
Note on the average sensitivity of monotone Boolean functions∗

Shengyu Zhang †

Abstract

We consider the average sensitivity s̄(f) of monotone functions f . First we give an exact rep-
resentation of s̄(f) in terms of the number of 1-inputs with weight i (i = 1, ..., n). We then give a
lower and an upper bound for s̄(f), both are tight for some monotone functions.

keyword computational complexity, sensitivity

1 Introduction

The sensitivity s(f) is one of the most important and well studied complexity measures (see [6] by
Buhrman and de Wolf for an excellent survey on many measures). The average sensitivity s̄(f),
which is the sensitivity average on inputs, recently draws some attention. For example, Bernasconi
shows large gaps between the average sensitivity and the average block sensitivity [4], Boppana
considers the average sensitivity of bounded-depth circuits [5], and Shi shows that the average
sensitivity is a lower bound of approximation polynomial degree, and thus can also serve as a lower
bound of quantum query complexity [8].

In this note we consider the average sensitivity of monotone functions. In particular, we give an
exact representation of s̄(f) in terms of the number of 1-inputs with weight i (i = 1, ..., n). We also
derive a lower and a Θ(

√
n) upper bound for s̄(f), both are tight for some monotone functions.

Quantum computing gets rapidly developed in the last decade. In the past several years, quan-
tum query complexity is extensively studied, and many lower bounds are proven by the polyno-
mial method proposed by Beal, Buhrman, Cleve, Mosca and de Wolf [3], and the quantum adver-
sary method proposed by Ambainis [2, 1]. Some problems such as Triangle, k-Clique, Graph
Matching, and And-Or Tree draw a lot of attention recently partly because their exact quan-
tum query complexity is still unknown. Recently it has been independently showed by Zhang [10],
Szegedy [9], Laplante and Magniez [7] that it is impossible to use the quantum adversary method to
give lower bounds better than the current known ones for those problems. So we have to use other
lower bound techniques to try to improve the current lower bounds. The average sensitivity is a
lower bound of quantum query complexity [8]. However, the results in the present paper implies that
the average sensitivity method is not strong enough either to improve the current lower bounds of
those problems, because all the problems mentioned above are monotone functions, and the current
lower bounds are already no less than Ω(

√
n) [10].

2 The average sensitivity of monotone functions

The definition of the sensitivity and the average sensitivity are as follows.

Definition 1 The sensitivity of a Boolean function f on input x = x1x2...xn ∈ {0, 1}n is

s(f, x) = |{i ∈ {1, ..., n} : f(x) 6= f(x(i))}|,
∗This research was supported in part by NSF grant CCR-0310466.
†Computer Science Department, Princeton University, NJ 08544, USA. Email: szhang@cs.princeton.edu

1

where x(i) is the n-bit string obtained from x by flipping xi. The sensitivity of f is

s(f) = max
x∈{0,1}n

s(f, x),

and the average sensitivity of f is

s̄(f) =
1
2n

∑

x∈{0,1}n

s(f, x).

Some notations are as follows. Let [n] to denote the set {1, ..., n}. For any input x ∈ {0, 1}n,
denote S0(x) = {i ∈ [n] : xi = 0} and S1(x) = {i ∈ [n] : xi = 1}. The weight of x is |x| = |S1(x)|.
We say x is a b-input if f(x) = b (b ∈ {0, 1}). Denote by Ni(f) the number of 1-inputs that have
weight i. Clearly, if f is not constant, then f(00...0) = 0 and f(11...1) = 1, thus we have N0(f) = 0
and Nn(f) = 1.

It turns out that the average sensitivity of any non-constant monotone function only depends
on {Ni(f)}i=1,...,n−1, as showed by the following theorem.

