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Abstract. Oral polio vaccine (OPV) can produce contact immunity and
help protect more individuals than the vaccinated from polio. To better
capture the utilization of OPV’s contact immunity, we model the com-
munity as a social network, and formulate the task of maximizing the
contact immunity effect as an optimization problem on graphs, which is
to find a sequence of vertices to be “vaccinated” to maximize the total
number of “infected” vertices. Furthermore, we consider the restriction
imported by immune deficient individuals, and study related problems.
We present polynomial-time algorithms for these problems on trees, and
show the intractability of problems on general graphs.
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1 Introduction

Polio, a common name for poliomyelitis, is an acute, viral, and highly infectious
disease, transmitted by person-to-person spread mainly through the faecal-oral
route or by a common vehicle, such as contaminated water or food, and mul-
tiplies in the intestine [2]. Individuals infected by polio can exhibit a range of
symptoms if the virus enters the blood circulation [5]. When poliovirus enters
the central nervous system, it can infect and destroy motor neurons, leading to
muscle weakness and acute flaccid paralysis. Polio mainly affects children under
5 years of age, which is the reason that polio was called infantile paralysis. The
paralysis caused by polio is usually in legs and irreversible, which makes many
polio survivors disabled for life [9]. In fact, before the use of vaccine, polio was
the most common cause of permanent disability.

This paper studies epidemics of polio, which started to appear in the late
19th century and became one of the most dreaded childhood diseases in the
20th century. Like most diseases caused by virus infection, there was hardly any
cure for polio. In 1949, Jonas Salk made an effective polio vaccine [7] and the
Global Polio Eradication Initiative was launched in 1988, since when polio cases
have decreased by over 99%. In this initial victory of the battle against polio,
polio vaccine plays a crucial role. There are 2 safe and effective vaccines for
polio, the inactivated polio vaccine (IPV) which is injected and the oral polio



vaccine (OPV) which is given by mouth. IPV consists of inactivated poliovirus,
while OPV consists of live, attenuated poliovirus. Therefore IPV carries no risk
of vaccine-associated polio paralysis, but induces very low levels of immunity in
the intestine; OPV also produces a local immune response in the intestine and
can limit the replication of the wild poliovirus inside the intestine [1], but the
live attenuated virus in OPV can cause paralysis, in extremely rare cases. When
a person immunized with IPV is infected with wild poliovirus, the virus can still
multiply inside the intestines and be shed in the faeces, risking continued circu-
lation, which does not happen in the case of OPV. There are more advantages
of OPV over IPV in terms of expenses and length of immunity [6].

In addition, there is yet another fact that makes OPV even more important
in combating polio. For several weeks after vaccination of OPV, the attenuated
virus replicates in the intestine, and is excreted in the faeces. Then the virus can
be transmitted to others in close contact, making them immuned. This means
that immunization with OPV can result in the immunization of people who have
not been directly vaccinated, especially in areas where hygiene and sanitation
are poor [4]. We call this phenomenon contact immunity.

Although human benefit from vaccines made form attenuated virus, for peo-
ple with congenital or acquired immune deficiency, the attenuated virus in OPV
can cause severe complications [3]. Immune deficient people are more common in
recent years, as the Acquired Immune Deficiency Syndrome (AIDS) spreads, and
application of immunosuppressor increases, in organ transplantations or cure for
some autoimmune diseases. Therefore, when vaccinate OPV to a community, it
is necessary to avoid vaccinating immune deficient individuals.

In this paper, we study how to take advantage of contact immunity, so that
limited OPV can be applied to a community containing immune deficient pa-
tients, to give as much protection to the population as possible, while not in-
fecting immune deficient individuals. By modeling the community as a social
network, we formulate the task into an optimization problem on graphs, and
propose efficient algorithms.

2 Preliminaries

2.1 Definitions and Notations

Graphs. Unless otherwise mentioned, a graph G in this paper is a simple, finite,
and undirected graph with vertex set V (G) and edge set E(G). We usually
use n to denote |V (G)| and m to denote |E(G)|. A graph is connected if for
any two vertices of the graph there exists a path connecting them. If a graph
is disconnected, we refer to each maximal connected induced subgraph as a
connected component of the graph.

