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Abstract

We introduce a roommate market model, in which 2n
people need to be assigned to n rooms, with two people
in each room. Each person has a valuation to each room,
as well as a valuation to each of other people as a room-
mate. Each room has a rent shared by the two people liv-
ing in the room, and we need to decide who live together
in which room and how much each should pay. Vari-
ous solution concepts on stability and envy-freeness are
proposed, with their existence studied and the computa-
tional complexity of the corresponding search problems
analyzed. In particular, we show that maximizing the
social welfare is NP-hard, and we give a polynomial-
time algorithm that achieves at least 2/3 of the maxi-
mum social welfare. Finally, we demonstrate a pricing
scheme that can achieve envy-freeness for each room.

1 Introduction
Resource allocation is concerned with how to distribute
available resources for different users. The practical appli-
cations of resource allocation include activities scheduling,
project management, distribution of income in public fi-
nance, human resources management in strategic planning,
etc..

One natural measurement for the quality of an outcome
of a resource allocation mechanism is social welfare, which
is the summation of utilities of all agents. However, the op-
timization of social welfare is not always the unique objec-
tive, and stability is usually another important concern. An
allocation is stable if no coalition can devise new trades that
made them better off. The stability is a central notion in co-
operative game theory.

The stable matching problem has attracted a lots of re-
searchers’ attention since the seminal work (Gale and Shap-
ley 1962). A line of work propose many variants and develop
many efficient algorithms (Irving, Manlove, and Scott 2000;
2003; Baıou and Balinski 2000; Bansal, Agrawal, and Mal-
hotra 2003; Malhotra 2004). Besides the theoretical interest,
some algorithms have been successfully applied to matching
systems such as National Resident Matching Program in the
US and kidney exchange (Roth, Sönmez, and Ünver 2005).
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One important extension of stable matching problem is
stable roommate problem (Gale and Shapley 1962). In a
given instance of the roommates problem, each of 2n partic-
ipants ranks the others in strict order of preference. A match-
ing is stable if there is no pair of participants such that both
prefer the other to their current partners. Irving (Irving 1985)
gave an efficient algorithm to decide whether there exists a
stable solution and to output one if existing.

In a different vein, roommate market can be considered
as a two sided market if we consider how to assign pairs of
roommates into rooms based on their evaluations to rooms.
A classic model for this is assignment game, in which each
seller has a unique item to sell and each buyer has a unit
demand (Shapley and Shubik 1971). The goal of assignment
game is to compute a matching µ along with a vector of
prices p. An desirable output is a price vector and a feasible
assignment at which each seller maximizes revenues, each
buyer maximizes net valuations, and markets clear.

In this paper, we propose a novel roommate market model
that takes both room sharing and pricing into consideration.
In this model, each participant i ∈ I has a valuation vir
of all the rooms r and, at the same time, has a happiness
valuation hij of all the other participants j as the potential
roommate. An assignment is set of triples µ = {(i, j, r) :
i, j ∈ I, r ∈ R}, with person i and j assigned to room r
for each (i, j, r) ∈ µ. A rent vector p ∈ RI∪R+ specifies the
amount of rent pi that each person i ∈ I should pay and also
the room rent pr for each room r. If (i, j, r) ∈ µ, then it
holds that pi + pj = pr. For each (i, j, r) ∈ µ, the utility
of person i is her happiness hij plus her evaluation vir of
the room r, minus the price pi she pays. The social welfare
of assignment µ is defined as the summation of utilities of
all participants plus the prices of all rooms, or equivalently
the summation of the happiness of all participants and the
evaluations of all rooms induced by the assignment µ. 1 For
the problems studied in this paper vir and hij are given as
input, and the task is to find a solution, including the assign-
ment and rent vector, to satisfy certain desirable properties.

1Here we include the room prices in the social welfare because
in canonical two-sided market (Roth and Sotomayor 1992), the so-
cial welfare includes the utility of agents from both sides. In our
case, the utility of a room is its price, and the total price of all
rooms can be viewed as the utility of the property owner (such as
the university).



We also consider the scenario where the rent vector p is also
part of input, corresponding to practical situations where the
rent is set by university in line with the market value. Indeed,
in most university housing, there is a fixed rent for all rooms
(of the same type) and the two roommates in the same room
pay the same rent. When the rent vector p is given, a solution
to be found is simply an assignment.