Theorem 1 For any non-constant monotone Boolean function f ,

s̄(f) = [2
n∑

i=1

iNi(f)− n

n∑

i=1

Ni(f)]/2n−1 (1)

Proof We shall use notations omitting f when no confusion is caused. For example, Ni is short
for Ni(f). Let sall(f) =

∑
x∈{0,1}n s(f, x), and we shall show sall(f) = 4

∑n
i=1 iNi − 2n

∑n
i=1 Ni,

which immediately implies (1).
We first define

Ai,6= = {(x, y) : |x| = i, y = x(j) for some j ∈ S0(x), f(x) 6= f(y)}. (2)

Then it is easy to check that sall = 2
∑n−1

i=0 |Ai,6=|. (The factor of 2 is because any (x, y) ∈
Ai,6= contributes 1 for s(f, x), and also contribute 1 for s(f, y), but the latter is not counted in∑n−1

i=0 |Ai, 6=|.) We further define

Ai,b = {(x, y) : |x| = i, y = x(j) for some j ∈ S0(x), f(x) = f(y) = b}, (3)

for b ∈ {0, 1}, and
Ai = {(x, y) : |x| = i, y = x(j) for some j ∈ S0(x)} (4)

Note that Ai,0, Ai,1, Ai,6= is a partition of Ai (i.e. Ai,0, Ai,1, Ai, 6= are pairwise disjoint and the union
of them is exactly Ai), so |Ai, 6=| = |Ai| − |Ai,0| − |Ai,1|. It is easy to see |Ai| =

(
n
i

)
(n− i), and

Ai,0 =
⋃

|y|=i+1,f(y)=0

{(x, y) : y = x(j) for some j ∈ S0(x)} (5)

by noting the monotonicity of f . Also note that the sets in the union above are disjoint, so we have

|Ai,0| =
[(

n

i + 1

)
−Ni+1

]
(i + 1). (6)

Similarly, we know

|Ai,1| = |
⋃

|x|=i,f(x)=1

{(x, y) : y = x(j) for some j ∈ S0(x)}| = Ni(n− i). (7)

Therefore,
∑n−1

i=0 |Ai,6=|
=

∑n−1
i=0 (|Ai| − |Ai,0| − |Ai,1|)

=
∑n−1

i=0

(
n
i

)
(n− i)−∑n−1

i=0 Ni(n− i)−∑n−1
i=0

[(
n

i+1

)−Ni+1

]
(i + 1)

= n
∑n−1

i=0

(
n
i

)−∑n−1
i=0 i

(
n
i

)− n
∑n−1

i=0 Ni +
∑n−1

i=0 iNi −
∑n−1

i=0 (i + 1)
(

n
i+1

)
+

∑n−1
i=0 (i + 1)Ni+1

= n(2n − 1)− 2
∑n−1

i=0 i
(
n
i

)− n− n
∑n−1

i=0 Ni + 2
∑n−1

i=0 iNi + n

= n(2n − 1)− 2
∑n−1

i=1 i
(
n
i

)− n
∑n−1

i=1 Ni + 2
∑n−1

i=1 iNi

(8)
Note that 2

∑n−1
i=1 i

(
n
i

)
=

∑n−1
i=1 i

(
n
i

)
+

∑n−1
i=1 (n− i)

(
n
i

)
= n

∑n−1
i=1

(
n
i

)
= n(2n − 2). Thus we get

n−1∑

i=0

|Ai, 6=| = n + 2
n−1∑

i=1

iNi − n

n−1∑

i=1

Ni = 2
n∑

i=1

iNi − n

n∑

i=1

Ni, (9)

as desired. 2

We now consider the range of the average sensitivity s̄(f). In general, s̄(f) can be tiny, for
example, s̄(And) = s̄(Or) = n/2n−1, and it is easy to argue that this is the smallest possible
s̄(f) for non-constant f , no matter whether f is monotone or not. On the other hand, the average
sensitivity can also be large, for example s̄(Parity) = n. But it turns out that for monotone
functions, we have the following tight bounds for the average sensitivity.

Theorem 2 For any non-constant monotone Boolean function f ,

n/2n−1 ≤ s̄(f) ≤
(

n

bn/2c
)
dn/2e/2n−1 = Θ(

√
n). (10)

The lower bound is tight for functions And and Or, and the upper bound is tight for the function
Majority.