The r-ball of v for the center v ∈ V and the radius r ∈ N, denoted by B(v, r),
is defined as B(v, r) = {x | d(v, x) ≤ r, x ∈ V }, and B(v, 0) = {v}. When u ∈
B(v, r), we also say that u is covered by B(v, r). When B(v1, r1)∩B(v2, r2) 6= ∅,
we say that the 2 balls are joint.



Social Network. A social network is a social structure made up of a set of
social actors, such as individuals, and a set of the dyadic ties between these
actors. A social network can be modeled as a social graph G = (V,E), where V
is a finite set of vertices, and E ⊆ V × V is the set of edges connecting pairs of
vertices. A vertex in G represents an individual in the social network, while an
edge connecting u and v represents the relationship between individuals u and v.
In this paper, we use the terms social network and social graph interchangably,
and corresponding elements of social network and social graph interchangably
for convenience and simplicity.

Parameterized Complexity. A paramerized problem Q is a subset of Σ∗ ×N
for some finite alphabet Σ. The second component is called the parameter. The
problem Q is fixed-parameter tractable (FPT) if it admits an algorithm deciding
whether (I, k) ∈ Q in time f(k) · |I|O(1), where |I| is the size of I and f is a
computable function depending only on k.

To prove the intractability of a parameterized problem Q′, we usually present
an FPT reduction from a known W[t]-hard problem Q to Q′. An FPT reduction
from a problem Q to a problem Q′ is a function that maps (I, k) to (I ′, k′)
such that (a) (I, k) ∈ Q ⇔ (I ′, k′) ∈ Q′, (b) the function is computable in time
g(k) · (|I|+ k)O(1) for some function g, and (c) k′ ≤ h(k) for some function h.

2.2 Models

In this section, we introduce the epidemic model of OPV’s contact immunity.
We model the social network of a community as a social graph G = (V,E). In

the context of contagion spreading, that two individuals are related means that
virus can be transmitted directly from one to the other in daily-life contact. We
model the relationship as an undirected edge e = uv, since the contact between
u and v is basically undirected and symmetric.

There are some properties of OPV, or attenuated poliovirus, when it devel-
ops contact immunity. When an individual v is vaccinated with OPV, v gets
immunity against polio, and gains infectivity at the same time. Because of the
attenuated poliovirus spreaded by v, all individuals that are neighbors of v in
the social graph get infected with high probability, and therefore get immuned.
Note that OPV’s are usually vaccinated multiple times to ensure immunity, and
the vaccine used on an already vaccinated individual is called a booster vaccine.
Booster vaccination leads to longer and stronger infectiousness, since the virus
inhabits in intestine for longer time and reproduces more. Also, like the cases of
most infectious viruses, the farther v is from infectious individuals, in the sense
of either space or social network, the less possible he or she gets infected.

To model the spreading of attenuated poliovirus in a better way, we try to
retain its properties, then reduce and simplify the real situation. There are 3
states of vertices in G. The susceptible are those who are susceptible to polio,
whose set is denoted by P ; the infected are those who get infected by attenuated
poliovirus, whose set is denoted by I; and among the infected, the infectious are
those who are active in spreading the attenuated virus, whose set is denote by



F , so F ⊆ I. Infectious individuals will infect their neighbors. When an individ-
ual turns infected, he or her will not be susceptible again; when an individual
becomes infectious, he or her will stay infectious, in sufficiently long time.

We assume that, before the vaccination, all individuals in the social network
are susceptible to polio, i.e., P = V , since we can just remove from the social net-
work those individuals who are already immune to polio, because they scarcely
involve in the process of attenuated poliovirus spreading. Suppose we vaccinate
people one by one, and there’s enough time for contact immunity to take effect.
Suppose there are k doses of OPV, denote the sequence of k vaccinations by
Sk = (s1, s2, . . . , sk), where si ∈ V for 1 ≤ i ≤ k. Note that the same individuals
can appear in S for multiple times.

