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Abstract. The last decade witnessed the extensive studies of algorithms
for data streams. In this model, the input is given as a sequence of items
passing only once or a few times, and we are required to compute (often
approximately) some statistical quantity using a small amount of space.
While many lower bounds on the space complexity have been proved for
various tasks, almost all of them were done by reducing the problems to
the cases where the desired statistical quantity is at one extreme end.
For example, the lower bound of triangle-approximating was showed by
reducing the problem to distinguishing between graphs without triangle
and graphs with only one triangle.

However, data in many practical applications are not in the extreme,
and/or usually we are interested in computing the statistical quantity only
if it is in some range (and otherwise reporting “too large” or “too small”).
This paper takes this practical relaxation into account by putting the com-
puted quantity itself into the measure of space complexity. It turns out that
all three possible types of dependence of the space complexity on the com-
puted quantity exist: as the quantity goes from one end to the other, the
space complexity can goes from max to min, remains at max, or goes to
somewhere between.

1 Introduction

Data stream is a very natural and important model for massive data sets in many
applications, where the input data is given as a stream of items with only one or
a few passes, and usually we want to determine or approximate some statistical
quantity of the input stream. See [16] for an excellent and comprehensive survey.

Many algorithms are designed and many lower bounds on the space com-
plexities are proven for various types of problems such as, just to name a few,
frequency moments [1, 7, 14, 3, 6], vector distance [11, 17], and some graph prob-
lems [2, 4, 9, 13]. Almost all lower bounds were proved by reducing the problem
to the cases where the desired statistical quantity is at an extreme end (and this
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is further reduced to the communication complexity of some related problems).
For example, the lower bound for approximating the number of triangles was
proved by a reduction to distinguishing between the graph containing 0 and 1
triangle; the lower bound for the infinity frequency moment F ∗

∞ was proved by
reducing the problem to distinguishing between F ∗

∞ = 1 and F ∗
∞ = 2.

Despite its theoretical correctness, this reduction to extreme cases can be
misleading for many practical applications for at least the following two reasons.
First, the extreme case may not happen at all in practice. For example, the
number of triangles in a graph has many implications in various applications.
In a social network, the number of triangles characterizes the average strength
of the ties in the community [8, 18]. But note that in most (if not all) practical
communities, there are a large number of triangles, and those extreme cases (0
and 1 triangle) are never the case. As another example, in many applications
such as data mining, the number of common neighbors of two vertices in a
graph shows the amount of common interest. A canonical example is that if
two commodities have a large number of common buyers, then putting these
two commodities close to each other in a supermarket will make more sales for
both of them. Similar to the triangle example, the maximal number of common
neighbors from data in practice is always large.

The second reason is from the user side. Even if some data happen to have
the quantity at extreme, we are not interested in it in this case. For example,
if two commodities have a very small number (such as one) of common buyers,
then it barely means anything because that buyer may just happen to buy them.
Therefore, we have a threshold range in mind within which we care about the
quantity; if the quantity is outside the range, we will be satisfied if the algorithm
can report “too low” or “too high”.

Due to these two reasons, it is natural to ask the following question: is the
hardness of a problem essentially due to the extreme cases? To answer this ques-
tion, we study the space complexity in terms of both input size and the threshold
range. In particular, for any input size n and any possible quantity value q(n),
the stream space complexity s(n, q(n)) is, roughly speaking, the minimal space
used to compute f(x) for all inputs in {x : f(x) = Θ(q(n))}.

This question has been occasionally studied implicitly. In [2], Bar-Yosseff,
Kumar, and Sivakumar initialized the study of graph problems in the adjacency
stream model, where the graph is given by a sequence of edges (i, j) in an arbi-
trary order1. In particular they studied the problem of approximating the num-
ber of triangles, giving a one-pass algorithm using O( 1

ε3 log 1
δ (1 + T1+T2

T3
)3 log n)

space, where Ti is the number of unordered triples containing i edges. Unfortu-
nately, they could not show when it is better than the naive sampling algorithm
(which uses O( 1

ε2 log 1
δ (1 + T0+T1+T2

T3
)) space), and they asked this as an open

problem. They also gave an Ω(n2) lower bound for general graph, by reducing the
problem at one extreme end (distinguishing between graphs with no triangle vs.