Proof Again let sall(f) =
∑

x∈{0,1}n s(f, x), and we shall show

2n ≤ sall(f) ≤ 2
(

n

bn/2c
)
dn/2e. (11)

The proof of the lower bound part of (11) is easy and omitted here; we now show the interesting
upper bound part. Suppose x̄ is one of those 1-inputs with minimal weight. That is, f(x̄) = 1, and
for any i ∈ S1(x̄), we have f(x̄(i)) = 0. Note that for any i ∈ S0(x̄), we have f(x̄(i)) = 1 because f
is monotone. We define another function f ′ by

f ′(x) =

{
0 if x = x̄

f(x) if x 6= x̄
.

Then f ′ is also monotone. Also note that from f to f ′, we only change function value for one input
(i.e. x̄), thus the the change of sall(f) to sall(f ′) is only due to this change. To be more precise,
each i ∈ S1(x̄) contributes 2 in sall(f) (1 in s(f, x̄) and 1 in s(f, x̄(i))), but does not contribute in
s(f ′); each i ∈ S0 does exactly the opposite: it contributes 2 in s(f ′) but does not contribute in
s(f). Therefore, we have

sall(f ′) = sall(f)− 2|x̄|+ 2(n− |x̄|) (12)

which implies sall(f ′) > sall(f) if |x̄| < n/2. So changing the function value for a minimum weight
1-input x increases sall if |x| < n/2. We repeat this process until f(x) = 0 for all x with |x| < n/2,
the the sall increases during the course. Symmetrically, we use a similar way to let f(x) = 1 for all
x with |x| > n/2, and sall also increases during the course. We eventually end up with a function

fmax with fmax(x) = 0 if |x| < n/2 and fmax(x) = 1 if |x| > n/2. If n is odd, then this is exactly
the function Majority, whose sall is 2

(
n

(n−1)/2

)
n+1

2 . If n is even, then the only inputs whose
function values are not determined yet are those with weight equal to n/2. But actually whether
the function value is 0 or 1 does not matter to sall because of Equation (12). Thus we also have
sall(fmax) = sall(Majority) = 2

(
n

n/2

)
n/2. Combining the two cases completes the proof of the

upper bound of (11). 2

References

[1] A. Ambainis. Polynomial degree vs. quantum query complexity, FOCS’03, 230-241, 2003. Earlier
version at quant-ph/0305028

[2] A. Ambainis. Quantum lower bounds by quantum arguments, Journal of Computer and System
Sciences, 64:750-767, 2002. Earlier version at STOC’00

[3] R. Beals, H. Buhrman, R. Cleve, M.Mosca, R. deWolf. Quantum lower bounds by polynomials.
Journal of ACM, 48: 778-797, 2001. Earlier versions at FOCS’98 and quant-ph/9802049

[4] A. Bernasconi. Sensitivity vs. block sensitivity (an average-case study). Information Processing
Letters, 59(3):151-157, 1996.

[5] R. B. Boppana. The average sensitivity of bounded-depth circuits. Information Processing Let-
ters, 63(5):257-261, 1997

[6] H. Buhrman, R. de Wolf. Complexity measures and decision tree complexity: a survey. Theo-
retical Computer Science, Volume 288, Issue 1, 21-43, 2002

[7] S. Laplante, F. Magniez. Lower bounds for randomized and quantum query complexity using
Kolmogorov arguments. 19th IEEE Conference on Computational Complexity, 294-304, 2004.
Earlier version at quant-ph/0311189

[8] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximating polynomials
by influence of Boolean variables. Information Processing Letters, 75(1-2): 79-83, 2000. quant-
ph/9904107

[9] M. Szegedy. A note on the limitations of quantum adversary method, manuscript

[10] Shengyu Zhang. On the power of Ambainis’ lower bounds, 31st International Colloquium on
Automata, Languages and Programming, 1238-1250. Earlier version at quant-ph/0311060

