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Abstract

Communication complexity of XOR functions f(x ⊕ y) has attracted increasing attention
in recent years, because of its connections to Fourier analysis, and its exhibition of exponen-
tial separations between classical and quantum communication complexities of total functions.
However, the complexity of certain basic functions still seems elusive especially in the private-
coin SMP model. In particular, an exponential gap exists between quantum upper and lower
bounds for deciding whether x and y have Hamming distance at least d, despite the sequence
of related efforts [GKdW04, HSZZ06, ZS09] since Yao asked it as an open question [Yao03]. In
this paper we resolve this question by providing optimal randomized and quantum protocols.

We then apply the result and show efficient protocols for all symmetric XOR functions and
linear threshold functions, answering an open question in [LLZ11] and another one in [MO10].
Finally, we consider matrix functions and show upper bounds for the matrix rank decision
problem; the public-coin randomized SMP result matches the quantum two-way lower bound in
[SW12].

Motivated from data sketching applications, we aim at efficiency of computation besides
communication. Our protocols for the matrix rank decision problem are computationally effi-
cient in the classical setting, and other protocols are computationally efficient if Alice and Bob
have quantum computers or non-uniform classical circuits. The main techniques used in our
protocols are compressed sensing, and the Bose-Chowla theorem from combinatorial number
theory. To the best of our knowledge, this is the first time that these two techniques are applied
to communication complexity, in which we believe that more applications could be found.
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1 Introduction

Communication complexity Communication complexity studies the minimum amount of com-
munication needed for a computation task with input variables distributed to two or more parties.
Since the seminal work [Yao79], communication complexity has attracted a great deal of atten-
tion mainly because of its connections to many other computational settings. Various modes of
computation are studied, including deterministic, randomized and quantum, whose corresponding
communication complexities are denoted by D, R, Q, respectively. For randomized and quantum
communication protocols, it is often allowed to have a small error probability ε. The error bound
ε is specified by a subscript, and usually omitted if ε = 1/3. Different communication models
are also investigated, such as two-way (Alice and Bob send messages back and forth), one-way
(Alice sends one message to Bob) and SMP (Alice and Bob each send one message to a third party
Referee) models. In the randomized and quantum models, Alice and Bob may share public random-
ness or quantum entanglement, indicated by superscripts pub and ∗, respectively. One also uses
superscripts “1” or “‖” to specify that the communication model is one-way or SMP, respectively.

An important class of functions is that of XOR functions: F (x, y) = f(x⊕ y) for some function
f on {0, 1}n. On one hand, the functions have the obvious symmetry across all rows (and all
columns) of the communication matrix MF = [F (x, y)]x,y, which can indeed be used to show some

results. For example, the rank of the communication matrix Mf◦⊕ is nothing but ‖f̂‖0, the number

of nonzero Fourier coefficients. The logarithm of an approximate version of ‖f̂‖1 serves as a lower
bound of Q(f ◦ ⊕) [LS09]. On the other hand, we still do not know how to use the structure to
derive more results in communication complexity, especially in designing efficient protocols. For
example, the notorious logrank conjecture, even restricted to XOR functions, still remains unsolved
despite recent efforts [ZS09, MO10, KS13, TWXZ13], and communication complexity for some very
basic functions such as Hamming Distance is still unknown in some models.

Data sketching The SMP model has an intimate relation to data sketching in computation over
massive data sets, where a data set is partitioned and distributed to two or more parties. Each
party computes a compressed “sketch” of the stored data, and then sends it to a central processing
unit that uses only the sketches to complete certain tasks. This corresponds well to the SMP model
in communication complexity, except that it requires not only communication efficiency but also
computational efficiency, for all parties and the central processing unit.

Like in communication complexity, data sketching also has public-coin and private-coin variants.
The private-coin model is of interest because public randomness is not always available in practical
applications. Even if it is, the public randomness may be accessed by an adversary with the aim to
attack the system [MNS11]. For example, sometimes the data input is given by the adversary, who
knows the public randomness in advance; in this case, the adversary can assign the input for which
the randomness gives the wrong answer. See [MNS11] for a more detailed review of the public-coin
model and an introduction to the private-coin model with some results on specific functions (which
are actually also XOR functions).

In view of the connection to data sketching, we want to design communication and time efficient
protocols in SMP models, in both public-coin and private-coin variants, with an emphasis on the
latter. In this paper, we will show a number of protocols that are efficient in both communication
and computation. The communication costs in most of our protocols match known lower bounds
for communication complexity even without the computational limit.

Next we explain our results in more details. (Also see Appendix A for a tabular summary.)
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Hamming Distance and symmetric functions One function of particular interest is Hamming
Distance, denoted Hamn,d, which decides whether the two given n-bit strings differ at less than d
locations. When d = 1, the function becomes Equality function, one of the most studied functions
in communication complexity in all models [Yao79, NS96, Amb96, BK97, BCWdW01].

Previous results on Hamn,d are summarized as follows. For lower bounds, even quantum two-
way protocols with shared entanglement need Ω(d)-qubits of communication [HSZZ06]; for upper
bounds, if public coins are available, there are randomized SMP protocols with O(d log d) bits
[HSZZ06], improving upon previous results [Yao03, GKdW04]. Therefore all the communication
complexities are pinned down (up to a small factor of log(d)), except in the private-coin SMP
model, at which we now take a closer look. For R‖(Hamn,d), the best known lower bound is

Ω(
√
n), obtained by a simple reduction to the Equality function whose complexity R‖ is known

to be Θ(
√
n). The best known upper bound for R‖(Hamn,d) is O(

√
nd log d), by a folklore result

R‖(F ) = O(
√
n·R‖,pub(F )). For the quantum setting, the best known upper bound is 2Õ(d), obtained

by applying a general transformation Q‖(F ) = 2O(R‖,pub(F )) log n ([Yao03]). Closing the exponential
gap between lower and upper bounds for Q‖(Hamn,d) was an open question asked by Yao [Yao03],

and [LLZ11] also asked about R‖(Hamn,d).
In this paper, we completely pin down both randomized and quantum communication complex-

ities of Hamn,d in the private-coin SMP model (up to a log factor). To our surprise, the dependence
of the classical complexity on d is only additive.

Theorem 1. The randomized and quantum communication complexities for Hamn,d in the private-
coin SMP model are tightly bounded as follows.

Ω(
√
n+ d) ≤ R‖(Hamn,d) ≤ O(

√
n+ d log n), Ω(d) ≤ Q‖(Hamn,d) ≤ O(d log n).

In addition, the quantum upper bound can be achieved by a protocol with encoding and decoding
both in poly(n) time. The classical upper bound can be achieved with encoding and decoding by a
non-uniform family of circuits of poly(n) size.