1 They also proposed the incidence stream model, where each item in the stream is
a vertex with all its neighbors. In this paper we only study the adjacency stream
model.
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with one triangle) to the communication complexity of some Boolean function.
They then ask as another open problem for a lower bound in terms of T1, T2, T3

2.
Jowhari and Ghodsi [13] later proved a lower bound of Ω(n/T3). In this paper we
will show that their algorithm is always asymptotically worse than the naive sam-

pling algorithm (for any graph) by proving
(
1 + T1+T2

T3

)3

≥ Ω
(
1 + T0+T1+T2

T3

)

using algebraic graph theoretical arguments. Also, we prove a lower bound of
min{Ω(n3/T3), Ω(n2)}, which matches the naive sampling algorithms, and the
proof is much simpler than the previous (weaker) one [2]. It should be noted
that subsequent papers [13, 5] improve the upper bound and finally [5] achieve
O( 1

ε2 log 1
δ · (1+ T1+T2

T3
)). So our lower bound does not mean that the naive sam-

pling algorithm is always the best, but that it is the best if the algorithm aims
at dealing with all the graphs with T3 in the known range.

For the problem of computing the maximal number of common neighbors,
previously Buchsbaum, Giancarlo and Westbrook [4] gave a lower bound of
Ω(n3/2

√
c) to compute the exact value, where c is the max number of the com-

mon neighbors. In this paper, after observing a matching upper bound, we con-
sider the approximation version of the problem, showing that approximating the
number needs Θ̃(n3/2/

√
c) space. Compared to the triangle counting example

where the space complexity Θ(min{n3/T3, n
2}) drops from the maximum pos-

sible value (Θ(n2)) to the minimum possible value (constant), in this common
neighbor example, the space complexity drops from some large value Θ(n3/2)
to some small value Θ(n). Note that the Θ̃(n) space capacity is a well-studied
model (called the semi-stream model) for graph problems, which is interesting
[9] partly because Θ̃(n) is affordable in some Internet applications but higher
space is not.

Not surprisingly, there are also many other problems whose space complexity,
though first proved by considering extreme inputs, remains hard even if the
computed quantity is not at extreme. We will give a simple example in this
category too.

2 Preliminaries and Definitions

We say that an algorithm A (ε, δ)-approximates the function f on input x if
Pr[|A(x) − f(x)| ≤ εf(x)] ≥ 1 − δ. In this paper, we will think of ε and δ as
small constants. A graph G = (V, E) is given in the adjacency streaming model
if the input is a sequence of edges (i, j) ∈ E in an arbitrary order.

2.1 Formulation of the Notion

The most naive way to formulate the notion in Section 1 is to define the space
complexity s(n, q) to be the minimum space needed to compute the quantity

2 A lower bound in terms of all T1, T2 and T3 does not seem quite justified: after all,
for an unknown given graph, we do not know what Ti’s are. But a lower bound in
terms of mere T3 is well-justified for the two reasons mentioned earlier.
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f(x) for all those x satisfying f(x) = q. However, this is obviously a useless
definition because if we already know that f(x) = q then we do not need any
computation. Thus we need to be a little more careful about the definition.

Definition 1. A function f has stream space complexity Θ(s(n, q(n))) if for any
constants c2 > c1 > 0, the best algorithm (ε, δ)-approximating f on any input in
{x : c1q(n) ≤ f(x) ≤ c2q(n)} uses space Θ(s(n, q(n))).