When s1 is vaccinated, s1 becomes infected and infectious, and the neighbor
set of s1, N(s1), become infected because of s1. The induced subgraph of the
closed neighbor set of s1, N [s1], is a connected component, which we call an
infected component, denoted by IC(v), where v is any vertex in this component.
The corresponding sets are updated once the status of vertices changes. In this
case, vertices in N [s1] are removed from P and contained in I, and s1 is con-
tained in F . When si, 1 < i ≤ k is vaccinated, 2 different situations may occur.
If si ∈ I, meaning that this is a booster vaccination. We simplify the effect of
booster vaccination, such that it makes all vertices in IC(si)−F infectious, and
∪v∈IC(si)N(v) − IC(si) infected, then IC(si) is updated to be ∪v∈IC(si)N [v].
If si /∈ I, then si becomes infectious, N [si] become infected, and IC(si) is gen-
erated to be N [si]. Infected components grow indepenently and don’t interfere
each other. When all vacinations finish, all individuals in I get infected by atten-
uated poliovirus, and therefore immuned to polio in some level, while infectious
individuals in F get strengthened immunity because of booster vaccines.

There are some variants of the model. Sometimes some individuals need the
immunity to polio more than others. For example, children under 5 years old,
or people living nearby water polluted by virus are more susceptible. In these
cases, a demand index (DI) is introduced, DI(v) quantifies how pressing v needs
the immunity. v’s demand is met if and only if v is in F after vaccinations, and
the benefit of a vaccination is defined as the sum of DI(v)’s where v is newly
added to F after the vaccination.

In other cases, some individuals must get strengthened immunity, while some
individuals should avoid vaccination, like immune deficient individuals. We define
the set of individuals who must get strengthened immunity as target set, denoted
by S, and define the set of individuals who must not get vaccinated or indirectly
strengthened as restriction set, denoted by R. It should be ensured that S ⊆ F
and R ∩ F = ∅ after vaccinations.

As in many papers that study models of propagation in social network, it’s a
very common method to simplify the complicated social graph, which is usually
a general graph, into a tree. In this paper, we study problems both on general
graphs and on trees.



With these models, we want to optimize the effect of contact immunity of
OPV on the community, with limited doses of OPV, by making a plan of vacci-
nations. We propose problems as follows.

2.3 Problems

Five parameterized problems are studied in this paper, where the number k of
vaccinations is considered as the parameter.

Problem 1 (Maximum Contact Immunity (M-CI)). For an undirected graph
G = (V,E), and k ∈ Z+, find a sequence of k vaccinations Sk on G to maximize
|I|.

Problem 2 (Maximum Benefit of Contact Immunity (MB-CI)). For a ver-
tex weighted graph G = (V,E;ω), where ω : V → R+ ∪ {0}, and k ∈ Z+, find a
sequence of k vaccinations Sk on G to maximize the sum of benefit of vaccina-
tions.

Problem 3 (Specific Targeting Contact Immunity (ST-CI)). For an undi-
rected graph G = (V,E), a set of targets S ⊆ V , and k ∈ Z+, find a sequence of
k vaccinations Sk on G, such that S ⊆ F .

Problem 4 (Maximum Benefit of Restricted Contact Immunity (MB-
RCI)). For a vertex weighted graph G = (V,E;ω), where ω : V → R+ ∪ {0}, a
set of restricted vertices R ⊆ V , and k ∈ Z+, find a sequence of k vaccinations
Sk on G to maximize the sum of benefit of vaccinations, and R ∩ F = ∅.

Problem 5 (Specific Targeting Restricted Contact Immunity (ST-RCI)).
For an undirected graph G = (V,E), a set of restricted vertices R ⊆ V , a set
of targets S ⊆ V , and k ∈ Z+, find a sequence of k vaccinations Sk on G, such
that S ⊆ F , and R ∩ F = ∅.

2.4 Overview

Our results for above problems are listed in Table 1.

M-CI MB-CI ST-CI MB-RCI ST-RCI

Tree P P P P P

General graph Unknown Unknown Unknown W[2]-hard W[2]-hard

Table 1. Results of computational complexities



3 Polynomial-Time Algorithms

For a sequence of k vaccinations in a graph G, let C be the set of vaccinees of k
vaccinations. The effect of these k vaccinations can be considered as a collection
of |C| balls: for each ball B(v, r), the center v ∈ C and the radius r equals
the number of vaccinations on v or IC(v). Moreover, for any collection of balls
where every pair of balls has even depth of intersection, we can infer a sequence
of vaccinations producing those balls. Thus, we have the following lemma.