Apart from the fact that Hamming distance is a fundamental concept, understanding of the
communication complexity of Hamn,d turns out to be crucial to study the class of symmetric XOR
functions. Suppose that f(z) = D(|z|) for some function D : {0, 1, . . . , n} → {0, 1}. Define r0 and
r1 to be the minimum integers such that r0, r1 ≤ n/2 and D(k) = D(k + 2) for all k ∈ [r0, n− r1);
set r = max{r0, r1}. It was proven in [ZS09] that Ω(r) ≤ Q∗(f ◦ ⊕) ≤ R(f ◦ ⊕) ≤ Õ(r) and
R1(f ◦ ⊕) = Õ(r2). The last bound was further improved in [LLZ11] which shows that even
R‖,pub(f ◦ ⊕) = O(r log3 r/ log log r), leaving the private-coin SMP complexity, both randomized
and quantum, as an open question. In this paper, we answer it by showing (almost) tight bounds
for both complexities. We also slightly improve the upper bound for R‖,pub(f ◦ ⊕) when r is large.

Theorem 2. For any symmetric function f : {0, 1}n → {0, 1},

Ω(r) ≤ R‖,pub(f ◦ ⊕) ≤ O(r log n), Ω(
√
n+ r) ≤ R‖(f ◦ ⊕) ≤ O(

√
n+ r log n),

Ω(r) ≤ Q‖(f ◦ ⊕) ≤ O(r log n).

In addition, the quantum upper bound can be achieved by a protocol with encoding and decoding
both in poly(n) time. The classical upper bound can be achieved with encoding and decoding by a
non-uniform family of circuits of poly(n) size.
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Two remarks about the theorem: First, in [Yao03], Yao also asked whether Q‖(F ) = O(R‖,pub(F ) log n)
for all Boolean functions F . Though we could not answer the question in its full generality, the
above theorem does confirm it for all symmetric XOR functions. Second, the upper bounds in the
theorem actually hold even if f is not symmetric on strings with Hamming weight smaller than r0
or larger than n−r1: f can take arbitrary values on those strings, and our protocols still work with
the same complexity. This naturally leads to question of what can be said about non-symmetric
functions. We next extend our study to beyond the scope of symmetric functions.

Linear threshold functions The first class of non-symmetric functions that we study contains
linear threshold functions (LTF), which can be viewed as an extension of the Hamming Distance
function by allowing different weights on different variables. To be more precise, a linear threshold
function f : {0, 1}n → {0, 1} with weights {wi} and threshold θ is defined by f(z) = 1 iff

∑
iwizi ≥

θ. Define the margin m to be the smallest gap between θ and the possible weighted summation:
mb = minz:f(z)=b |

∑
iwizi − θ|, and let m = min{m0,m1}. Montanaro and Osborne studied the

public-coin communication complexity of LTFs in the SMP model, and proved that R‖,pub(f ◦⊕) =
O((θ/m)2). The authors asked whether the bound can be improved to Õ((θ/m)). In this paper, we
answer this affirmatively by showing that R‖,pub(f ◦ ⊕) = O((θ/m) log n). Furthermore, the same
bound holds for the private-coin SMP model as well, if quantum messages are used.

Theorem 3. For any LTF f of threshold θ and margin m, we have that

Q‖(f ◦ ⊕) = O
( θ
m

log n
)
, R‖,pub(f ◦ ⊕) = O

( θ
m

log n
)

and R‖(f ◦ ⊕) = O
( θ
m

log n+
√
n
)
.

In addition, the quantum upper bound can be achieved by a protocol with encoding and decoding
both in poly(n) time. The classical upper bound can be achieved with encoding and decoding by a
non-uniform family of circuits of poly(n) size.

Matrix functions The second class of functions that we study beyond symmetric functions are
those on matrices. The input is an n×n matrix and the functions are invariant to row and column
permutations, but not arbitrary permutations of all entries, thus it contains less symmetries than
the aforementioned symmetric XOR functions. A typical example is the rank decision function.
Define function F-rankn,r : Fn×n → {0, 1} by F-rankn,r(X,Y ) = 1 iff the matrix X + Y has rank
less than r, where the rank and the summation X+Y are both over F. When F = F2, the function
is an XOR function.

In [SW12], Sun and Wang studied the communication complexity of deciding whether X + Y
is full rank, where the input and computation are over Fp. They showed a tight quantum lower
bound of Ω(n2 log p), which also implies a quantum lower bound of Ω(r2 log p) for Fp-rankn,r.
In this paper, we show that this bound is tight, and can be achieved even by randomized SMP
protocols with public coins. For private-coin SMP models, we give upper bounds as follows. Note
that thanks to the explicit and efficient compressed sensing for low-rank matrices in [FS12], we can
have computational efficiency in both quantum and classical cases.

Theorem 4. For f = Fq-rankn,r, D(f◦+) = Θ(n2 log q), and the public-coin randomized and quan-
tum communication complexities in two-way, one-way, SMP models are all of the order Θ(r2 log q).
For the SMP private-coin complexities, we have

Ω(n
√

log q + r2 log q) ≤ R‖(f ◦+) ≤ O(nr log q + n log n),
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Ω(r2 log q) ≤ Q‖(f ◦+) ≤ min{qO(r2), O(nr log q + n log n)},

and the protocols can be constructed explicitly with poly(n) encoding and decoding time, with com-
munication slightly increased to R‖ = O(nr log(q + n)) and Q‖ = min{qO(r2), O(nr log(q + n))}.

Techniques The main techniques used in our protocols are compressed sensing and the Bose-
Chowla theorem from combinatorial number theory. To the best of our knowledge, this is the
first time that these two techniques are applied to communication complexity. It seems to us that
these two techniques are particularly useful for designing protocols with both computational and
communication efficiency, and we believe that they will find more applications in communication
protocol designing.

Compressed sensing is usually used to recover sparse vectors and low rank matrices over R. Our
task is to recover sparse vectors and low rank matrices over finite fields. For low rank matrices over
finite field, explicit and efficient schemes were discovered very recently [FS12]. For sparse recovery,
unfortunately, to the best of our knowledge, there is no explicit and efficient construction known;
existing schemes [BDF+11, DeV07, HAN10, Ind08] all need significantly more than O(k log n). 1

2 Preliminaries and notation

For an n-bit string x ∈ {0, 1}n, we use |x| to denote its Hamming weight, namely the number of
1’s. For a matrix M ∈ F2

m×n, denote ker(M) the kernel, namely the subspace of F2
n mapped to

0 by M . Denote the image space of M by Im(M).
A function F (x, y) on {0, 1}n × {0, 1}n is an XOR function if F (x, y) = f(x ⊕ y) for some

function f on n-bit strings, where x ⊕ y is the bit-wise XOR of x and y. An XOR function is
symmetric if f is symmetric, namely f(z) depends only on the number of 1’s in z, or equivalently,
f(z) = D(|z|) for some function D : {0, 1, . . . , n} → {0, 1}. Define r0 and r1 to be the minimum
integers such that r0, r1 ≤ n/2 and D(k) = D(k+2) for all k ∈ [r0, n−r1); set r = max{r0, r1}. By
definition, D(k) depends only on the parity of k when k ∈ [r0, n−r1). Suppose D(k) = T (Parity(k))
for k ∈ [r0, n− r1).