Compared to the classic stable roommate model, ours
quantifies the preference over potential roommates, allowing
us to quantitatively define social welfare and to approximate
its maximum value. In addition, we add the influence of the
room valuation into consideration, making the model more
applicable to certain scenarios.

Our Results
Our results focus on three major notions: social welfare, sta-
bility and envy-freeness.

We show that it is NP-hard to find a maximum social wel-
fare assignment even if the valuations are all 0-1 values. On
the positive side, we give an O(n3) time algorithm that can
output an assignment with social welfare at least 2/3 of the
optimal.

For stability, we consider several solution concepts to
cater different situations. A solution is 2-person stable
(2PS) if no pair of participants living in different rooms
can both gain positive utility by swapping with each other.
We show that it is NP-hard to find a solution satisfying this
weaker property (2PS) even assuming the existence of such
solutions. Actually, even deciding whether there exists a 2-
person stable solution is also NP-hard.

One may go further and consider a practical situation that
two participants want to switch rooms need to get consent
of their roommates. This leads to the concept of 4-person
stability: A solution is 4-person stable (4PS) if there is
no pair of rooms such that all 4 people in those rooms can
increase their individual utility by swapping two residents
originally living in different rooms. The complexity of find-
ing a 4-person stable solution is quite different from that for
2-person stable solution. We show that there always exists
a solution that is 4-person stable and demonstrate an O(n2)
time algorithm that finds a solution that is 4-person stable.
Furthermore, targeting on achieving both stability and good
social welfare, we can find a 4PS solution with social wel-
fare at least 2/3 of the optimal, with the running time still a
polynomial (albeit with an exponent larger than 2).

Finally, we consider envy-freeness, a property stronger
than the stability mentioned above. A solution is person
envy-free if each person cannot increase her utility by
switching positions with any other person. It turns out that
this is too strong a concept and such solution does not exist
in general. A weaker concept is room envy-freeness where
the two roommates living in a room are considered as a
whole: A solution is room envy-free if any two people shar-
ing a room cannot increase their total utility by switching
to any other room. It turns out that a room envy-free solu-
tion always exists and can be found efficiently. One can also
consider room stability, elaborated later.

The above results are summarized in Table 1.

Related Work
From the seminal paper (Gale and Shapley 1962), the stable
matching has been widely studied. Many variants of stable
matching has been proposed based on various practical ap-
plications (Irving, Manlove, and Scott 2000; 2003; Baıou
and Balinski 2000; Bansal, Agrawal, and Malhotra 2003;
Malhotra 2004).

Our roommate market model is closely related to two
problems: 3-Dimensional Stable Matching (Knuth 1997)
and Room Assignment-Rent Division (Abdulkadiroğlu,
Sönmez, and Ünver 2004). The 3-Dimensional Stable
Matching considers how to allocate 3n participants into n
groups with each groups exactly 3 participants based on
the preference over the combinations of two other partici-
pants. It is a natural extension of stable matching problem to
high dimensional graph. Recently, this variant has attracted
much attention (Ng and Hirschberg 1991; Boros et al. 2004;
Eriksson, Sjöstrand, and Strimling 2006; Huang 2007).
Many stability notions have been proposed and studied, but
all notions are NP-complete.

The second problem Room Assignment-Rent Division
problem concerns how to allocate rooms and share the rent
among a group of friends to appeal all of them. The pa-
per (Abdulkadiroğlu, Sönmez, and Ünver 2004) proposed an
auction mechanism which mimics the market mechanism.
Their model is a classic assignment game and their auction
method ends up with envy free assignment-rent division. In
contrast to our model, their model does not consider the in-
fluence of roommate and this is similar to notion of room
envy free in our model.

2 Roommate Assignment: Market Model
and Solution Concepts

The roommate market problem considers how to assign
2n people to n rooms with 2 people in each room. Let
I = {1, 2, . . . , 2n} be the set of participants and R =
{r1, r2, . . . , rn} be the set of rooms. An instance includes
a pair of matrices 〈H,V 〉:
• H = {hij | i, j ∈ I, i 6= j}, where hij is the happiness

of person i when living with j as roommates.

• V = {vir | i ∈ I, r ∈ R}, where vir is the valuation of
person i to room r.

All happiness values hij and room evaluations vir are non-
negative real numbers.