Lemma 1. A collection of balls is equivalent to a sequence of vaccinations.

To find the optimum solutions of problems with no restriction set, say M-CI,
MB-CI and ST-CI, we have the following lemma.

Lemma 2. There is an optimum solution for M-CI ( MB-CI, ST-CI) having
the property that no mergence of infected components happens, i.e., all balls in
this solution are disjoint.

Proof. Suppose that in a optimum solution of M-CI (MB-CI, ST-CI), there exist
two balls,B(v1, r1) andB(v2, r2), covering a vertex u, so u ∈ B(v1, r1)∩B(v2, r2).
Therefore d(v1, u) ≤ r1 and d(v2, u) ≤ r2. By connecting the shortest path
between v1 and u with the shortest path between u and v2, we have a path P
between v1 and v2, whose length is at most r1 + r2. We can find a vertex w on
P satisfying that d(v1, w) ≤ r2 and d(v2, w) ≤ r1. Since B(v1, r1) ∪ B(v2, r2) ⊆
B(w, r1+r2), all vertices covered by B(v1, r1) or B(v2, r2) can also be covered by
a single ball B(w, r1 + r2). Therefore we can replace these two joint balls by the
new ball, which also yields an optimum solution. By repeating this procedure,
we can obtain an optimum solution without any joint balls. ut

The above lemma implies that our algorithm for M-CI can be simplified into
finding a collection of disjoint balls, the sum of whose radiuses is equal to k, to
cover a maximum number of vertices in G. We now present a polynomial-time
algorithm for M-CI on trees.

Theorem 1. M-CI and MB-CI can be solved in O(k2n2) time when input graph
is a tree.

Proof. Given an instance I = (G, k), where G is a tree. We make G into a rooted
tree by arbitrarily choosing a vertex r as the root.

For every v ∈ V (G), we denote by Tr(v) the set of vertices in the subtree
rooted by v, and define Cl(v) = {x | d(v, x) = l, x ∈ V (G) ∩ Tr(v)}, for l ≥ 0.

Therefore B(v, l) ∩ Tr(v) =
∑l
i=0 Ci(v).

For any vertex v ∈ V (G) and any non-negative integers l and t, we define
the following notations.

T0(v, t) := maximum number of vertices covered by any ball in the subprob-
lem on Tr(v) with the parameter t, in the case that v is not covered by any
ball;



T1(v, l, t) := maximum number of vertices covered by any ball in the subprob-
lem on Tr(v) with the parameter t, in the case that v is covered, and any vertices
outside the subtree whose distance from v is at most l can also be covered by
these balls;

M(v, t) := max{T0(v, t), T1(v, 0, t)};
N(v, u, l, t) := maxk0+k1+···+kp=t{T1(u, l + 1, k0) − |B(u, l − 1) ∩ Tr(u)| +∑p
j=1M(wj , kj)}, where u ∈ C1(v), k0 ≥ l+1, and {w1, . . . , wp} = Cl+1(v)\Cl(u).

We use dynamic programming to compute {T0(v, t), T1(v, l, t)}(v,l,t), where
v ∈ V (G), t = 0, 1, . . . , k, l = 0, 1, . . . , t:

T0(v, t) = max
k1+···+kd=t

{v1,...,vd}=C1(v)

d∑
i=1

M(vi, ki) (1)

T1(v, l, t) = |B(v, l) ∩ Tr(v)|

+ max

 max
k1+···+kd=t−l

{v1,...,vd}=Cl+1(v)

d∑
i=1

M(vi, ki), max
i=1,...,d

{v1,...,vd}=C1(v)

N(v, vi, l, t)

 (2)

In Equation 1, we distribute all t vaccinations among subtrees rooted by
v’s children {v1, . . . , vd} = C1(v), since v is not covered. The number M(vi, ki)
denotes the maximum number of vertices covered in Tr(vi) after ki vaccinations
satisfying that the vertex v is not covered by any balls whose centers are in
Tr(vi). However, if we enumerate all possible allcations of t vaccinations to d
subtrees such that k1+· · ·+kd = t, there will be O(td) combinations, making the
running time of the algorithm superpolynomial. To reduce the time of computing
T0(v, t), we need another dynamic programming to compute the sequence