An important symmetric XOR function is the Hamming Distance function, defined as follows.
Hamn,d(x, y) = 1 if |x⊕ y| < d and Hamn,d(x, y) = 0 if |x⊕ y| ≥ d.

The class of linear threshold functions (LTF) contains those f : {0, 1}n → {0, 1} defined by
f(z) = 1 if

∑
iwizi ≥ θ and f(z) = 0 if

∑
iwizi < θ, where {wi} are the weights and θ is the

threshold. Define W0 = maxz:f(z)=0

∑
iwizi and W1 = minz:f(z)=1

∑
iwizi, and define m0 = θ−W0

and m1 = W1 − θ. The margin of f is m = max{m0,m1}. Note that the function remains the
same if {wi} are fixed and θ varies in (W0,W1]. Thus without loss of generality, we can assume
that θ = (W0 +W1)/2, in which case m0 = m1 = m.

We will use the following communication complexity results.

Theorem 5 (Babai-Kimmel, [BK97]). R‖(f) = Ω
(√

D‖(f)
)

.

Lemma 6 (Forklore). R‖(f) = O
(√
n · R‖,pub(f)

)
.

1Actually, [FS12] also gives a general (and efficient) transform from sparse recovery to low rank recovery, so if
there were efficient sparse recovery schemes, their technical construction of low rank discovery would have been a
simple corollary.
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Theorem 7 (Yao, [Yao03]). Q‖(f) = 2O(R‖,pub(f)) log n.

For the last theorem, while the original paper only stated the result for total functions f , it is
not hard to verify that the transformation (from a public-coin randomized protocol to a private-
coin quantum protocol) works for partial functions as well, and the transformation is explicitly
constructed. Similarly, Lemma 6 also applies to partial functions.

3 Communication and computation efficient protocols for the Ham-
ming Distance problem

In this section, we shall show two efficient protocols for the Hamn,d problem. Assume that d = o(n);
otherwise the lower bound already gives Q∗(Hamn,d) = Θ(n). Both protocols need to break the
problem into two promise problems

Hamn,d|2d(x, y) =

{
1 if |x⊕ y| < d

0 if |x⊕ y| > 2d
, Hamn,d,2d(x, y) =

{
1 if |x⊕ y| < d

0 if d ≤ |x⊕ y| ≤ 2d
.

In an SMP protocol, the players run protocols for these two promise problems. If the answer to
Hamn,d|2d(x, y) is 0, then Referee outputs 0. Otherwise Referee outputs the result of the protocol
for Hamn,d,2d(x, y). A case-by-case analysis (dividing possible inputs into cases of |x ⊕ y| ≤ d,
d < |x⊕ y| ≤ 2d, |x⊕ y| ≥ 2d) gives the correctness of the protocol.

It is shown in [HSZZ06] that R‖,pub(Hamn,d|2d) = O(1), and the general transformations from
randomized public-coin SMP protocol to randomized and quantum private-coin protocols (Lemma
6 and Theorem 7, respecitvely) can be applied on it to get randomized and quantum private-coin
protocols, thereby showing

R‖(Hamn,d|2d) = O(
√
n), Q‖(Hamn,d|2d) = O(log n).

Therefore, both upper bounds in Theorem 1 are established as long as we can prove that

R‖(Hamn,d,2d) = O(d log n).

We will give two protocols for R‖(Hamn,d,2d) in the next two subsections, both actually accom-
plishing a more difficult mission of computing the entire string x ⊕ y (under the condition that
|x ⊕ y| ≤ 2d) rather than just computing its Hamming weight. In addition, both protocols are
actually deterministic. Thus for the original problem Hamn,d, all the randomized or quantum parts
in the corresponding optimal protocols are actually in distinguishing |x⊕ y| ≤ d and |x⊕ y| > 2d.

3.1 Protocol for D‖(Hamn,d,2d) using compressed sensing

We first give a protocol that is simple, but computationally inefficient. It has m strings r1, ..., rm,
each of n bits, to be specified later. The protocol is as follows.

1. Alice: Send E(x) = (〈x, r1〉, ..., 〈x, rm〉).
2. Bob: Send E(y) = (〈y, r1〉, ..., 〈y, rm〉).
3. Referee: Decode (x⊕ y) from E(x⊕ y) = E(x)⊕ E(y).
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Now we analyze the protocol, during the process of which we will also determine r1, ..., rm. For
Referee to be able to recover x ⊕ y from E(x ⊕ y), one needs that all strings z ∈ {0, 1}n with
Hamming weight at most k = 2d have different codewords E(z). Thus it is enough to show that
all nonzero strings z ∈ {0, 1}n with Hamming weight at most 2k have nonzero E(z). We will show
the existence of such ri’s by a probabilistic argument. Consider choosing ri uniformly at random,
then for any nonzero z ∈ {0, 1}n, the probability of E(z) = 0 is exactly 2−m. Now a union bound
gives

Pr[∃z with |z| ≤ 2k s.t. E(z) = 0] ≤
2k∑
i=1

(
n

i

)
2−m

which is strictly smaller than 1, if m > ck log n for some constant c (recall that k = 2d = o(n)). So
there exists a fixed choice of (r1, ..., rm) for Alice and Bob to use in the deterministic protocol.

Though the protocol achieves the optimal communication complexity, it is not explicit and not
computationally efficient: The ri’s are not explicitly given, and Referee needs to check a whole list
of
∑2k

i=1

(
n
i

)
codewords of all possible low-weight strings, to decode x ⊕ y. If d = ω(1), then this

decoding cannot be done in poly(n) time.

3.2 Protocol for D‖(Hamn,d,2d) using Bose-Chowla theorem

In this section, we will give a protocol which achieves the optimal communication complexity and
is computationally efficient. We will need the following theorem in combinatorial number theory.

Theorem 8 (Bose and Chowla, [BC62]). For any prime p and integer n > 0, we can find q = pn

strictly positive integers d1, d2, . . . , dq, each less than qk, such that the sums

di1 + di2 + · · ·+ dik mod (qk − 1)

for all possible 1 ≤ i1 ≤ i2 · · · ≤ ik ≤ q are distinct.