An assignment µ is a set of n triples (i, j, r), specifying
that person i and person j live in room r. Each person ap-
pears in exactly one tuple, so does each room. We some-
times also call a perfect matching among the 2n people a
roommate matching. A rent vector p ∈ RI∪R+ specifies the
amount of rent pi that each person i ∈ I should pay and
also the room rent pr for each room r. If (i, j, r) ∈ µ, then it
should hold that pi+pj = pr. In roommate market problem,
we try to find a solution consisting of a pair (µ, p) of assign-
ment and rent vector. Sometimes the rent vector is given as
part of input. In that case, a solution is merely an assignment
µ.



Solution Concept Existence Find one Find optimal
maximum social welfare always NP-hard 2

3 approx. in O(n3) time
2-person stable not always NP-hard N/A
4-person stable always O(n2) 2

3 -approx. in time O(n5)
Person envy-free not always NP-hard N/A
Room envy-free always O(n4) 2

3 -approx. in O(n4) time
Room stable always O(n3) 2

3 -approx. in O(n3) time

Table 1: The computational complexity of different stable solutions. The column “Find one” is to find one solution satisfying
the property specified by the row assuming it exists. The column “Find optimal” is to find one solution maximizing social
welfare among all solutions satisfying the property specified by the row.

Given µ and p, the utility of person i is defined as ui =
vir+hij−pi, where r is the room i lives in and the roommate
is j, i.e. (i, j, r) ∈ µ. For an assignment µ, the social welfare
is W (µ) =

∑
i∈I(ui + pi) =

∑
(i,j,r)∈µ(hij + hji + vir +

vjr). One target is to find solution with large social welfare.
Fairness is another important target other than large so-

cial welfare. Next we define some solution concepts about
stability and envy-freeness. We start to consider stability for
two people living in different rooms. If person i swaps with
person j, then i needs to pay pj , the rent that j is sup-
posed to pay, and j needs to pay pi. The next definition is
a counterpart of the “exchange stability” in traditional sta-
ble roommate problem (with preference lists) (Alcalde 1994;
Cechlárová and Manlove 2005; Irving 2004).
Definition 1. A solution is 2-person stable, or 2PS for short,
if no pair (i, j) of people living in different rooms can swap
and increase both their utilities. That is, if (i, i′) are as-
signed in room r and (j, j′) are assigned in room s 6= r,
then vis + hij′ − pj ≤ vir + hii′ − pi or vjr + hji′ − pi ≤
vjs + hjj′ − pj .

One can also take the roommates of i and j into consider-
ation, since their objection may also make the swap of i and
j infeasible.
Definition 2. A solution is 4-person stable, or 4PS for short,
if no pair (i, j) of people living in different rooms can swap
and make all 4 people in the two rooms increase their utili-
ties.

Since all 4 people increase their utilities implies 2 of them
increase their utilities, the 4-person stability is a weaker so-
lution concept than the 2-person stability.

We then consider envy-freeness, a solution concept
stronger than stability. The stability basically says that no
two participants prefer each other. The envy-freeness re-
quires that no single participant prefers any other one.
Definition 3. A solution is person envy-free (PEF for short)
if no person i envies another person j in a different room.
That is, if i is assigned in room r, paying price pi and living
with i′, and j is assigned in room s 6= r, paying price pj and
living with j′, then ui = vir + hii′ − pi ≥ vis + hij′ − pj .

However, unlike in one-to-one assignment games where
an envy-freeness assignment always exists and can be found
efficiently, it turns out that in our two-to-one setting, this per-
son envy-freeness is way too strong to exist. It actually im-
plies 4PS, 2PS and REF (defined next). Therefore we con-

sider the scenario that the two people living in a room as
a whole and need to move at the same time (for instance,
when they are couples). This leads to the following room
envy-freeness concept.
Definition 4. A solution is room envy-free (REF for short)
if no pair of roommates (i, j) envies any other pair of room-
mates (k, l). That is, if (i, j) are assigned in room r, paying
price pr in total, and (k, l) are assigned in room s 6= r, pay-
ing price ps in total, then vir + vjr − pr ≥ vis + vjs − ps.

Finally, the room envy-freeness clearly implies room sta-
bility (RS), which requires that no pair of roommates (i, j)
living in room r and pair of roommates (k, l) living in room
s like to switch rooms so that (i, j) live in s and (k, l) live in
r.

In general, we will use the term blocking pair to refer to
the two participants or triples that break the stable or envy
free condition.