Several comments are in order. First, as mentioned in Section 1, we may desire
that for those inputs that are not in the range, the algorithm outputs “too
high” or “too low”. Actually, in most (if not all) cases, the algorithm working
for Definition 1 can be easily modified (with a multiplicative constant factor
cost added) such that for any constants d1 and d2 with c1 < d1 < d2 < c2 and
d2−d1 ≥ 2ε, the algorithm has the following additional property: it outputs “too
low” if f(x) < d1q(n) and “too high” if f(x) > d2q(n); for those inputs x with
c1q(n) ≤ f(x) ≤ d1f(x) or d2q(n) ≤ f(x) ≤ c2f(x), either an ε-approximation
or a “too low/high” is considered correct. Second, distinguishing between f(x) ≤
(1−ε)cq and f(x) ≥ (1+ε)cq with success probability 1−δ is clearly a relaxation
of the above task for any constant c (since we can let d1 = (1 − ε)c and d2 =
(1 + ε)c). The lower bounds showed in this paper apply to this easier task.

A basic fact that will be used in the proofs is as follows. The problem Index
is a streaming problem where the input is an n-bit string x followed by an index
i ∈ [n], and the task is to output xi with success probability at least 1 − δ.

Fact 1. The Index problem needs (1 − 2δ)n bits of memory.

A generalization of the fact is to consider k bits instead of just one bit. In the
problem k-Index, the input is an n-bit string x followed by k indices i1, ..., ik ∈
[n]. The task is to distinguish between “xi = 1, ∀i = i1, ..., ik” and “xi = 0, ∀i =
i1, ..., ik” with success probability at least 1 − δ.

Fact 2. The k-Index problem needs (1 − 2δ)n/k bits of memory.

This is easy to see by repeating each bit in Fact 1 k times. Also, a simple random
sampling argument shows an O(n

k log 1
2δ ) upper bound for the number of memory

cells.

3 Three Types of Dependence of the Space Complexity
on the Computed Quantity

In this section, we will show three types of dependence of space complexity
s(n, q(n)) on q(n). In Section 3.1, we show a dependence which is the strongest
possible: as q(n) goes from one end (constant) to the other (Θ(n3)), the space
complexity s(n, q(n)) drops from the maximal possible value (Θ(n2)) to the
minimal possible value (constant). In Section 3.2, we show a weaker dependence:
s(n, q(n)) drops from Θ(n3/2) to Θ(n). In Section 3.3, we show one example in
which s(n, q(n)) is independent of q(n).
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3.1 Strong Dependence

The first problem that we study is triangle counting: Given a graph in the
adjacency streaming model, (ε, δ)-approximate the number of triangles in the
graph. Recall that Ti is the number of unordered triples of vertices with i edges,
and thus T3 is the number of triangles. The following theorem gives lower bounds
that match the naive upper bounds: O(n3/T3) for T3 ≥ n

3(1+ε) (by random
sampling) and O(n2) space for T3 < n

3(1+ε) (by storing all the edges).

Theorem 1. Any streaming algorithm distinguishing between T3 ≤ (1− ε)t and
T3 ≥ (1 + ε)t with error probability δ = 1/3 needs Ω(n3/t) space for t ≥ n

3(1+ε)

and Ω(n2) space for t < n
3(1+ε) .

Proof. Consider the case t ≥ n
3(1+ε) first. Let the input graph G consist of 2 parts.

One part is an (n/3, n/3)-bipartite graph H = (L, R, EH) (where L and R are
left and right side vertex sets), and another part J = (VJ , EJ) contains n/3 ver-
tices. Partition L into n/3k blocks L1, ..., Ln/3k, each of size k =

√
3(1 + ε)t/n;

similarly partition R = R1 ∪ ... ∪ Rn/3k. (See Figure 1.) Denote by Hi,j the
subgraph (Li, Rj , EH |Li×Rj ). Now let the stream first give the graph H , with
the promise that each subgraph Hi,j is either empty or complete. Clearly it
needs (n/3k)2 bits of information to specify H . We claim that the streaming
algorithm needs to basically keep all these (n/3k)2 bits of information in order
to approximate the number of triangles in the whole graph.