Now we explain how to use this theorem to give a protocol Pk that can compute x ⊕ y using
k log n bits, when given a promise that |x⊕ y| ≤ k. This would then give a deterministic protocol
for Hamn,d,2d(x, y) using only O(d log n) bits. The protocol is as follows. Fix an integer q ∈ [n, 2n)
s.t. q is a power of 2.

1. Alice: Send |x|, and Hx =
∑

i:xi=1 di mod (qk − 1) to Referee.

2. Bob: Send |y|, and Hy =
∑

i:yi=1 di mod (qk − 1) to Referee.

3. Referee: Use the messages from Alice and Bob to exactly recover x⊕ y.

The last step is not fully specified, but the decoding will be clear from the proof of the following
theorem (the proof is deferred to Appendix B).

Theorem 9. The protocol Pk always computes x⊕y correctly with O(k log n) bits of communication.
The computation on all parties can be implemented in polynomial time on a quantum computer,
and by a non-uniform family of classical circuits of size poly(n).

4 Applications to symmetric XOR functions and LTFs

In this section, we apply the efficient protocols for the Hamn,d problem in the last section to solve
more general classes of functions. The first class contains all symmetric XOR functions, addressed
in Section 4.1. The second class contains linear threshold functions, addressed in Section 4.2.
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4.1 Symmetric XOR functions

In this section we prove Theorem 2. Recall that when |x⊕y| ∈ [r0, n−r1), f(x⊕y) = T (Parity(x⊕y))
for some function T which depends only on the parity of number of 1’s in x ⊕ y. The protocol
P(f, r) is described as follows.

1. Run the best protocol for Hamn,r0 on input (x, y), and one for Hamn,r1+1 on input (x̄, y).

2. Run the deterministic protocol Pr0 on input (x, y), and Pr1 on input (x̄, y).

3. Alice and Bob also send Parity(x) and Parity(y), respectively.

4. if the outcomes of Step 1 imply that |x⊕ y| < r0 or |x⊕ y| = n− |x̄⊕ y| ≥ n− r1
5. Apply f on x⊕ y computed in Step 2.

6. else

7. Output T (Parity(x)⊕ Parity(y)).

The correctness of the protocol follows from that of individual protocols it uses, and we omit
details here. The communication cost also depends on the inner protocols. More specifically, for
public-coin randomized protocol, the three communication steps take O(d log d), O(d log n) and
O(1) bits, respectively, thus the overall cost is O(d log n). For private-coin randomized protocol,
the three communication steps take O(

√
n + d log n), O(d log n) and O(1) bits, respectively, thus

the overall cost is O(
√
n + d log n). For private-coin quantum protocol, the three communication

steps take O(d log n), O(d log n) and O(1) bits, respectively, thus the overall cost is O(d log n). This
proves the upper bounds in Theorem 2.

4.2 Linear threshold functions

Recall that a linear threshold function f : {0, 1}n → {0, 1} with weights {wi} and threshold θ is
defined by f(z) = 1 if

∑
iwizi ≥ θ and f(z) = 0 otherwise. Also recall from Section 2 that θ can

be assumed to be the middle point of the closest pair of inputs with different function values, and
the margin is half of their distance.

We will first show that all the weights wi can be assumed to be at least the margin m. For a
string z ∈ {0, 1}n and a subset S = {i1, . . . , is} ⊆ [n] with i1 < · · · < is, the restriction of z on S is
zS = zi1 . . . zis . (The proof is deferred to Appendix B.)

Lemma 10. For any LTF f of n variables with weights {wi : i ∈ [n]}, threshold θ and margin m,
we can select a subset S ⊆ [n] s.t. the LTF f ′ on variables zS with the same weight {wi : i ∈ S}
and threshold θ, has the new margin m′ ≥ m and weights wi ≥ m for all i ∈ S, and f ′ is consistent
with f in the strong sense that f ′(zS) = f(z), for all z.

Next we will use a fact in [MO10] about the random projections in F2.

Lemma 11 (Montanaro and Osborne, [MO10]). For any z ∈ {0, 1}n, if we draw a random variable
r ∈ {0, 1}n by picking the i-th bit to be 1 with probability pi = (1 − (1 − 1

θ )wi)/2, then E[〈r, z〉] =

(1− (1− 1
θ )

∑
i wizi)/2, where the inner product is over F2.

Now we are ready to prove Theorem 3.
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Proof. By Lemma 10, we get a function f ′ and a set S with all weights wi ≥ m for i ∈ S.
The protocol is designed for f ′, which also gives the correct answer to f . Similar to the one
for symmetric XOR functions, the protocol breaks the inputs into two cases by two thresholds
θ and 2θ. Define f ′θ|2θ(zS) = 1 if w(zS) < θ and f ′θ|2θ(zS) = 0 if w(zS) > 2θ. First, it is not

hard to see that R‖,pub(f ′θ|2θ) = O(1). Actually, if f ′θ|2θ(zs) = 0, then w(zS) > 2θ and thus

Pr[〈r, zS〉] > (1− (1− 1/θ)2θ)/2, and if f ′θ|2θ(zS) = 1, then Pr[〈r, zS〉] < (1− (1− 1/θ)θ)/2. Since
there is a constant gap between the two bounds, we can use constant samples to estimate the value
Pr[〈r, zS〉] to distinguish these two cases, as long as public coins are available to get the r’s. By
Lemma 6 and Theorem 7, we know that R‖(f ′θ|2θ)) = O(

√
n) and Q‖(f ′θ|2θ)) = O(log n).

Now we assume that w(zS) ≤ 2θ. Then∑
i∈S

zi ≤
∑

i∈S wizi

mini∈S wi
≤
∑

i∈S wizi

m
≤ 2θ

m
,

where in the second inequality we used Lemma 10. Thus we can use the randomized private-
coin protocol for Hamming Distance, with promise that zS = xS ⊕ yS has Hamming weight at
most 2θ/m, to completely pin down zS , which also gives us f ′(zS) = f(z). This part can be
done by deterministic communication of O( θm log |S|) = O( θm log n) bits. Putting the two parts
of communication cost together, we get the desired bounds. The computational efficiency follows
from that of the protocol for D‖(Hamn,d,2d) using the Bose-Chowla theorem.

5 Communication complexity for functions on matrices

In this section we study the rank decision function. Recall that Fq-rankn,d is the function defined
by F-rankn,r(X,Y ) = 1 if rank(X + Y ) < r and F-rankn,r(X,Y ) = 0 otherwise. In Appendix B.3,
we show tight lower bound for deterministic communication complexity.