The following graph shows the relationship between these
concepts.

Solution concepts and their relations

PEF

REF 4PS

RS

2PS

Figure 1: The arrow A → B means that concept A implies
concept B.

3 Social welfare maximization
In this section, we consider how to maximize social welfare.
Note that social welfare depends solely on the assignment
but not on rent vector. Thus whether the rent vector is given
as part of input or is required as part of output does not mat-
ter for maximizing social welfare. We will first prove the
NP-hardness of finding a maximum social welfare assign-
ment, and then give an algorithm that can find a solution
with social welfare at least 2

3 of the optimal in O(n3) time.



Finding maximum social welfare is NP-hard
In this section, we show that it is NP-hard to find a maximum
social welfare assignment by a reduction from Tripartite Tri-
angles Partition (TTP) problem. Given an undirected tripar-
tite graph G = (X ∪ Y ∪ Z,E) with |X| = |Y | = |Z| = n
(and X,Y, Z mutually disjoint), the Tripartite Triangle Par-
tition problem asks to decide whether G contains n vertex-
disjoint triangles. That is, whetherX ∪Y ∪Z has a partition
X∪Y ∪Z = V1∪V2∪· · ·∪Vn such that each Vi is the vertex
set of a triangle in G and different Vi’s are vertex-disjoint.
This problem is known to be NP-complete2. Using this, we
can prove that finding a maximum social welfare solution is
also NP-hard.

Theorem 1. It is NP-hard to find a maximum social welfare
assignment, even when all happiness and evaluations take
{0,1} values.

Proof. Given an instance G = (X ∪ Y ∪ Z,E) of TTP,
we construct an instance of market roommate problem as
follows. Let f : X ∪ Y → I be a one-to-one mapping that
maps each vertex ofX∪Y to a person, and let d : Z → R be
a one-to-one mapping that maps each vertex of Z to a room.
We construct an instance 〈H,V 〉 as follows:

• hf(xi),f(yj) = hf(yj),f(xi) = 1 if (xi, yj) ∈ E;
• vf(xi),d(zr) = 1 if (xi, zr) ∈ E;
• vf(yj),d(zr) = 1 if (yj , zr) ∈ E;
• All other elements of H and V are 0.

It is easy to see that, for any (i, j, r), we have hij + hji +
vir+vjr ≤ 4. Equality holds if and only if the corresponding
vertex x, y and z form a triangle inG. Thus, let µ be a maxi-
mum social welfare assignment, then we have SW (µ) = 4n
if and only if there is a perfect triangle partition ofG. There-
fore, we can decide whether the graph G has a perfect trian-
gle partition by finding a maximum social welfare solution
and checking whether the value is 4n.

Approximation of maximum social welfare
Theorem 1 tells us that it is difficult to get exactly solve the
maximum social welfare problem. In this section, we give
a polynomial-time approximation algorithm that can find an
assignment with social welfare at least 2/3 of the optimal.

Given a set I of 2n people, a setR of n room, and the hap-
piness and valuation values 〈H,V 〉, we can define an undi-
rected weighted graph G with the vertex set I ∪R and edge
set specified as follows. For any two distinct participants
i, j ∈ I , there is an edge (i, j) with the weight hij + hji.
For each participant i ∈ I and each room r ∈ R, there is
an edge (i, r) with the weight vir. Denote EH = {(i, j) |
i, j ∈ I, i 6= j} and EV = {(i, r) | i ∈ I, r ∈ R}. Then
finding a maximum social welfare assignment is equivalent

2Rizzi demonstrated the proof in lecture note
“NP-Complete Problem: Partition into Triangles”; see
http://profs.sci.univr.it/∼rizzi/classes/Complexity/provette/Mirko/
pt fine.pdf. Basically, it is proven by a reduction from 3-
dimensional matching, one of Karp’s 21 NP-complete prob-
lems (Garey and Johnson 1979).

to a finding a maximum-weight triangle partition of G such
that each triangle comprises one edge in EH and two edges
in EV .

The main idea of our algorithm is to first find a maximum-
weight perfect matching M1 in subgraph G1 = (I, EH)
and a maximum-weight perfect 1-2 matching in subgraph
G2 = (I ∪ R,EV ). Here a 1-2 matching of G2 is bipartite
subgraph of G2 such that the degree of each vertex i ∈ I
is exactly 1 and the degree of each vertex r ∈ R is ex-
actly 2. A perfect matching in G1 is a matching of n edges,
and a perfect 1-2 matching in G2 is a 1-2 matching of 2n
edges. If we just take the one of M1 and M2, whichever has
the bigger weight, to form an assignment, then we can get
a (1/2)-approximation. Here we can improve this to (2/3)-
approximation by combining M1 and M2 in a more non-
trivial way.