P (i, j) = max
k1+···+ki=j

i∑
l=1

M(vl, kl), 1 ≤ i ≤ d, 0 ≤ j ≤ t,

according to the fact that

P (i, j) = max
a+b=j

{P (i− 1, a) +M(vi, b)},

supposing P (0, j) = P (i, 0) = 0. Therefore we get T0(v, t) = P (d, t), and the
time for computing T0(v, t) is O(d · t2). Similar methods are used multiple times
in this paper when we allocate a sum of vaccinations to subtrees and get the
maximum sum of some functions on subtrees.

In Equation 2, it is easy to see that any vertex u ∈ Tr(v) with d(u, v) ≤ l must
be covered, whose set is B(v, l)∩Tr(v). There are two cases when v is covered by
a ball centered in Tr(v): (i) vertex v is vaccinated for l times, (ii) there exists a
child vi ∈ C1(v) such that there is a ball centered in Tr(vi) that covers v and all
vertices with distances ≤ l to v. The number N(v, vi, l, t) denotes the maximum
number of vertices in Tr(v)\B(v, l) that can be covered, with other vaccinations
allocated properly to subtrees other than Tr(vi).



Finally, we use max{T0(r, k),maxkl=0 T1(r, l, k)} to denote the maximum num-
ber of vertices covered, i.e., the maximum number of people infected by the
attenuated poliovirus. In order to get the sequence of vaccinations, we attach
a sequence to every T0, T1,M,N, P to keep track of the current sequence of
vaccinations and maintain sequences during the dynamic programming.

The running time of the algorithm can be calculated as follows:
For fixed v, the time for computing {T0(v, t)}(t=0,...,k) is O(k2 · |C1(v)|) =

O(k2 · d(v));
For fixed v and l, the computing time of {T1(v, l, t)}(t=0,...,k) is O(n + (k −

l)2) · |Nl+1(v)|+ |N1(v)| · k2 · |Nl+1(v)| = O(n+ k2 · |N1(v)| · |Nl+1(v)|);
Thus, for fixed v, the computing time of {T1(v, l, t)}(l=0,...,t,t=0,...,k) is

O(
∑k
l=0 (n+ k2 · |N1(v)| · |Nl+1(v)|)) = O(kn+ k2n · |N(v)1|) = O(k2n · d(v)).

Consequently, the total running time is O(k2n2). ut

Note that we can take a simple reduction from ST-CI to MB-CI (or from
ST-RCI to MB-RCI) by assigning weight 1 to vertices in target set S and weight
0 to other vertices. Moreover, we can easily reduce MB-CI to MB-RCI (or ST-
CI to ST-RCI) by setting the restriction set R to be an empty set. All these
reductions take polynomial time and work whenever input graph is a tree or a
general graph. We skip the details here. Thus, we have the following lemma.

Lemma 3. ST-CI ≤p MB-CI, ST-RCI ≤p MB-RCI, MB-CI ≤p MB-RCI, and
ST-CI ≤p ST-RCI.

By Theorem 1 and Lemma 3, ST-CI on trees is also solvable in polynomial
time.

Furthermore, Lemma 2 is not available for problems with restriction set,
since we cannot easily replace two joint balls with one single ball when the new
single ball may cover vertices in the restriction set. Therefore, the optimum
solution of ST-RCI and MB-RCI allows joint balls. Although there are more
difficulties introduced, we can also design dynamic programming algorithms to
solve ST-RCI and MB-RCI on trees in polynomial time. By applying a dynamic
programming for MB-RCI on trees, we have the following theorem.

Theorem 2. MB-RCI and ST-RCI can be solved in O(kn5) time when input
graph is a tree.

Proof. Given an instance I = (G, k), where G is a tree. We arbitrarily choose
a vertex r as the root, and the graph G becomes a rooted tree. Denote the
distance between v and the nearest restricted vertex in G by r(v), for each
vertex v ∈ V (G). r(v) = 0 if v is a restrected vertex. Then the radius of a ball
whose center is v should be at most r(v).