Actually, we claim that for any (i, j), by choosing the rest of the graph in an
appropriate way, we can know whether Hi,j is empty or complete with probability
1 − δ. Suppose we want to know whether Hi,j is empty or complete, we let the
remaining stream contain all edges in {(a, b) : a ∈ Li ∪ Rj , b ∈ VJ}. If Hi,j is

L R

JH

n/3 n/3n/3

k nodes

blocks

n/(3k)

Fig. 1. A graph for illustration of the proof of triangle counting problem
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complete, then G contains k2n/3 = (1 + ε)t triangles; if Hi is empty, then G
contains no triangle. Since the algorithm can distinguish between T3 ≤ (1 − ε)t
and T3 ≥ (1 + ε)t with probability 1 − δ, it follows that after the first half of
the stream (that specifies H) has passed, we can extract, for any (i, j), the one
bit information about whether Hi,j is empty or complete with probability 1− δ.
Therefore by Fact 1, we need

(1 − 2δ)
( n

3k

)2

=
(1 − 2δ)n3

27(1 + ε)t
= Ω

(
n3/t

)
(1)

bits of memory.
Note that in the above analysis, we implicitly require that block size k ≥ 1

and the number of blocks n/(3k) ≥ 1, for which we need n
3(1+ε) ≤ t ≤ (1/2−δ)n3

27(1+ε) .

For t > (1/2−δ)n3

27(1+ε) , the lower bound is trivially true. For t < n
3(1+ε) , let k = 1 and

then the graph has n/3 triangles if Hi,j is complete. Similar arguments give the
lower bound of (1/2 − δ)n2/9 = Ω(n2), which completes our proof.

Another open question asked in [2] is about the comparison of their algo-
rithm and the naive random sampling one. Their algorithm uses O( 1

ε3 log 1
δ (1 +

T1+T2
T3

)3 log n) space, and they asked when the algorithm is better than the naive
sampling algorithm which uses O( 1

ε2 log 1
δ (1 + T0+T1+T2

T3
)) space. We now show

by some simple algebraic graph theory arguments that the algorithm in [2] is
always no better than the naive random sampling one.

Proposition 1. For any graph we have
(

1 +
T1 + T2

T3

)3

≥ Ω

(
1 +

T0 + T1 + T2

T3

)
, (2)

Proof. First observe that T0 + T1 + T2 + T3 =
(
n
3

)
and that T1 + 2T2 + 3T3 =

m(n − 2) where m is the number of edges in the graph. The latter implies
that T1 + T2 + T3 = Θ(mn). Thus it is enough to prove that T 2

3 = O(m3),
which can be easily done using algebraic arguments as follows. Suppose A is the
adjacency matrix of the graph, then Tr(A3) = 6T3. Now notice that Tr(A3) =∑

i

∑
k aikbki where B = [bij ]ij = A2. It is easy to see that B is also symmetric,

so Tr(A3) =
∑

ik aikbik ≤ √
(
∑

ik a2
ik)(

∑
ik b2

ik). Note that
∑

ik a2
ik =

∑
ik aik =

2m, and
√∑

ik b2
ik = ‖B‖2 = ‖A · A‖2 ≤ ‖A‖2

2 = 2m, we thus have T3 ≤
(2m)3/2/6, as desired.

As mentioned in Section 1, new algorithms are known ([13, 5]) which are better
than the naive sampling algorithm for some graphs. So the above proposition is
mainly of discrete math interest.

3.2 Weak Dependence

The second problem that we study is max common neighbor counting: Given a
graph in the adjacency stream model, (ε, δ)-approximate the maximum number
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of common neighbors, i.e. mcn(G) = maxu,v |{w : (u, w) ∈ E, (v, w) ∈ E}|. In
[4], it is showed that computing the exact value of mcn(G) needs Ω(n3/2

√
c)

space, where c is the max number of common neighbors. In this paper, after
observing a matching upper bound for this exact counting problem, we consider
the approximate version of the problem and show that the space complexity of
approximating mcn(G) is Θ̃(n3/2/

√
c).

In both the upper and lower bounds, we will use the following theorem in
extremal graph theory. Denote by ex(n, H) is the maximal number of edges that
an n-vertex graph can have without containing H as a subgraph. The upper
bound is by Kovari, Sos and Turan [15], and the lower bound is by Furedi [12].

Theorem 2. 1
2

√
tn3/2 − O(n4/3) ≤ ex(n, K2,t+1) ≤ 1

2

√
tn3/2 + n/4.