A property is needed for understanding the description of
the algorithm.
Lemma 1. Given a graph G = (I ∪ R,EH ∪ EV ), let M1

be a perfect matching in G1 = (I, EH) and M2 a perfect
1-2 matching in G2 = (I ∪R,EV ). Then the following two
properties hold.

1. The subgraph M1 ∪ M2 is a vertex-disjoint cycle cover
of G. That is, M1 ∪M2 is a collection of vertex-disjoint
cycles and every vertex in G is covered by one cycle.

2. For any cycle in M1 ∪M2, every 3 consecutive vertices
consist of one vertex of R and two vertices of I .

Proof. The first property can be obtained by the following
observation: the degree of each vertex in subgraph M1 ∪
M2 is exactly 2. Thus the subgraph is a collection of vertex-
disjoint cycles.

The second property follows from the fact that in the sub-
graph M1 ∪M2, each vertex of R connects to two vertics
of I and each vertex of I connects to one vertex of I and
one vertex of R. If we start from a vertex of R, then it must
follows two vertices of I . If start from a vertex of I , then it
follows either a vertex of I and a vertex of R or a vertex of
R and a vertex of I . In any case, every 3 consecutive vertices
consist of one vertex of R and two vertices of I .

With these two properties, we give the following Double-
Matching algorithm.

Now we prove the following theorem.
Theorem 2. Double-Matching algorithm outputs an assign-
ment with weight at least 2/3 of the optimal in O(n3) time.

Proof. We first show that the algorithm can guarantee 2/3
approximation ratio. Given a matching M , let w(M) de-
note the total weight of that matching. It is easy to see that
w(M1) + w(M2) is at least as big as the maximum social
welfare, because for any optimal solution, the sum of happi-
ness is no greater than w(M1) and the sum of valuations is
no greater than w(M2).

Next, we removed some edges, but note that the to-
tal weight of the removed edges is at most (w(M1) +
w(M2))/3, since on each cycle (of length at least 2), the
removed weight is at most 1/3 of the weight of that cycle.
Thus, the assignment has social welfare at least 2

3 (w(M1) +



Algorithm 1 Double-Matching
Find a maximum-weight perfect matching M1 of G1 =
(I, EH).
Find a maximum-weight perfect perfect 1-2-matchingM2

in bipartite graph G2 = (I,R,EV ).
Let C = {C1, C2 . . . , Ck} the set of cycles of M1 ∪M2.
for i = 0 to k do

Denote the edges of Ci by e1, . . . , e3l in a cyclic order
(starting from an arbitrary vertex).
if l ≥ 2 then

for t = 0 to 2 do
Wt =

∑
j=1,...,3l: j≡t mod 3 w(ej).

end for
Let t∗ ∈ {0, 1, 2} be a minimizer of mintWt.
Remove edges ej for all j ≡ t∗ mod 3 .

end if
end for
The subgraph is now a collection of vertex-disjoint con-
nected triples (i, j, r).
return The set of these triples (i, j, r) as an assignment.

w(M2)), which is in turn at least 2/3 of the maximum social
welfare.

Now we analyze the time complexity of the algorithm.
The problem of finding a maximum weighted matching in
general graph can be solved in O(|V ||E| + |V |2 log |V |)
time (Gabow 1990). In our case, |EH | = Θ(n2), thus it
takes time O(n3) to find M1. The second matching M2 can
be found in O(n3) time either by a b-matching algorithm
(b = 2 in our case) (Rajabi-Alni, Bagheri, and Minaei-
Bidgoli 2014; Kleinschmidt and Schannath 1995), or the fol-
lowing trick: first make a copy r′ for each room vertex r,
then set vir′ = vir. It is easy to see that a maximum-weight
matching M ′2 in this extended graph G′ corresponds to the
maximum-weight 1-2 matching M2 of the original graph G,
with w(M ′2) = w(M2). Indeed, given a perfect matching
M ′2 on G′, we can get a perfect 1-2 matching M2 in G by
assigning the neighbors of r and r′ in M ′2 both to r in G.