5.1 Public-coin randomized communication complexity

Theorem 12. R‖,pub(Fq-rankn,r) = O(r2 log q).

Proof. The protocol P(r) is given as follows.

1. Alice and Bob use public coins to sample k random matrices L1, · · · , Lk ∈ Fqr×n and k random
matrices R1, · · · , Rk ∈ Fqn×r uniformly and independently, where k = O(1) is specified later.

2. Alice sends LiXRi, i = 1, · · · , k to Referee.

3. Bob sends LiY Ri, i = 1, · · · , k to Referee.

4. Referee checks the values rank(LiXRi +LiY Ri), i = 1, · · · , k. If all these values are less than
r, output “1”; otherwise output “0”.

Correctness Let Z = X + Y . If rank(Z) < r, then rank(LiXRi + LiY Ri) = rank(LiZRi) < r
for all i = 1, · · · , k for sure. We claim that if rank(Z) ≥ r, then all matrices LiZRi have rank
at least r with a constant probability. Indeed, for each i, rank(ZRi) = r if and only if the r
columns of Ri are linearly independent and all outside ker(Z). Since rank(Z) ≥ r, we have that
rank(ker(Z)) ≤ n− r. Thus the probability that the r columns of Ri are linearly independent and
all outside ker(Z) is
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qn − qn−r

qn
qn − qn−r+1

qn
· · · q

n − qn−1

qn
>
∞∏
i=1

(1− q−i) def
= c(q), (1)

where c(q) > 1/4 is a constant for all q. Using the same argument for Li(ZRi), we have that
conditioned on rank(ZRi) = r, the probability that rank(LiZRi) = r is also greater than c(q).
Thus

Pr(rank(LiZRi) = r) ≥ c(q)2 > 1/16. (2)

By setting k = 160, we have that with probability 1− e−10, at least one of rank(LiXRi + LiY Ri)
is r. This completes the proof for the correctness.

Cost The communication cost of the protocol is 2k = O(1) times the length of a message LiXRi,
which has r2 entries each from Fq. Thus the total communication cost is O(r2 log q). The compu-
tational cost is clearly poly(n).

5.2 Private-coin SMP

We first give a randomized private-coin SMP protocol which is simpler to understand but not
explicit or efficient.

Theorem 13. R‖(Fq-rankn,r) = O(rn log q + n log n).

Proof. Let m = 4rn. Fix any linear error correction code E2 : Fqn×n → 100n2 with constant error
tolerance. The protocol is as follows, where the matrices Ri ∈ Fqn×n are to be determined later.

1. Alice: Send E1(X) = (〈X,R1〉, ..., 〈X,Rm〉), a random subset I ⊆ [100n2] of size |I| = 100n,
and E2(X)|I .

2. Bob: Send E1(Y ) = (〈Y,R1〉, ..., 〈Y,Rm〉), a random subset J ⊆ [100n2] of size |J | = 100n,
and E2(Y )|J .

3. Referee:

(a) Find a Z with rank(Z) < r satisfying E1(Z) = E1(X) + E1(Y ).

(b) if such Z does not exist, then output “rank(X + Y ) ≥ r”.

(c) else if I ∩ J = ∅ then output “Fail”

(d) else if E2(X)|I∩J + E2(Y )|I∩J = E2(Z)|I∩J
(e) output “rank(X + Y ) < r”

(f) else output “rank(X + Y ) ≥ r”.

The analysis follows the same line as that of the compressed sensing protocol for Hamn,k, except

that the number of n × n matrices over Fq of rank at most 2r is at most 2rq4rn−(2r2 ), the bound
given in the proof of Theorem 18. Thus by taking m = 4rn, there exists r1, . . . , rm s.t. E1(X) 6= 0
for all matrices X ∈ Fqn×n with rank at most 2r.

For the correctness of the whole protocol, note that conditioned on rank(X + Y ) < r, we have
Z = X + Y , and the Equality test also passes. If rank(X + Y ) ≥ r, then since the output Z has
rank(Z) < r, we know that Z 6= X+Y , and thus the Equality test fail with high probability. Indeed,
by Birthday Paradox, |I ∩ J | > 0 with high probability, and the locations in I ∩ J are uniformly at

9



random. Thus by the property of error correction code of E2, E2(X)|I∩J +E2(Y )|I∩J 6= E2(Z)|I∩J
with high probability.

The communication cost: The compressed sensing part takes O(rn log(q)), and the Equality
testing part takes O(n log n+ n log(q)), so overall the complexity is O(rn log(q) + n log n).

The protocol is computationally inefficient. Fortunately, for low-rank matrix recovery, there is
computationally efficient compressed sensing available.

Construction 1 : Let n ≥ r ≥ 1. Let K be an extension of Fq such that g ∈ K is of order ≥ n.
Let Dk,l ∈ Kn×n be the matrix defined by (Dk,l)i,j = glj if i + j = k, and (Dk,l)i,j = 0 otherwise.
Define Dr = {Dk,l}0≤k≤2n−2, 0≤l<r, and D′r = {Dk,l}0≤k≤2n−2, 0≤l<min{r,k+1,2n−(k+1)}.

Theorem 14 (Forbes-Shpilka, [FS12]). Let 1 ≤ r ≤ n/2, then D′2r (from Construction 1) of
size O(nr) can be computed in poly(n) time, and there is an algorithm which can recover every
X ∈ Kn×n with rank(X) ≤ r exactly from {〈X,Di〉 : Di ∈ D′2r} in poly(n) time.

Further, the above result can be extended to any field Fq.
Theorem 15 (Forbes-Shpilka, [FS12]). Let 1 ≤ r ≤ n. Over any field Fq, there is an explicit set of
parameters Mi ∈ Fn×n, i = 1, . . . ,m = O(nrmax{logq n, 1}), which can be constructed in poly(n)
time, and there is an algorithm which can exactly recover every matrix X ∈ Fn×n with rank(X) ≤ r
from (〈X,M1〉, . . . , 〈X,Mm〉) in poly(n) time.

We can replace the compressed sensing part by the new measurements provided by the above
theorem, thus achieving the computational efficiency.

The quantum upper bounds in Theorem 4 can be obtained by combining the randomized upper
bounds, and the qO(r2) upper bound obtained by a simple application of Theorem 7 and Theorem
12. This completes the proof of Theorem 4.

6 Adversarial model and concluding remarks

Last, we consider the adversarial model as in [MNS11], and obtain efficient protocols for Hamn,d

with bounded soundness error, perfect completeness and recovery, sketch size Õ(
√
n + d), update

time Õ(1) and communication complexity Õ(d). The sketch size can be reduced to Õ(d) if using
quantum protocols. We also obtain protocols for rankn,r with similar parameters except for sketch
size and communication complexity, which change to Õ(nr). Due to space limit, the description of
the model and the results in it are deferred to Appendix C.

