pi are the initial state and the final state after cloni
uc i& of the cloning apparatus, respectively. Considering
ability of multiple cloning, the cloning process of@6# is given
by

uc i&uS&uP0&→ (
n51

M

Apn
( i )uc i&

^ (n11)u0& ^ (M2n)uPn&,

whereM is the total number of states of the ancilla who
initial state is denoted byuS& and pn

( i ) is the success prob
ability of producingn exact copies ofuc i&. Obviously, this
cloning machine is a generalization of that considered
@4,5#, and the major distinction between them is that in t
former cloning procedures of different copies are embed
in a single machine.

On the other hand, a quantum deleting machine@7# which
can delete one of two copies and replace it with some s
dard stateu0& is defined as

uc i&uc i&uP0&→uc i&u0&uPi&.

In general, deleting cannot be seen as the inverse proce
copying and they are independent of each other; but if t
are performed by unitary operation then deleting is the
verse of copying. By combining ideas from@4,5,7#, further-
more, the quantum deleting machine depicted above m
easily be extended to a probabilistic multiple deleting p
cess, which can be expressed by the following transform
tion:

uc i&
^ kuP0&→ (

n51

k21

Apn
( i )uc i&

^ nu0& ^ (k2n)uPn&.

The purpose of this short note is to extend all the conce
mentioned above in a unified way to answer the followi
question: if we have several identical copies ofuc i&, is it
possible to have a quantum superposition of the multi
cloning and deleting states described as follows:cn
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uc i&
^ kuS&uP0&→ (

n51

M1k

Apn
( i )uc i&

^ nu0& ^ (M1k2n)uPn&,

wherepn
( i ) is the success probability of producingn2k exact

copies or deletingk2n copies of uc i& depending upon
whetherk,n<M or 1<n,k?

This cloning and deleting machine deserves a brief ex
nation. Initially, the number of existing copies ofuc i& is k,
and in the right-hand side of the above formula the indexn in
the summation ranges from 1 toM1k. For the case of 1
<n,k, the number of copies ofuc i& in the corresponding
summand is smaller thank and some copies ofuc i& are de-
leted; for the case ofk,n<M1k, the number of copies o
uc i& in the summand is greater thank, and some copies o
uc i& are added; and finally for the case ofn5k, the number
of copies is not changed. It is clear that the cloning mach
of Pati @6# is a special case of this machine whenk51 and,
on the other hand, ifpn

( i )50 for all n>k, our machine is in
fact a probabilistically deleting process that deletes one
more of several copies of the input state. An extreme cas
that whenpk

( i )51 and pn
( i )50 for all nÞk the machine is

simply an identical evolution. So without loss of general
we assumepk

( i ),1.
As pointed out in@4–7#, both ideal cloning machines an

deleting ones do not exist due to the linearity of quant
operations. This naturally implies the nonexistence of
ideal cloning and deleting machine stated above. But
following theorem indicates that a multiple cloning and d
leting machine is possible if a nonzero failure probability
allowed.

Theorem. Let the statesuc i& be secretly chosen from a s
S5$uc i&,i 51,2, . . . ,m%; then uc i&

^ k can be probabilisti-
cally cloned or deleted by a unitary processU such that

U~ uc i&
^ kuS&uP0&)5 (

n51

M1k

Apn
( i )uc i&

^ nu0& ^ (M1k2n)uPn&

1 (
l 5M1k11

N

Af l
( i )uF l&ABuPl& ~1!

for all 1< i<m if and only if uc1&
^ k,uc2&

^ k, . . . ,ucm& ^ k

are linearly independent.
In the above equation,pn

( i ) is the success probability o
producingn2k exact copies or deletingk2n copies ofuc i&
depending upon whetherk,n<M or 1<n,k, pk

( i ),1, and
f l

( i ) is the failure probability of remaining in thel th failure
component.uP1&,uP2&, . . . ,uPN& are N orthonormal basis
states of some probing deviceP which belongs to an
N-dimensional Hilbert space, anduF l&AB are normalized but
04232
-

e

r
is

e
e
-

not necessarily orthogonal states of the composite systemAB
(A and B are the initial and the ancillary system, respe
tively!.