After finding M1 and M2, the remaining part of the
Double-Matching algorithm can be easily implemented in
O(n2) time. Combining all the cost, the algorithm runs in at
most O(n3) time.

4 Person stable solutions
In this section, we consider various person stable solution
concepts. The notion of person stability is an extension of
exchange stability in traditional stable roommate model (Al-
calde 1994; Cechlárová and Manlove 2005; Irving 2004), in
which a matching is exchange stable if no pair of people liv-
ing in different rooms like to switch their positions. In our
model, we add the valuation vir of rooms and quantify the
preference lists by happiness value hij . In this section, we
assume that the room rent {pr} is given as part of input.
We first show that finding a 2-person stable solution is NP-
hard, and then we demonstrate an algorithm that can find a
4-person stable solution efficiently. Note that the algorithm
works for any given room rent {pr}, which makes it widely

applicable.

2-Person stable
Our definition of 2-person stable is reminiscent of the ex-
change stable of Stable Roommate (SR) problem. Formally,
in a given instance of SR, each of 2n people ranks the oth-
ers in strict order of preference. A matching M is exchange
stable if there are no two participants i and j, each of whom
prefers the other’s partner to her own partner in M . It is NP-
complete to decide whether an input instance I admits an ex-
change stable solution (Cechlárová and Manlove 2005). We
next use this to show the hardness of finding a 2-person sta-
ble solution in our roommate market model. Note that search
problem is in general harder than decision problem: If one
can efficiently find a desirable solution assuming it exists,
then one can use this algorithm to decide whether such solu-
tion exists by first running the algorithm and then verify the
outputted solution. The next theorem shows that even the
(easier) decision problem is NP-hard.
Theorem 3. Deciding whether a given input instance
(H,V, p) of roommate market admits a 2 person stable so-
lution is NP-hard.

Proof. We will reduce the exchange stable roommate prob-
lem to this one. Given 2n preference lists as an instance of
stable roommate problem of 2n people, we construct an in-
stance for our roommate market as follows: if j is the k-th
most preferred person in person i’s list, then let hij = 2n−k.
Set all room evaluations vir = 0 and all rents pi = c for
some constant c.

Since the all room evaluations are 0 and rent for all people
are the same, the utility of each person depends solely on
the happiness hij of the roommate j. It is easy to see that
a solution is 2PS in our model if and only if matching is
exchange stable in the given instance of roommate stable
problem. Thus deciding the existence of 2PS solution in our
model is at least as hard as deciding whether the existence
of exchange stable problem in standard roommate problem,
which is NP-hard.

4-Person stable
In contrast to the above nonexistence result, next we will
show that a 4PS solution always exists for any given input
(H,V, p), and we can find one in O(n2) time. Furthermore,
in O(n5) time we can find a 4PS solution with the social
welfare at least 2/3 of the optimal (over all solutions).

First we design a greedy algorithm following the serial
dictatorship mechanism (Abdulkadiroğlu and Sönmez 1998)
to find a 4PS solution efficiently. We call a pair (i, j) of
people living different rooms a 4PS blocking pair if swap-
ping them makes them and their original roommate all in-
crease their individual utilities. Then a 4PS solution is just
one without any 4PS blocking pair.
Theorem 4. For any given input (H,V ) and the room rent
{pr}, we can find a 4PS solution in O(n2) time.

Proof. First we assign person 1 to the room r1 which max-
imizes v1r1 − pr1/2, together with person j1 which max-
imizes h1j1 . Let person 1 and person j1 each pay pr1/2.



Then we remove people 1 and j1 from the list of people,
and remove r1 from the list of rooms. Among the remaining
people, pick the person i2 with the smallest index, and put
her in the room r2 which maximizes vi2r2 − pr2/2 among
the available rooms, and assign to her person j2 which max-
imizes hi2j2 among the available people as her roommate.
Again let person i2 and j2 share the cost pr2 evenly. Con-
tinue this process until no one is left.

The algorithm has n rounds and each round needs to scan
two lists of length at most 2n, so the total time is O(n2).
Next we analyze the correctness. No 4PS blocking pair can
involve person 1 since she already gets her most preferred
room and roommate. (Here involving person 1 means that
either person 1 or her roommate is in the blocking pair.) Put
the triple (1, j1, r1) aside and apply the same argument, one
can see that no 4PS blocking pair can involve i2 or j2. Con-
tinuing this argument to the very end rules out all possible
blocking pairs. Thus the algorithm obtains a 4-person stable
solution.