For every v ∈ V (G), a, b ∈ Z, a ≥ 0, b ≤ a, consider the subtree rooted by v,
we define the function S(v, a, b), which can be computed in linear time:

If b ≥ 0, S(v, a, b) is defined as the sum of weights of vertices u in subtree,
such that b < d(v, u) ≤ a;



otherwise, S(v, a, b) is defined as (sum of weights of vertices u in subtree,
such that 0 ≤ d(v, u) ≤ a) + (sum of weights of vertices w outside subtree, such
that d(v, w) ≤ min{a, |b| − 1}).

For every v ∈ V (G), 0 ≤ t ≤ k,−n ≤ l, h ≤ t, we define T (v, t, l, h) := the
maximum benefit of subproblem on subtree rooted by v with the parameter t,
such that:

If l < 0, the vertex v is not covered by any ball in the subtree, and the
distance between v and the nearest vertex which is covered by some ball in the
subtree is exactly |l|;

If l ≥ 0, the vertex v is covered by some ball in the subtree, and the ball
spreads outside the subtree by length l;

If h < 0, the vertex v is not covered by any ball outside subtree, and the
distance between v and the nearest vertex which is covered by some ball outside
the subtree is exact |h|;

If h ≥ 0, the vertex v is covered by some ball outside the subtree, and the
ball spreads inside subtree by length h.

Now we use dynamic programming to compute {T (v, t, l, h)}(v,t,l,h) where v ∈
V (G), t ∈ [0, k], l, h ∈ [−n, t]. Assume that the set of children of v is {v1, . . . , vd}.

1) l > r(v)

T (v, t, l, h) = 0

2) l ≤ 0

T (v, t, l, h) = max
k1+···+kd=t

d∑
i=1

T (vi, ki, l + 1, h− 1)

3) 0 < l ≤ r(v)

T (v, t, l, h) = max{
S(v, l, h) + max

l1,...,ld≤l,
1≤j≤d

max
k1,...,kd≥0
Σkj=t−l

Σd
j=1T (vj , kj , lj ,max{l, h} − 1),

max
i=1,...,d
li=l+1

max
l1,...,ld≤l+1,

1≤j≤d

max
k1,...,kd≥0,ki≥li

Σkj=t

Σd
j=1T (vj , kj , lj ,max{l, h} − 1)

}

maxkl=−n{T (r, k, l,−n)} is the maximum sum of benefit of vaccinations. And
the corresponding sequence of vaccinations can be got from dynamic program-
ming similar to the algorithm for M-CI on trees. The running time of this algo-
rithm is O(kn5).

By Lemma 3, ST-RCI on trees is also solvable in polynomial time. ut

4 Intractability

To give a complete picture of complexity of these problems, we show the in-
tractability of ST-RCI and MB-RCI on general graphs. It is still open whether
M-CI, MB-CI, and ST-CI are NP-hard when inputs are general graphs.



Theorem 3. ST-RCI and MB-RCI on general graphs are NP-hard and W[2]-
hard.

Proof. We prove it by constructing a polynomial reduction from k-Dominating
Set to ST-RCI. Given an instance I = (G, k) of Dominating Set where G =
(V,E) and V = {v1, . . . , vn}, we construct an instance I ′ = (G′, S,R, k + 1) of
ST-RCI where G′ = (V ′, E′) as following:

V ′ := {r} ∪ {u} ∪ {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {r1, . . . , rn};
E′ := {(r, u)}∪ {(u, xi) | 1 ≤ i ≤ n}∪ {(xi, yj) | (vi, vj) ∈ E}∪ {(xi, yi) | 1 ≤

i ≤ n} ∪ {(yi, ri) | 1 ≤ i ≤ n};
S := {u} ∪ {y1, . . . , yn};
R := {r} ∪ {r1, . . . , rn}.

. . .

. . .

. . .

r

u

x1 x2 x3 xn

y1 y2 y3 yn

r1 r2 r3 rn

S

R

Fig. 1. Construction of ST-RCI instance from k-Dominating Set instance.