Techniques. This paper uses compressed sensing or Bose-Chowla theorem to solve three open
questions in a simple and unified way. We hope that this is preferred to the hypothetical situation
that three complicated and different methods are used to solve them.

Why care rankn,r? In the investigation of the Hamn,d problem, which had an exponential
gap between lower and upper bounds before the present paper, the effort to close the gap led to
the discovery of the application of compressed sensing to communication protocols designing. The
most prominent open question left in this paper is the randomized and quantum private-coin SMP
complexity for the rankn,r problem. Further study this function is called for, not only because it is
a natural extension of the singularity property studied in [SW12], but also for the following reason.
It seems that quantum fingerprint, the seemingly only known technique to design quantum private-
coin SMP protocols [BCWdW01, Yao03], is not enough to exponentially improve the quantum
upper bound. Efforts to close the gaps for rankn,r may hopefully stimulate new techniques for
both randomized and quantum protocols designing.
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A Summary of results in a table

Our results on the communication complexity part are summarized in Table 1.

B Proofs

B.1 Proof of Theorem 9

Proof. Let A := {i : xi = 0, yi = 1}, B := {j : xj = 1, yj = 0}, then we have

|y| − |x| = |A| − |B|, |A|+ |B| ≤ k, (3)

and
Hy −Hx =

∑
i∈A

di −
∑
j∈B

dj mod (2k − 1). (4)

The correctness of the protocol is guaranteed if we can prove the following claim.

12



function previous bounds our results

Hamn,d
Ω(
√
n+ d) ≤ R‖ ≤ Õ(

√
nd)

Ω(d) ≤ Q‖ ≤ 2Õ(d)

R‖ = Θ̃(
√
n+ d),

Q‖ = Θ̃(d)

symmetric XOR
Ω(
√
n+ r) ≤ R‖ ≤ Õ(

√
nr)

Ω(r) ≤ Q‖ ≤ 2Õ(r)

R‖ = Θ̃(
√
n+ r),

Q‖ = Θ̃(r)

LTF R‖,pub = O((θ/m)2))
Q‖, R‖,pub = Õ(θ/m)

R‖ = Õ(θ/m+
√
n)

rankn,r over Fq Q = Ω(r2 log q)

Q,Q1,R,R1,Q‖,pub,R‖,pub = Θ(r2 log q),

Ω̃(n+ r2) ≤ R‖ ≤ Õ(nr)

Ω̃(r2) ≤ Q‖ ≤ min{qO(r2), Õ(nr)}

Table 1: Summary of our results on communication complexity

Claim 1. A and B are uniquely determined by |x|, |y|, Hx, Hy.

Suppose there are two pairs (A,B), and (A′, B′) both satisfy Eq.(3) and (4), then we have

|A| − |B| = |A′| − |B′| = |y| − |x|, |A|+ |B| ≤ k, |A′|+ |B′| ≤ k,

and ∑
i∈A

di −
∑
j∈B

dj =
∑
i∈A′

di −
∑
j∈B′

dj mod (2k − 1).

Rearranging the (in)equalities, we have

|A|+ |B′| = |A′|+ |B| ≤ k,

and ∑
i∈A

di +
∑
j∈B′

dj =
∑
i∈A′

di +
∑
j∈B

dj mod (2k − 1).

These imply that the two multisets A+B′ and A′ +B are equal, where we define the sum of two
sets S and T to be the multiset which collect all elements of S and T , with multiplicity reserved.
Then the above fact can be written as A+B′ = A′ +B. Since

A ∩B = ∅, and A′ ∩B′ = ∅,

we would have A = A′ and B = B′, contradicting the assumption. Therefore A and B are uniquely
determined by |x|, |y|, Hx, Hy, based on which Referee can output x⊕ y.

Communication cost The message from Alice contains |x|, which has log n bits, and Hx, which
has at most log(qk − 1) = O(k log n) bits. Overall the message is O(k log n) bits, and so is Bob’s
message.

Computational cost Though the statement of Bose-Chowla theorem is about the existence of
di’s, its proof is actually constructive. And it is not hard to see from its proof that there is a
poly(n)-time randomized algorithm to generate the integers d1, . . . , dq, provided that one has a
computational oracle to solve the DiscreteLog problem. (On the other hand, recovering (i1, ..., ik)
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from di1+di2+· · ·+dik mod (qk−1) is actually easy; it only needs multiplications of field elements.)
With a quantum computer, DiscreteLog can be solved in polynomial time [Sho97]. One can also
hardwire the di’s into a non-uniform family of circuits of poly(n) size.

B.2 Proof of Lemma 10

Proof. We will change f to f ′ by removing a sequence of variables one by one. Suppose that there
is a weight wi < m in f . We will show that the variable zi can be removed without affecting
the function. More rigorously, we will show that the LTF function f1 with the same weights and
threshold as f , but restricted to S = [n] − {i}, would be consistent with f , yet the margin does
not decrease. For each z, define w(z) =

∑
iwizi, and denote by z(i) the strings obtained from z by

flipping the i-th bit, and by z′ the string obtained from z by removing zi. Consider the following
two cases.

Case 1: f(z) = 1 . If zi = 0, then removing zi does not change w(z), namely w(z′) = w(z), thus
f1(z) remains 1 since f1 has the same threshold. Now assume that zi = 1. We know that w(z) ≥
θ+m from the definition of m, but actually, we can say more by claiming that w(z) ≥ θ+m+wi.
Suppose that this is not the case, then on one hand, flipping zi from 1 to 0 would make

w(z(i)) = w(z)− wi < θ +m+ wi − wi = θ +m. (5)

On the other hand, since w(z) ≥ θ+m and wi < m, we have w(z(i)) = w(z)−wi ≥ θ+m−wi > θ,
and thus f(z(i)) is still 1 by definition of f . Now the weight bound in Eq.(5) violates the definition
of m. Therefore we know that w(z) ≥ θ + m + wi, and thus w(z′) = w(z) − wi ≥ θ + m. This
implies that f1(z) = 1, and the margin of f1 incurred by these inputs z is at least m.

Case 2: f(z) = 0 . Similarly, we can consider two subcases depending on the value of zi. The
involved case is zi = 0, where we can show that w(z) ≤ θ − m − wi. Thus removing zi causes
w(z′) ≤ θ −m, thus f1(z) remains 0.

Combining the two cases, we also see that the new margin is at least m. So removing zi does
not change f or decrease m. Continue this procedure until all wi ≥ m. The remaining indices i
form the set S.

