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Abstract

We define counting classes #BPP and #BQP as natural extensions of the classical
well-studied one #P to the randomized and quantum cases. It is then shown that
P#P = P#BQP.

1 Introduction

One important type of computational tasks are counting problems, and a particularly
interesting class of such problems are for counting the number of the certificates. These
counting problems naturally arise in a plethora of fields ranging from enumerative com-
binatorics, to statistical physics and economics; see [AB09] (Chapter 17) for a number
of specific examples. Counting certificates is in general harder than the corresponding
NP problems, which merely requires to decide for an input instance whether at least
one certificate exists.

In [Val79b] Valiant initialized the study of counting problems from a complexity
perspective by defining a counting class called #P. Precisely, the class contains the
functions f : {0, 1}∗ → N which have a polynomial-time nondeterministic Turing ma-
chine M with the number of accepting paths on an input x equal to f(x). In another
paper [Val79a] of Valiant, it was showed that computing Perm, the permanent of {0,1}-
matrices, is #P-complete. That is to say, Perm is in #P and any other function in
#P can be computed in polynomial time given Perm as an oracle. This implies the
computational hardness of computing Perm, in a strong contrast to the existence of
efficient algorithms for computing the determinant, a quantity closely related to per-
manent, of a matrix. More properties of the class #P were later discovered, including
Toda’s discovery that the polynomial hierarchy PH is in P#P.

In this paper, we consider counting classes in the randomized and quantum computa-
tional modes. When the probability is involved, one issue needs to be handled properly.
For a predicate P (x, y) decided by a probabilistic or quantum Turing machine (PTM
or QTM), a (candidate) certificate y is usually not perfectly good or perfectly bad as in
the deterministic Turing machine case, but has an accepting probability, and the prob-
abilities for different y’s can be quite densely distributed in [0, 1]. As in bounded-error
classes, we assume a gap between the good and bad certificates by requiring that each
certificate has acceptance probability at least 2/3 or at most 1/3. Then f(x) is equal
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to the number of the certificates with large acceptance probability; see the next section
for precise definition of #BPP.

When it comes to the quantum counting, more issues arise. Since the certificate
space is a continuous Hilbert space, there are infinitely many good certificates in gen-
eral, and thus counting may not be meaningful. The continuity also makes the gap
between acceptance probabilities impossible: If certificates states |y1〉 and |y2〉 have
acceptance probabilities, say, ε and 1− ε, respectively, then the acceptance probability
for a superposition of |y1〉 and |y2〉 can be any real number between ε and 1 − ε. A
natural measure to use is the dimension of subspace of good certificates. However, how
can we guarantee that the set of good certificates form a subspace?

All these issues shall be settled by a spectral result in [MW05]. Basically, what was
shown there is a useful fact that if the verifier is a uniform family of quantum circuit,
then there is a natural spectral decomposition of the witness space V = ]pVp, such that
in each eigenspace Vp, the corresponding eigenvalue p is the acceptance probability of a
witness |ψp〉 ∈ Vp. In addition, a general witness |ψ〉 =

∑
p αp|ψp〉, where |ψp〉 ∈ Vp, has

acceptance probability
∑

p |αp|2p. Based on this, we define the counting class #BQP
as those functions f with a uniform family of quantum circuit of polynomial size such
that all these eigenvalues are either at least 2/3 or at most 1/3, and f(x) is equal to
the number of eigenvalues at least 2/3.

One important question in quantum computing is to understand the ultimate power
of quantum computers in various computational modes. Since counting problems form
an important class of computational tasks, it is desirable to understand the power of
quantum counting classes. In this paper, we shall show the following relation of #BQP
and #P.

Theorem 1.1 P#BQP = P#P.

Another way to look at the result is from a central question of where BQP sits
in classical complexity classes. While it has been known for more than a decade that
BQP ⊆ PP ⊆ P#P, pursuing a better upper bound turns out to be much harder. One
way to improve the containment is to see how much we can boost the power of BQP
so that it is still upper bounded by a classical complexity class such as PP. Observing
that the proof that BQP ⊆ PP does not use the bounded-error assumption of BQP,
Watrous [Wat09] improved the relation to PQP = PP, where PQP is the same as
BQP but only requiring the acceptance probability to be strictly larger than 1/2 for
Yes instances and at most 1/2 for No instances. The result of this note can be viewed
in the same spirit as an improvement of BQP ⊆ P#P by pushing up the BQP to
P#BQP.

Related work

One classical result about the number of witness and its implication on hardness is the
UniqueNP problem studied by Valiant and Vazirani [VV86], who showed that an NP
problem with the promise of at most one certificate exists is no easier than the problem
without the promise. Recently the result was extended to the randomized [ABOBS08]
and quantum [JKK+10] cases, where a gap is also assumed between the “good” and
“bad” certificates.
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2 Preliminaries and notation

In the model for #BQP, there is a uniform family of quantum circuits of polynomial
size. We can equivalently think of the circuits as depending on input, so the verifier
for input x is Vx. Suppose that Vx has an input space W ⊗ S, where W is the space
for an m-qubit potential witness |ψ〉 ∈W , and S is a k-qubit working space, initialized
as |0k〉. On a particular witness |ψ〉, the circuit operates on |ψ〉 ⊗ |0k〉 and, at the end
of the output, measures the first qubit in the {|0〉, |1〉} basis and output the result.
Overloading the notation, we also use Vx to denote the unitary operation that the
circuit applies. Define two projections

1. Πacc = V †x ΠaccVx: projection onto the subspace corresponding to the first qubit
being 1 if the computation Vx if performed.