Now there is a very easy algorithm: keep all the edge information until the
number of edges exceeds 1

2

√
tn3/2 +n/4, in which case the graph contains K2,t+1

for sure; otherwise, use the kept edge information to decide whether mcn(G) ≥ t.
Now we give the algorithm to approximate mcn(G) as in the Algorithm

Approx-mcn(G) box. Its analysis is given by the theorem below.

Algorithm Approx-mcn(G)
Input: a data stream of edges (i, j) ∈ E of a graph G in arbitrary order,
two constants a ∈ (0, 1) and b > 1.
Output: an (ε, δ)-approximate of mcn(G) if mcn(G) ∈ [ac, bc].

1. Use a counter to count the total number m of edges. Stop and output
“mcn(G) > bc” if m > M ≡ 1

2
n3/2

√
bc + n/4.

2. Randomly pick (with replacement) t = 1
aε2

(log 3n2

δ
) 2n

c
vertices

v1, ..., vt. Denote this multi-set by T .
3. Keep all edges incident to T . (If the number exceeds 6Mt

δn
, output

FAIL.)
4. Use the kept edge information to get

c′ = max
u,v∈V −T

t∑
i=1

1[vi is a common neighbor of u and v]

where 1[φ] is the indicator variable for the event φ.
5. Output c′n/t as estimate to mcn(G). If c′ = 0, output mcn(G) < ac.

Theorem 3. For any c and any constants a ∈ (0, 1) and b > 1, Algorithm
Approx-mcn(G) (ε, δ)-approximates mcn(G) for those G with mcn(G) ∈
[ac, bc], and the algorithm uses space O(n3/2 log2 n/

√
c).

Proof. First it is obvious that if the number of edge exceeds M which is larger
than ex(n, K2,bc), then mcn(G) > bc for sure. Now consider m = |E| < M . By
Markov’s Inequality, the total degree of vertices in T is at most
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3
δ

2mt

n
≤ 6Mt

δn
= O

(
n3/2(log n + log 1

δ )
ε2δ

√
c

)
(3)

with probability 1 − δ/3. Now assume mcn(G) = s ∈ [ac, bc], then ∃ u0, v0

sharing a set S0 of s common neighbors. Fix u0, v0 and S0. Since

Pr[u0 ∈ T or v0 ∈ T ] ≤ 2t/n ≤ δ/3 (4)

if c ≥ 12
aδε2 log 3n2

δ . Let Xi(u, v) be the indicator random variable for the event
“the i-th vertex picked is a common neighbor of u and v”, and let X(u, v) =∑t

i=1 Xi(u, v). Then under the condition that u0, v0 /∈ T , we have X(u0, v0) ≤ c′.
Now by Chernoff’s bound,

Pr
[
X(u0, v0) <

(1 − ε)ts
n

]
< e−

ε2ts
2n ≤ e−

ε2tac
2n = δ/(3n2). (5)

Therefore, Pr[c′n/t < (1 − ε)s] ≤ δ/(3n2) < δ/3. On the other hand, by the
definition of c′, we have

Pr[c′n/t > (1 + ε)s] = Pr[c′ > (1 + ε)st/n] (6)
= Pr[∃u, v ∈ V − T, s.t. X(u, v) > (1 + ε)st/n] (7)

≤ n2 · Pr[X(u, v) > (1 + ε)st/n | u, v /∈ T ] (8)

≤ n2 · δ/(3n2) = δ/3. (9)

Putting all things together, the algorithm outputs an ε-approximation with prob-
ability at least 1 − δ.

The analysis of space that the algorithm uses is as follows. It needs O(log n) to
store an vertex v or an edge (u, v), and the algorithm needs to store t vertices and
6MT/(δn) edges. Step 4 is space efficient since we can reuse space to check each
pair (u, v). Thus the total number of bits used in the algorithm is O(Mt

δn log n) =

O
(

n3/2(log n+log 1
δ )

ε2δ
√

c
log n

)
, which is O

(
n3/2 log2 n√

c

)
if ε and δ are constants.

We can also prove a matching lower bound as follows.