B.3 Deterministic communication complexity of matrix rank decision problem

We will first prove a lower bound for the deterministic communication complexity of Fq-rankn,d.

Lemma 16. For any function f : In×In → {0, 1}, if each row and each column of the communica-
tion matrix Mf has at most K (and at least one) 1’s, then D(f) ≥ n log2 |I|−2 log2K. If each row
and each column of the communication matrix Mf has exactly K 1’s, then D(f) ≥ n log2 |I|−log2K.

Proof. Since each row and column has at most K 1’s, any 1-rectangle has size at most K2. Since any
c-bit deterministic communication protocol partitions the |I|2n inputs into at most 2c monochro-
matic rectangles, we have

D(f) ≥ log2
|f−1(1)|
K2

≥ log2
|I|n

K2
= n log2 |I| − 2 log2K.
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If furthermore each row/column has exactly K 1’s, then the analysis can be slightly tightened as
follows.

D(f) ≥ log2
|f−1(1)|
K2

= log2
|I|nK
K2

= n log2 |I| − log2K.

We will also need a fact about counting the number of matrices of rank r over Fq.

Lemma 17 (Landsberg, [Lan93]). The number of n× n matrices of rank r over Fq is

q(
r
2) · (qn−r+1 − 1)2(qn−r+2 − 1)2 · · · (qn − 1)2

(q − 1)(q2 − 1) · · · (qr − 1)
.

Theorem 18. D(Fq-rankn,r) = Ω(n2 log q).

Proof. Assume that r < n/4, because otherwise the lower bound of Ω(r2 log q) in [SW12] already
gives the theorem. Note that for XOR functions, each row or column of the communication matrix
has exactly K 1’s, where K is the number of matrices over Fq with rank less than r. By Lemma
17, we have

K =

r−1∑
k=0

q(
k
2) · (qn−k+1 − 1)2(qn−k+2 − 1)2 · · · (qn − 1)2

(q − 1)(q2 − 1) · · · (qk − 1)

≤ rq(
r
2) · (qn−r+1 − 1)2(qn−r+2 − 1)2 · · · (qn − 1)2

(q − 1)(q2 − 1) · · · (qr − 1)

≤ rq(
r
2) · q

2rn−(r2)

q(
r
2)

= rq2rn−(r2).

Applying Lemma 16, we obtain the lower bound

D(Fq-rankn,r) ≥ n2 log2 q − log2K ≥ (log2 q)
(
n2 − 2rn+

(
r

2

))
− log2 r = Ω(n2 log q),

when r < n/4.

Corollary 19. R‖(Fq-rankn,r) = Ω(n
√

log q).

Proof. By Theorem 5 and 18, we have

R‖(Fq-rankn,r) = Ω
(√

D‖(Fq-rankn,r)
)

= Ω
(√

D(Fq-rankn,r)
)

= Ω(n
√

log q).

15



C The adversarial sketch model

In this section we strengthen our results to fit the adversarial sketch model, introduced in [MNS11].
Similar to the common sketch model mentioned in Section 1, the parties still generate a sketch
of their inputs. But motivated from cryptographic reasons, the parties do not have secure public
randomness when generating sketches. So it can be considered as private-coin model in this regard.
Formally, there are two phases: sketch phase and interaction phase. In the first phase, sketch
phase, an input x ∈ {0, 1}n is given by a sequence of insert(i) and delete(i) operations on an
initially all-0 string. Each insert(i) operation updates the i-th bit of x to be 1 and each delete(i)
operation updates the i-th bit of x to be 0.2 Upon receiving an operation insert (i), each party
can operate her sketch in any way, but the input is given in one pass, and it is not available after the
sketch phase. In the second phase, interaction phase, the two parties can communicate and they
aim to compute the function value f(x, y) . The complexity measures are sketch size (the maximum
size of the sketch in the entire sketch phase), update time (the time to update the sketch for one
insert/delete operation in the sketch phase) and communication complexity (in the interaction
phase).

The model can be extended to the quantum setting by allowing the sketches and the commu-
nication to be quantum.

The Hamming Distance problem in the adversarial sketch model In the paper [MNS11],
the authors studied the Equality function of deciding whether the two n-bit input strings are equal,
with the promise that both inputs’ Hamming weights are at most K. To state their result, let us
formally define the concept of sparse recovery. We call a set V of vectors in {0, 1}n an r-sparse-
recovery set if every vector x with Hamming weight at most r can be uniquely determined by
SV = {(u, 〈x, u〉) : u ∈ V }. An r-sparse-recovery algorithm for V is an algorithm that exactly
reconstructs x from the SV . The paper [MNS11] proved the following results.

Lemma 20 ([MNS11]). There exists an explicit construction of an r-sparse-recovery set of size
r · polylog(n), and it has a corresponding deterministic r-sparse-recovery algorithm with running
time O(r ·polylog(n)). Besides, if the input is given in the form of a sequence of insert and delete

operations, the update time for processing each insert or delete operation is O(polylog(n)).

The above result is achieved by the follow scheme. An r-sparse vector x ∈ {0, 1}nis encoded as
C(x) = {C0(x), C1(x), . . . , Clog2 r+1(x)}, where each Ci has O(r log n) entries, and each entry is a

vector in Fql for some l = O(polylog(n)) and prime q : n < q ≤ 2n. It has the property that on
each insert/delete operation, we only need to add or subtract a certain vector in Fql to at most
O(polylog(n)) entries in C(x). In addition, for any two strings x 6= y, |x| ≤ r, |y| ≤ r, there exists
an index i, 0 ≤ i ≤ log2 r + 1, such that Ci(x) differs from Ci(y) on at least 3/4-fraction of their
entries. These two properties are achieved by bounded-neighbor dispersers.

Based on the above construction, [MNS11] obtained the following result for Equality.

Theorem 21 ([MNS11]). For Equality, given the promise that both inputs x and y have Hamming
weights at most K, there exists an explicit δ-error protocol with the sketch size O(

√
Kpolylog(n) log(1/δ)),

update time O(polylog(n)), and communication cost O(polylog(n)).

2Here we assume that the given sequence of insert and delete operations are consistent in the sense that it does
not insert an element i when the element is currently in the set, or delete an element not in the set. We can also
extend to the multi-set case as in [MNS11] where each element appears at most m times, but for simplicity, here we
just discuss the case of the input being a set S ⊆ [n], which is identified with the indicator string.
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With the help of the construction, we can design efficient protocols for Hamn,d in the adversarial
sketch model.