2. Πinit = Im ⊗ |0k〉S〈0k|S : projection onto the subspace of S containing |0k〉.
A simple but important property for analysis of QMA feasible is to consider the

eigensystem of ΠinitΠaccΠinit. Since it is a positive operator, it enjoys a spectral
decomposition. There are 2m eigenvectors |φi〉 of ΠinitΠaccΠinit, all in the form of
|ψi〉 ⊗ |0k〉. The eigenvalue for |φi〉 turns out to be the accept probability pi of the
witness |ψi〉:

λi(ΠinitΠaccΠinit) = 〈ψi0k|ΠinitΠaccΠinit|ψi0k〉 = ‖ΠaccΠinit|ψi0k〉‖2 = ‖Πacc|ψi0k〉‖2
(1)

Now the acceptance probability for a general witness state
∑

i αi|φi〉 can also be com-
puted easily:

‖Πacc

∑
i

αi|φi〉‖2 = 〈
∑

i

αiφi|Πacc|
∑

i

αiφi〉 =
∑
ij

α∗iαj〈φi|Πacc|φj〉 =
∑

i

|αi|2pi

(2)
where the last equality uses the fact that the eigenvectors are orthogonal. With all
these setup, we can define the quantum counting class. First recall that #P is defined
as follows.

Definition 2.1

f ∈ #P if ∃ a polynomial-time Turing machine V s.t. f(x) = |{w : V (x,w) = 1}|.
(3)

The counting classes #BPP and #BQP are defined as follows.

Definition 2.2 f ∈ #BPP if ∃ a polynomial-time probabilistic Turing machine V s.t.

1. ∀w, V (x,w) = 1 with probability either at least 2/3 or at most 1/3,

2. f(x) = |{w : V (x,w) = 1 with probability at least 2/3}|.

Definition 2.3 f ∈ #BQP if ∃ a uniform family of quantum circuits {Vx} of size
polynomial in |x| s.t.

1. The eigenvalues of ΠinitΠaccΠinit are all either at least 2/3 or at most 1/3,

2. f(x) = the number of eigenvalues of ΠinitΠaccΠinit that are at least 2/3.
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3 On the limitation of the quantum counting class

In this section we shall show that #BQP and #P, when working as oracles for P,
give the same class. The idea is to first amplify the correct probability, and then
use the double-counting on trace. The same idea was used in [MW05] to prove that
QMA ⊆ PP. Let us first recall the following amplification result for QMA.

Lemma 3.1 (Strong Amplification of QMA, [MW05]) For any problem in
PromiseQMA, and any polynomials m(n) and r(n), there is a universal family of
polynomial-size verifiers {Vx : |x| = n} with m(n)-qubit witness space and O(r(n))-qubit
working space s.t. the eigenvalues of ΠinitΠaccΠinit are either more than 1− 2−r(n) or
less than 2−r(n).

Proof (of Theorem 1.1) We shall simulate each query to a #BQP oracle by a #P
oracle with some further polynomial-time post-processing. For a query to a function
f ∈ #BQP, there exists a quantum verifier Vx with m-qubit witness space. The strong
amplification in Lemma 3.1 gives both the soundness error and completeness error
smaller than 2−r. Actually, denote by Π′init and Π′acc the corresponding projections for
the new verifier, then the eigenvectors of Q′ = Π′initΠ

′
accΠ′init are the same as those

of Q = ΠinitΠaccΠinit, but the corresponding eigenvalues change to either more than
1− 2−r or less than 2−r.

By the definition of #BQP, f(x) is equal to the number of eigenvalues of Q that
are at least 2/3, which is in turn equal to the the number of eigenvalues of Q′ that are
at least 1− 2−r. Now consider the trace of Q′. On the one hand, we have

tr(Q′) =
∑

i

λi(Q′) ≥ f(x)(1− 2−r). (4)

On the other hand, since all the “small” eigenvalues are less than 2−r(n), we have

tr(Q′) =
∑

i

λi(Q′) ≤ (2m − f(x)) · 2−r + f(x) · 1 = f(x)(1− 2−r) + 2m−r. (5)

Note that one desirable property of strong amplification is the flexibility of choice of r
to be any polynomial of n, independent of m. Let r = m+ 2, then

f(x)−1/4 ≤ f(x)(1−2−(m+2)) ≤ tr(Q′) ≤ f(x)(1−2−(m+2))+1/4 ≤ f(x)+1/4. (6)

where the first inequality is because f(x) ≤ 2m due to the assumption that the verifier
for f has m-qubit witness space.

Without loss of generality, we can assume that the quantum circuit is made of
Toffoli, Hadamard and i-shift gates. Each entry (i, j) of the whole matrix Q′ equals to
h(i, j)/2g where h is an #P function and g = poly(n) is the number of Hadamard gates
in the circuit. Since the trace also equals to the summation of the diagonal entries, and
#P is closed under exponential sum, we get

tr(Q′) = h/2g (7)

for some GapP function h. Suppose h = h1 − h2 for some #P functions h1 and
h2. Now we use our #P oracle to get h1 and h2, and then compute [(h1 − h2)/2g] in
deterministic polynomial time, where the bracket is to round the number to the closest
integer. By Eq. (6), this is equal to f(x). This completes the simulation of the query
to the #BQP oracle. �
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