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Probabilistic cloning and deleting of quantum states
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We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum
state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform
cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines pro-
posed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary
condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily
presumed number of the input states are linearly independent. This simply generalizes some results for cloning.
We also derive an upper bound for the success probability of the cloning and deleting machine.
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In quantum mechanics, one well-known fact is the no- [ 2V P =) )| Py,
cloning theoreni1,2], which asserts that, unlike in classical
world, an arbitrary unknown quantum state cannot be clone
perfectly because of the linearity of quantum operations
However, inaccurate copying is possiiig]. On the other
hand, states chosen from a linearly independent set can
probabilistically cloned by a unitary-reduction proc¢4%].
This is an impressive result, and, more interestingly, usingf’y
the cloning machine introduced [6], nonorthogonal states "
from a linearly independent set can evolve into a linear su-
perposition ofymultip?le cloning states. |¢i>|2>|Po)H21 Vo gy b0y M=),

Recently, deleting unknown quantum states was also i

found to be impossible, where “deleting” means “uncopy- hereM is th | b f £ th illa wh
ing,” that is, deleting one or more copies of the input state byV"€reM Is the total number of states of the ancilla whose

a linear trace preserving operatig]. At first glance it initial state is denoted by) andp{) is the success prob-
seems that copying and deleting should be treated separatéility of producingn exact copies ofy;). Obviously, this
since, as pointed out in Reff7], the deleting process is in- cloning machine is a generalization of that considered in
dependent of cloning. In general, deleting is not the inversé4,5], and the major distinction between them is that in the
of copying; only if copying and deleting are performed by former cloning procedures of different copies are embedded
unitary operation is it so. By a careful analysis, however, itin a single machine.

may be seen that the mechanisms of copying and deleting are On the other hand, a quantum deleting maclifievhich
quite similar. This suggests that we look for a unified way ofcan delete one of two copies and replace it with some stan-

Q/here|2) is the input state of an ancillary system, aRgl
and P; are the initial state and the final state after cloning
tg iy of the cloning apparatus, respectively. Considering the
ability of multiple cloning, the cloning process ] is given

dealing with copying and deleting of quantum states. dard statg0) is defined as
In this short note, we construct a quantum machine which,
taking several copies of an input quantum state, can output a | i) )| Po)—| )| 0)| P;).

linear superposition of multiple cloning states and multiple

deleting states. The probabilistic cloning machine of Duanp general, deleting cannot be seen as the inverse process of
and Guo[4,5] and the cloning machine of P48] can both  copying and they are independent of each other; but if they
be thought of as special cases of our cloning and deletingre performed by unitary operation then deleting is the in-
machine. What we would like to emphasize is that in ourygrse of copying. By combining ideas frop,5,7], further-
construction both the copying and deleting procedures ocCupgre, the quantum deleting machine depicted above may
in a single machine. We show that|if;) is chosen fromS  easily be extended to a probabilistic multiple deleting pro-
={|#):i=1,2,... m}, then|;)® can be probabilistically cess, which can be expressed by the following transforma-

cloned and deleted if and onlys;)®%,| )%, ... |¥m)®*  tion:
are linearly independent. We also give an upper bound for
the success probability of the quantum machine. k-1
Consider a quantum state S8t {|1),|¢), ... |¥m)} % p0>_>21 Jp@ ) en|0ye=m|p. ).
i

whose elements belong to & -dimensional Hilbert space
with Ny=m (the subscriptA is used to indicate that this is
the original system A quantum cloning proced4,5] is de- The purpose of this short note is to extend all the concepts
fined by an evolution as mentioned above in a unified way to answer the following
question: if we have several identical copies|#f), is it
possible to have a quantum superposition of the multiple
*Corresponding author. Email address: yingmsh@tsinghua.edu.dgloning and deleting states described as follows:

1050-2947/2002/68)/0423244)/$20.00 65 042324-1 ©2002 The American Physical Society



YUAN FENG, SHENGYU ZHANG, AND MINGSHENG YING PHYSICAL REVIEW A65 042324

M+k not necessarily orthogonal states of the composite syaAtem
|l//i>®k|2>|Po>—>nZl VpD |y enjoyeM+k=m|p Y (A ar)ld B are the initial and the ancillary system, respec-
- tively).

Before proving the theorem, let us see an example first.
Let S={|0),|1),(1/y/2)(|0)+|1))}. SinceSis not linearly
independent, states secretly chosen fi®oannot be cloned
in the sense of the cloning proposed[6]. However, if we

ahave two copies of the chosen state, they can be probabilis-
tically cloned and deleted with our machine for 2 because
00),[11) and (142)(|0)+|1))(112)(|0)+|1)) are lin-
early independent. This shows in an alternative way that our
machine is more general than Duan and Guo’s and Pati's
cloning machines. On the other hand, whenl, the suffi-

wherepf]') is the success probability of producing- k exact
copies or deletingk—n copies of |;) depending upon
whetherk<n=M or 1sn<k?