Before proving the theorem, let us see an example fi
Let S5$u0&,u1&,(1/A2)(u0&1u1&)%. SinceS is not linearly
independent, states secretly chosen fromS cannot be cloned
in the sense of the cloning proposed in@6#. However, if we
have two copies of the chosen state, they can be probab
tically cloned and deleted with our machine fork52 because
u00&,u11& and (1/A2)(u0&1u1&)(1/A2)(u0&1u1&) are lin-
early independent. This shows in an alternative way that
machine is more general than Duan and Guo’s and P
cloning machines. On the other hand, whenk51, the suffi-
cient and necessary condition reduces to that of Duan
Guo’s cloning or Pati’s cloning. This example suggests t
we consider the relevancy of resources to probabilistic cl
ing. Since ‘‘uc1&

^ k1,uc2&
^ k1, . . . ,ucm& ^ k1 are linearly

independent’’ is a looser condition tha
‘‘ uc1&

^ k2,uc2&
^ k2, . . . ,ucm& ^ k2 are linearly independent’

when k1.k2, there are more states that can be clon
and deleted whenk increases. For example, for a
arbitrary presumed positive integerm, let S5$„u0&
1(m12)u1&…^ m, „2u0&1(m11)u1&…^ m, . . . , „(m12)u0&
1u1&…^ m%, we can easily check that elements inS are lin-
early dependent; thus they cannot be exac
copied by a probabilistic cloning machine of typek5m. But
if more resources are prepared, e.g., we havem11 copies of
each state, then we can do this with a machine of ty
k5m11 since „u0&1(m12)u1&…^ (m11),„2u0&1(m
11)u1&…^ (m11), . . . ,„(m12)u0&1u1&…^ (m11) are linearly
independent. This indicates that resources are essentia
probabilistic cloning. It is worth noting that resources a
irrelevant to Wootters and Zurek’s exact cloning since ide
tical or orthogonal states are required.

The proof of the theorem consists of two parts. First,
prove that if the unitary operatorU satisfying Eq.~1! exists,
then uc1&

^ k,uc2&
^ k, . . . ,ucm& ^ k are linearly independent

For an arbitrary uc j&PS, if there exist real numbers
c1

( j ) ,c2
( j ) , . . . ,cm

( j ) such that uc j&
^ k5( i 51

m ci
( j )uc i&

^ k, then
from Eq. ~1! we have

U~ uc j&
^ kuS&uP0&)5 (

n51

M1k

Apn
( j )uc j&

^ nu0& ^ (M1k2n)uPn&

1 (
l 5M1k11

N

Af l
( j )uF l&ABuPl&. ~2!

But on the other hand the linearity of quantum operatio
yields
US (
i

ci
( j )uc i&

^ kuS&uP0& D 5(
i

ci
( j )(

n
Apn

( i )uc i&
^ nu0& ^ (M1k2n)uPn&1(

i
ci

( j )(
l

Af l
( i )uF l&ABuPl&

5(
n

S (
i

ci
( j )Apn

( i )uc i&
^ nD u0& ^ (M1k2n)uPn&1(

l
S (

i
ci

( j )Af l
( i )D uF l&ABuPl&. ~3!
4-2
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Since the right-hand sides of Eqs.~2! and ~3! must be
equal, we derive( ici

( j )Apn
( i )uc i&

^ n5Apn
( j )uc j&

^ n for any n
<M1k. This implies cj

( j )51 and ci
( j )50 for iÞ j

because pk
( i ),1. So any state chosen fromS^ k

5$uc1&
^ k,uc2&

^ k, . . . ,ucm& ^ k% cannot be expressed as
linear composition of other states inS^ k; this proves that
uc1&

^ k,uc2&
^ k, . . . ,ucm& ^ k are linearly independent.

Now we need only show that the linear independence
S^ k implies the existence of the unitary operator satisfy
Eq. ~1!. Taking the overlaps of distinct input statesuc i&

^ k

and uc j&
^ k, from Eq. ~1! we have

^c i uc j&
k5 (

n51

M1k

Apn
( i )^c i uc j&

nApn
( j )1 (

l 5M1k11

N

Af l
( i ) f l

( j )

~4!

or, more briefly, a matrix equation as follows:

G(k)5 (
n51

M1k

AnG(n)An
†1 (

l 5M1k11

N

Fl , ~5!