Due to the restriction set R, there must be only one vaccination on each
vertex of {u} ∪ {yi, . . . , yn}.

Suppose that G has a k-dominating set {vii , . . . , vik}. It is easy to see that
in graph G′, the vertices {xi1 , . . . , xik} dominate all vertices of {y1, . . . , yn}. We
apply k vaccinations on these vertices {xi1 , . . . , xik} one by one. After these
vaccinations, the vertices {xi1 , . . . , xik} ∪ {u} ∪ {y1, . . . , yn} are merged into
one infected component. In last step we perform a vaccination on this infected
component. The above k + 1 vaccinations form a solution of I ′.

On the other side, suppose that I ′ has a (k + 1)-size solution. Since vertex
u is in targeting set, we may assume that the l-th vaccination is originated
from u, where 1 ≤ l ≤ k + 1. We also assume that the first l − 1 vaccinations
are originated from vertices {xi1 , . . . , xip} ∪ {yj1 , . . . , yjq}, where p + q = l − 1.
Let {ya1 , . . . , yas} be a subset of vertices in {y1, . . . , yn} that are dominated by
{xi1 , . . . , xip}. Then after the first l− 1 steps, the vertices {xi1 , . . . , xip} ∪ {u} ∪
{yk1 , . . . , yks} are merged into one infected component, and the l-th vaccination
is performed on this infected component. Let {yb1 , . . . , ybt} = {y1, . . . , yn} −
({yj1 , . . . , yjq} ∪ {ya1 , . . . , yas}) be the set of remaining specific vertices in G′



after l vaccinations, where t + q + s = n. Note that in the next (k + 1 − l)
steps we can only perform vaccinations on vertices in {yb1 , . . . , ybt}, since other
components become restricted, implying that t ≤ k + 1 − l. It is clear that
vertices in {xi1 , . . . , xip}∪{xj1 , . . . , xjq}∪{xb1 , . . . , xbt} dominate all vertices in
{ya1 , . . . , yas} ∪ {yj1 , . . . , yjq} ∪ {yb1 , . . . , ybt} = {y1, . . . , yn}, and the total size
is p+ q + t = l − 1 + t ≤ k. Thus, the original graph G has a dominating set of
size at most k.

We have completed the proof of NP-hardness. Note that the above reduc-
tion is indeed an FPT reduction, and k-Dominating Set is W[2]-hard in the
literature. Therefore, ST-RCI on general graphs is W[2]-hard. and thus is very
unlikely to be FPT.

By Lemma 3, MB-RCI on general graphs is also NP-hard and W[2]-hard. ut

5 Conclusion

In this paper, we have overviewed the history of people fighting polio and intro-
duced oral polio vaccines (OPV). The contact immunity is an important prop-
erty of OPV that is very important in helping eliminate polio thoroughly. And
we have modeled the contact immunity of OPV into models on social graphs,
and proposed 5 problems, including Maximum Contact Immunity, Maxi-
mum Benefit of Contact Immunity, Specific Targeting Contact Im-
munity, Maximum Benefit of Restricted Contact Immunity, and Spe-
cific Targeting Restricted Contact Immunity. We have studied these
problems both on general graphs and on trees.

We have designed polynomial-time algorithms based on dynamic program-
ming for all 5 problems on trees, and have proved the intractability for Maximum
Benefit of Restricted Contact Immunity and Specific Targeting Re-
stricted Contact Immunity on general graphs. With these algorithms, we
can possibly help improving the effect of OPV in certain circumstances, es-
pecially when the supply of vaccines is limited, or the community contains a
proportion of immune deficient individuals.

However, we still have some future work to do. For problems Maximum
Contact Immunity, Maximum Benefit of Contact Immunity, and Spe-
cific Targeting Contact Immunity on general graphs, we haven’t found
polynomial-time algorithms, neither have we proved their intractabilities.

Furthermore, there may be variant models. For example, we can introduce
IPV into the model. As IPV contains no live virus, it is basically safe for even
immune deficient people. Moreover, when applying POV to an epidemic area
of polio, the normal poliovirus and attenuated poliovirus may compete when
transmitting in the social network. Such variant models can also induce problems
that have practical significance.
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