This cloning and deleting machine deserves a brief expl
nation. Initially, the number of existing copies pf;) is k,
and in the right-hand side of the above formula the indéx
the summation ranges from 1 td +k. For the case of 1
<n<k, the number of copies dfy;) in the corresponding
summand is smaller thaknand some copies dff;) are de-

leted for the case di=n=M +k, the number of copies of cient and necessary condition reduces to that of Duan and
|43) in the summand is greater thanand some copies of Guo’s cloning or Pati’'s cloning. This example suggests that

|4) are added; and finally for the caserfk, the number we consider the relevancy of resources to probabilistic clon-
of copies is not changed. It is clear that the cloning machine Y P

P « ®k ®k ®k ;
of Pati[6] is a special case of this machine whea 1 and, Ing. Since . 1¢1>. Ll2)* ) T are linearly
on the other hand, ip{’=0 for all n=k, our machine is in mdepeEdent WS A looser ~ condition  than
r n : )2, ) %2, L ) ©F2 are linearly independent”

fact a probabilistically deleting process that deletes one fhen k,>k,, there are more states that can be cloned

more of several copies of the input state. An extreme case ié’{nd deleted whenk increases. For example, for an
(i) — (i) — ine i : ’

that Whenpk _.1 andp, __O for aII_n;ék the machine IS arbitrary presumed positive integem, let S={(|0)

simply an identical evolution. So without loss of generality +(M+2)[1)™, (2]0)+ (m+1)[1))=™ ((m+2)|0)

(1)
we assumep,’<1. . ) . +]1))®™, we can easily check that elementsSrare lin-
As pointed out iM4-7], both ideal cloning machines and early dependent. thus they cannot be exactly

deleting ones do not exist due to the linearity of quanturrbopied by a probabilistic cloning machine of tye m. But
operations. This naturally implies the nonexistence of thes ,qre resources are prepared, e.g., we havel copies of

ideal cloning and deleting machine stated above. But the,,. state. then we can do this with a machine of type
following theorem indicates that a multiple cloning and de-) _ 4 1 ’ since  (|0)+(m+2)[1))®™ D), (2]0)+ (m

leting machine is possible if a nonzero failure probability iS+1)|l>)®(m+1) (M+2)]0)+]1))*M*D) are linearly
allowed. e

TheoremLet the state$y;) be secretly chosen from a set
S={|#),i=1,2,...m}; then |y;)®* can be probabilisti-
cally cloned or deleted by a unitary procdgsuch that

independent. This indicates that resources are essential for
probabilistic cloning. It is worth noting that resources are
irrelevant to Wootters and Zurek’s exact cloning since iden-
tical or orthogonal states are required.

M +k The proof of the theorem consists of two parts. First, we
U)X SY P = Vo@D )0 gy e (M+k=n)| p prove that if the unitary operatds satisfying Eq.(1) exists,
() ™2)Po)) nZl o 141)710) [P then |¢)®K | 4o)®X, . .. |m)®X are linearly independent.

N For an arbitrary [¢;)eS, if there exist real numbers
LS TP ) ¢ e, ... el such that|y;)®* ==, cP[y) %, then
I=M+k+1 from Eq. (1) we have
for all 1<i=m if and only if [1)®*,|2)®%, ... | gm) &K M+k

are linearly independent. U(|$j>®k|2>|po>)= 2 /pn(Ji|,/,j>®n|o>®(lvl+kfn)|pn>
In the above equatiorp!’ is the success probability of n=1

producingn—k exact copies or deleting—n copies of| ;) N

depending upon whethé<n<M or 1<n<k, p{’<1, and + S T D )aglP)). @)
ff') is the failure probability of remaining in thigh failure [=M+k+1

component.|P4),|P,), ... ,|Py) are N orthonormal basis

states of some probing devicE which belongs to an But on the other hand the linearity of quantum operations
N-dimensional Hilbert space, an®,),g are normalized but yields

O[S P21 | = IS BT I0) M Dlpy + S e VTl

=3 [ VAl )l e + 3
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Since the right-hand sides of Eq®) and (3) must be  wherec; denotes the failure probability of remaining in the
equal, we derivez;c)\p®| ) ¢"= \[pV| ;)®" for anyn  Ith failure component,¥,),gp are orthonormal states of the
<M+k. This implies c¢/’=1 and c=0 for i#j composite systenABP, and the first term has the usual
because p{’<1. So any state chosen froms®k  meaning. The condition