where G(k)5@^c i uc j&
k#m3m , An5An

†5diag(Apn
(1),

Apn
(2), . . . ,Apn

(m)) andFl5@Af l
( i ) f l

( j )#m3m .
From Lemma 1 in@5#, we know that it suffices to find

An’s and Fl ’s satisfying Eq.~5! in order to get a unitary
operatorU in Eq. ~1!. Sinceuc1&

^ k,uc2&
^ k, . . . ,ucm& ^ k are

linearly independent,G(k) is positive definite. SoG(k)

2(nAnG(n)An
† is also positive definite for small enough b

positive pn
(1) ,pn

(2) , . . . ,pn
(m) . This provides us with the re

quired An’s. Furthermore, the Hermitian matrixG(k)

2(nAnG(n)An
† can be diagonalized by a unitary matrixV as

follows:

V†S G(k)2 (
n51

M1k

AnG(n)An
†DV5diag~a1 ,a2 , . . . ,am!, ~6!

where all the$ai% are positive real numbers. We now ne
only chooseFl5V diag(g( l )1 ,g( l )2 , . . . ,g( l )m)V† such that
( lg( l ) i5ai . This completes the proof of the theorem.

In the above theorem, the failure component is separa
as the tensor of a state of the composite systemAB and a
state of the probeP. More generally, we may consider th
case where the failure component cannot be separate
such a way and it is indeed an entangled state inABP. This
leads us to extend the cloning and deleting machine t
more general one given by

Uuc i&
^ kuS&uP0&5 (

n51

M1k

Apn
( i )uc i&

^ nu0& ^ (M1k2n)uPn&

1 (
l 5M1k11

N

Acil uC l&ABP, ~7!
04232
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wherecil denotes the failure probability of remaining in th
l th failure component,uC l&ABP are orthonormal states of th
composite systemABP, and the first term has the usu
meaning. The condition

uPn&^PnuuC l&ABP50 for any n and l

must be satisfied in order to derive perfect copies of the in
states by a measurement onto the probe basis$Pn%. There are
no difficulties in generalizing the above theorem to the e
tended machine.

We now turn to deriving an upper bound for the succe
probability of multiple cloning and deleting. From Eq.~7! we
have

z^c i uc j& zk< (
n51

M1k

Apn
( i )pn

( j )z^c i uc j& zn1 (
l 5M1k11

N

Acil cjl .

~8!

Using the arithmetic-geometric average inequalityAab
< 1

2 (a1b) whena>0 andb>0, we obtain

z^c i uc j& zk<(
n

1

2
~pn

( i )1pn
( j )!z^c i uc j& zn1(

l

1

2
~cil 1cjl !

5(
n

1

2
~pn

( i )1pn
( j )!z^c i uc j& zn11

2(
n

1

2
~pn

( i )1pn
( j )!.

The last equality is derived from(npn
( i )1( lcil 51. So

1

2 (
n51

M1k

~pn
( i )1pn

( j )!~12 z^c i uc j& zn!<12 z^c i uc j& zk. ~9!

If we adopt the notation of minimum-normed distance@8#,
the bound can be expressed as

(
n51

M1k

pnD2~ uc i&
^ n,uc j&

^ n)<D2~ uc i&
^ k,uc j&

^ k), ~10!

where pn5 1
2 (pn

( i )1pn
( j )) and D2(uc i&

^ n,uc j&
^ n)52(1

2 z^c i uc j& zn) is the minimum-normed distance betweenn
copies. That is, the sum of the weighted distance between
copies of two distinct states is always bounded by
minimum-normed distance between the original states. T
result also coincides with the probabilistic cloning in@4,5#
and the cloning in@6#.

In summary, we have presented a unified way of deal
with copying and deleting of quantum states by construct
a probabilistic cloning and deleting machine that can p
form multiple cloning and deleting in a single operation. W
give a sufficient and necessary condition for our machine
successfully clone and delete. An upper bound for the s
cess probability is also derived. We still do not know wheth
this upper bound is optimal and, on the other hand, what
should point out is that the upper bound above will beco
worthless when considering only the case of deleting.
4-3
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example, if for anyipn
( i ) is zero except whenn5N where

N.k, then 1
2 (pN

( i )1pN
( j ))<(12u^c i uc j&uk)/(12u^c i zc j& zN).

SinceN,k, the right-hand side is greater than 1. So an
teresting open problem for further study would be to impro
the upper bound or even to find the optimal one.
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