Theorem 22. In the adversarial sketch model, for every n, 0 ≤ d ≤ n and 0 < δ < 1, there exists
an explicit δ-error protocol for Hamn,d, with the following properties:

1. Perfect completeness and recovery: If |x⊕ y| < d, the protocol always outputs Yes and x⊕ y.

2. Soundness: If |x⊕ y| ≥ d, the protocol outputs No with probability at least 1− δ.

3. Sketch size: O((
√
n log n+ d · polylog(n)) log(1/δ)).

4. Worst-case update time: O(polylog(n)).

5. Communication complexity: O(d · polylog(n) log(1/δ)).

If we use quantum protocols, then the sketch size can be decreased to O(d · polylog(n) log(1/δ)).

Proof. All the factors log(1/δ) are for error reduction and we omit the standard analysis and we
will omit it in what follows. We maintain two sketches, the first one for sparse recovery and the
second one for verification. More specifically, we use the first sketch to make a sparse recovery
for the string x ⊕ y, assuming that |x ⊕ y| < d. We adopt the construction in Lemma 20 with
r = d to achieve the sketch size d · polylog(n) and the update time O(polylog(n)). The second
sketch is for verifying that the recovered string is indeed equal to x ⊕ y, for which we adopt the
result in Theorem 21 with K = n, with the sketch size O(

√
d · polylog(n)) and the update time

O(polylog(n)). In the interaction phase, Alice sends the first sketch to Bob, who then recovers a
string z which is equal to x ⊕ y if |x ⊕ y| < d. They then run the Equality part of the protocol in
Theorem 21. The communication cost for the first part is O(d ·polylogn), the size of C(x), and the
communication cost for the second part is O(polylog(n)). Thus the overall cost is O(d · polylogn).

The proof for the quantum protocol is similar, except that we maintain a quantum sketch for
the second part by a quantum fingerprint. More specifically, for a vector x, we just maintain
fingerprints

|ui(x)〉 =
1

|Ci(x)|1/2
∑

1≤j≤|Ci(x)|

|j, Ci(x)[j]〉

for each codewords Ci(x), i = 0, . . . , log2 r + 1 as the sketch. On each insert/delete operation,
since we only need to add or subtract a certain vector in Fql to O(polylog(r)) entries in each
codeword, we can implement it by polylog(n) controlled operations, |j〉〈j| ⊗ Uj , where each Uj
is an addition or subtraction, on the fingerprint. This takes O(polylog(n)) time. For the com-
munication complexity, in the sparse recovery part, Alice sends the whole sketch, which is of size
O(r · polylog(n) log(1/δ)). In the equality checking part, we just run a swap-test for each pair of
fingerprints |ui(x)〉 and |ui(y)〉. Note that if x 6= y, then there is an i s.t. a constant fraction of
Ci(x)[j] and Ci(y)[j] are different. Since the binary representations of Ci(x)[j] has only log log(n)
bits, so 〈Ci(x)[j], Ci(y)[j]〉 ≥ 1− 1/ log log(n). Thus using log log(n) independent copies of |ui(x)〉
can achieve a constant error probability as in the classical case. Thus the total communication
complexity O(polylog(n)). Thus the whole communication complexity is O(d · polylog(n)).
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The Rank Decision problem in the adversarial sketch model Next we consider rank
decision problem in the adversarial sketch model, in which each input matrix X is given by a
sequences of insert(i, j)/delete(i, j) operations. Throughout this part, we will fix the field to be
Fq. For simplicity of statements of the following results, let us assume that q = poly(n).

We call a set M of matrices in {0, 1}n×n an r-low-rank-recovery set if every matrix X with rank
at most r can be uniquely determined by TM = {(A, 〈X,A〉) : A ∈ M}. An r-low-rank-recovery
algorithm for M is an algorithm that exactly reconstructs X from TM . We will need a technique
to transform an sparse-recovery set to a low-rank-recovery set, given by a recent paper [FS12]. For
any n×n matrix M , we denote M (k) the k-th anti-diagonal of M , which is the tuple of the entries
(Mi,j : i+ j = k). Sometimes we treat it as a vector.

Theorem 23 ([FS12]). Let n ≥ r ≥ 1. For each 0 ≤ k ≤ 2n− 2, suppose that Rk is a set of n× n
matrices such that

1. for any R ∈ Rk and k′ 6= k, R(k′) = 0, and

2. {R(k) : R ∈ Rk}, when viewed as a collection of vectors, form a (2 min(r, k+ 1, 2n− (k+ 1)))-
sparse-recovery set.

Then R =
⋃
k Rk is an r-low-rank-recovery set.

If, for each k, the set {R(k)}R∈Rk
has an (2 min(r, k+1, 2n−(k+1)))-sparse-recovery algorithm

SRk running in time tk, then there is a deterministic algorithm performing an r-low-rank-recovery
for R in time O(rn2 +

∑2n
k=2(tk + n|Rk|)).

Now we can state our result about matrix rank decision in the adversarial sketch model.

Theorem 24. In the adversarial sketch model, for every n, 0 ≤ r ≤ n and 0 < δ < 1, there exists
an explicit protocol for rankn,r with the following properties:

1. Perfect completeness and recovery: If rank(X + Y ) < r, the protocol always outputs Yes and
X + Y .

2. Soundness: If rank(X + Y ) ≥ r, the protocol outputs No with probability at least 1− δ.

3. Sketch size: O(nr · polylog(n) log(1/δ)).

4. Worst-case update time: O(polylog(n)).

5. Communication complexity: O(nr · polylog(n) log(1/δ)).

Proof. The protocol contains two parts. The first part reconstructs the matrix Z = X+Y assuming
that rank(X + Y ) < r. Denote the reconstruction result by Z ′, the second part is to test whether
X + Y = Z ′. We need to maintain sketches for both parts.

For the first part, we explicitly construct (2 min(r, k + 1, 2n − (k + 1)))-sparse-recovery set vk
for k = 0, · · · , 2n − 2 using Lemma 20. We then apply Theorem 23 on these sets vk to form an
r-low-rank-recovery set R =

⋃
k Rk.

On each insert/delete operation, suppose the operation is on the (i, j)-th entry in the matrix,
the property of the construction of Lemma 20 guarantees that we only need to updateO(polylog(n))
entries. The sketch for this part is of size O(nr · polylog(n) log(1/δ)).
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For the second part, it is the Equality problem on two n2-bit strings. Applying Theorem 21
with K = n2, we only need to maintain a sketch of size O(n

√
polylog(n) log(1/δ)), with update

time O(polylog(n)).
In the interaction phase, Alice just sends her whole sketch to Bob, who then makes all the

calculations locally and sends the result back to Alice. The total communication cost is O(nr ·
polylog(n) log(1/δ)).

The completeness and soundness come from those of the protocols in the two parts. This
completes the proof.
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