={|) %" )%, ... | ®K} cannot be expressed as a _
linear composition of other states Bf¥; this proves that [Pa)(Pal[¥1)agp=0  forany n and |
k k k H H
[) 5| W2) %, . .. |4hm)®* are linearly independent. must be satisfied in order to derive perfect copies of the input

L\‘QW we need only show that the linear independence oiates by a measurement onto the probe H#&sjs There are
S* implies the existence of the unitary operator satisfyingn, gifficulties in generalizing the above theorem to the ex-
Eg. (1). Taking the overlaps of distinct input states)®*  tended machine.

and|y;)®¥, from Eq. (1) we have We now turn to deriving an upper bound for the success
probability of multiple cloning and deleting. From E@) we
M+ Kk have

N
(thil )= nzl \/W<‘/fi|'//j>n Pr +I:M2+k+1 ViR M+k N
(4) [CATDIS r1§=:1 VPn'Py |<¢i|¢j>|n+l=ME+k+l VCi( Cj.
8

Using the arithmetic-geometric average inequaliffab
<1(a+b) whena=0 andb=0, we obtain

or, more briefly, a matrix equation as follows:

M+k N
cW=> AGMA'+ > F, (5) 1. 1
n=1 1=MTher | |<¢i|‘/’j>|k$§n: E(p(n')+p‘n”)l<¢i|t//;>l“+2| E(Cil+cjl)
where G(k):[<‘l/i|¢j>k]m><mv AnZAﬁzdiag(\/aP,

1 .
_ 0] (1) AL
From Lemma 1 in[5], we know that it suffices to find
An's and Fy's satisfying Eq.(5) ikn ordeli to get a uknitary S }(p(i)er(j))
operatorU in Eq. (1). Since| i) ®%,| )X, ... | ) ©* are = 2 \Fn n/
linearly independent,G® is positive definite. SoG® .
—-3,A,GMA is also positive definite for small enough but The last equality is derived from,p{’+=,c;=1. So

positive pgl) ,pﬁf), . ,pﬁm). This provides us with the re- MK
quired A,’s. Furthermore, the Hermitian matrixG®) 1 VPR TN NP T
—3,A.GMA! can be diagonalized by a unitary matkixas 2 ngl (Pn’+ P ) (A=Kl =1= [l (9)
follows:
If we adopt the notation of minimum-normed distarj&,
ek the bound can be expressed as
\al G<k>—n§l AGMWA lV=diaga;.ay, ....an), (6 Mtk

n; PaD2(| i)™ 4 EM <D2(| ) ¥, | 4) %), (10)

where all the{a;} are positive real numbers. We now need

—\ di t

;nly chose_Il_:A_—Vdlagl(g![ml,tgr;](.)z, Sof ,gf(m)\:h such that — (il )™ is the minimum-normed distance betwean
190y =8 1NIS completes the proot of the theorem. pies. That is, the sum of the weighted distance between
In the above theorem, the failure component is separate%iO S L )

as the tensor of a state of the composite sysédBnand a coples of two d'St'.nCt states Is alwhays _bqur1|ded by t?}?

state of the prob@. More generally, we may consider the minimum-normed distance between the original states. This

case where the failure component cannot be separated {ﬁsu“ also coincides with the probabilistic cloning[#5]

such a way and it is indeed an entangled stat@&p. This an(ljntrslﬁrﬁlr(r)lr::rn X \;vr{e6]ﬁave resented a unified way of dealin
leads us to extend the cloning and deleting machine to Y: P y 9

more general one given by

where p,=3(pY’+p{’) and D2(|y)*" )M =2(1

Q

with copying and deleting of quantum states by constructing
a probabilistic cloning and deleting machine that can per-
form multiple cloning and deleting in a single operation. We
M+k give a sufficient and necessary condition for our machine to

U|¢i>®k|2>|p0>: E \/Eﬂ ¢i>®”|0>®(M+k_”)|Pn> successfully clone and delete. An upper bound for the suc-
n=1 cess probability is also derived. We still do not know whether

N this upper bound is optimal and, on the other hand, what we

_ should point out is that the upper bound above will become

Jr|=|v|§+:k+1 \/C—"|\P'>ABP’ @ worthless when considering only the case of deleting. For
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example, if for anyipﬂ) is zero except whem=N where This work was supported by the National Foundation for
N>k, then 3(pQ+p1)=< (21— (vl /(1= |(ly)|V).  Distinguished Young ScholaréGrant No. 69725004 the
SinceN <Kk, the right-hand side is greater than 1. So an in-National Key Project for Basic ResearctGrant No.
teresting open problem for further study would be to improvel998030508 and the National Foundation of Natural Sci-
the upper bound or even to find the optimal one. ences(Grant No. 69823001
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