Theorem 4. Distinguishing between mcn(G) ≤ (1− ε)c and mcn(G) ≥ (1+ ε)c
with small constant error probability δ needs Ω(n3/2/

√
c) space for small constant

ε (say ε = 0.1).

Proof. Consider the extremal graph H with n − (1 − ε)c − 1 vertices and no
K2,(1−ε)c+1 as a subgraph. For each vertex, partition its neighbors into subsets
of size 2εc, with possibly one subset of smaller size. The total number of edges
in the regular (i.e. not smaller) subsets is at least
√

(1 − ε)c(n−(1−ε)c−1)3/2/2−(n−(1−ε)c−1)2εc−O(n4/3) = Ω(
√

cn3/2) (10)

if ε ≤ 0.1. Now consider the graph G with n vertices, n − (1 − ε)c − 1 of which
are for the graph H , and the rest (1 − ε)c + 1 vertices are denoted by u and S
with |S| = (1 − ε)c. (See Figure 2.)



346 S. Zhang

S

T

v

u

Fig. 2. A graph for illustration of the proof of max common neighbor counting problem

We will use Fact 2 to show the lower bound. Let the streaming first provide
(a subgraph of) H , where for any v ∈ H and each of its 2εc-subsets T , the
edges from v to T may all exist or all not. Fix the content of the memory of
the algorithm. Then for any fixed v ∈ H and any of its 2εc-subsets T , we can
know whether v and T are connected or not by providing the remaining stream
(and running the streaming algorithm) in the following way. Connect v and S,
u and S ∪ T . Now note that if there is no edge between v and T , then an easy
case-by-case study shows that there are no two vertices in the whole graph G
sharing (1 − ε)c + 1 common neighbors. If, on the other hand, v connects to all
points in T , then clearly u and v share (1 + ε)c common neighbors. Thus if we
can distinguish the mcn(G) ≤ (1 − ε)c and mcn(G) ≥ (1 + ε)c with probability
1 − δ, then we can distinguish between the two cases that the edges between v
and T all exist and all of them do not exist with success probability 1− δ, which
need Ω(n3/2√c)/2εc = Ω(n3/2/

√
c) space by Fact 2.

3.3 Independence

Not surprisingly, there are also many problems whose hardness is not due to
the extreme case in nature, though the previous lower bounds were proved by
considering the extreme cases. We just mention one simple example here to
end this section. The problem is to estimate the distance between two vertices
on a graph: For two fixed vertices u, v on a graph G which is given in the
adjacency stream model, (ε, δ)-approximate d(u, v), the distance between u and
v on the graph G. It is not hard to see that distinguishing between d(u, v) ≤ 3
and d(u, v) ≥ n/2 needs Ω(n) bits of memory. Actually, consider the graph
consisting of two parts. One is a n/2-long path connecting u and v, and another
part contains n/4−1 disjoint edges (u1, v1), ..., (un/4−1, vn/4−1). We first stream
in these two parts, but each edge (ui, vi) may or may not exist. Then to know
whether a particular edge (ui, vi) exists or not, we connect (u, ui) and (v, vi). If
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(ui, vi) exists, then the d(u, v) = 3; otherwise it is n/2. Thus we need n/4−1 bits
of memory to distinguish these two cases. Note that in [10], a 2t + 1 spanner is
constructed using O(tn1+1/t log2 n) space thus the graph distance problem can
be approximated up to a factor of 2t + 1 by using the same amount of space,
which implies that the Ω(n) lower bound is almost optimal for large constant
approximation.

4 Discussions

Previous research on streaming algorithms mainly focused on designing space-
efficient algorithms for important tasks; usually, log or even constant space com-
plexity is desired. There may be more problems that, though may be very im-
portant in practical applications, did not get well studied theoretically simply
because a high lower bound can be easily shown (by considering extreme inputs).
This paper studies some problems which are hard for general case but easy if the
computed quantity is within some range that we care about and/or the practical
data are actually in.

Clearly, the same question can be asked for general algorithms. And within
the domain of streaming algorithms, the problems studied in this paper happen
to be those on graphs, but we believe that there are many more other problems
having the same interesting phenomena.
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