Next we put social welfare into consideration. We first
give the following “Algorithm 2: Local Search”.

Algorithm 2 Local Search
Start from assignment outputted by Double-Matching al-
gorithm.
while there is a 4PS blocking pair (i, j) do

Swap the people i and j.
end while
return The current room assignment, and the two room-
mates pay the room rent evenly.

Theorem 5. For any given (H,V ) and room rent {pr}’s, the
Local Search algorithm outputs a 4PS solution with social
welfare at least 2/3 of the optimal in O(n5) time.

Proof. By definition of 4PS, when swapping i and j in each
iteration of the while loop, no person’s utility drops, thus the
social welfare is always increasing. Since we start from an
assignment with social welfare at least 2/3 of the optimal,
the social welfare at the end is at least this much.

The algorithm clearly outputs a 4PS solution since oth-
erwise by definition there is a 4PS blocking pair, and thus
the while loop has not ended yet. Next we will show that
the algorithm ends within O(n3) iterations. This implies the
desirable time bound: Since each iteration we only need to
check over all pairs (i, j) for a 4PS block pair, the overall
time is O(n3) ·O(n2) = O(n5).

Now we bound the number of iterations of the while loop.
Note that in each iteration, the swapping “produces” two
triples (i1, j1, r1) and (i2, j2, r2), where ib and jb live in
rb (b = 1, 2) after the swapping. We claim that each triple
(i, j, r) can be “produced” only once. Indeed, notice that
the utilities of i and j increase after the swapping (of i or
j to someone in some other room). But as long as i and j
live in room r, the sum of their utilities is a fixed constant
vir + vjr + hij + hji − pr. Thus, any triple (i, j, r) can be
produced only once in the swapping. As the number of the

triples (i, j, r) is O(n3) and each iteration produces 2 such
triples, the while loop ends in at most O(n3) iterations.

(From the proof we can also see that actually even if we
strengthen the definition of 4PS to that one of the blocking
pair i and j strictly increase her utility, and the other three
people involved do not decrease their individual utilities, the
algorithm still finds such a solution. We only need to adapt
the proof by defining a swap “producing” a triple (i, j, r) if
the total utility of person i and j increases by the swap.)

5 Room envy-freeness, stability and price
In this section, we focus on the room envy-free solutions.
We will show that given any roommate assignment, a room
envy-free solution can be found efficiently. Indeed, after the
roommate assignment is fixed, we consider the two room-
mates living in one room as a whole “agent”, then apply the
results of assignment game (Shapley and Shubik 1971) in a
two-sided market to get an assignment and a price, such that
the matching between the n agents and n rooms is envy-free.

Formally, given an roommate assignment β (which is a
perfect matching among the 2n people), the algorithm treats
each (i, j) ∈ β as an agent ak. The valuation of ak to each
room r is defined as wkr = vir + vjr. For this new two-
sided market with n agents and n rooms, there always exists
a room price pr for each room r and a perfect matching be-
tween agents and rooms such that if ak matches to r, then
wkr − pr ≥ wkr′ − pr′ for any other room r′ (Shapley
and Shubik 1971). Such a solution can be found in O(n4)
time by Hungarian Method (Dütting, Henzinger, and Weber
2013).

Since the definition of room envy-freeness treats the two
roommates as a whole, the above solution is also a room
envy-free solution for our model. Furthermore, one can
make the solution to have a large social welfare by first using
Double Matching algorithm to find an assignment, and then
use assignment game to further improve the social welfare.

Theorem 6. Given any roommate assignment input (H,V ),
a room envy-free solution (µ, p) with social welfare at least
2/3 of the optimal can be found in O(n4) time.

Finally, recall that a solution is room stable if no pair of
roommates (i, j) living in room r and pair of roommates
(k, l) living in room s like to switch rooms so that (i, j) live
in s and (k, l) live in r. Such solutions can be easily found
in timeO(n3). Indeed, for any pair-up {(i1, j1), ..., (in, jn)}
of people, find a maximum matching among these n pairs
and the n rooms, with weight between (ik, jk) and r` set to
be hikjk + hjkik + vikr` + vjkr` . Then it is easily seen that
the solution is room stable. If we use the pair-up as in a 2/3
approximation algorithm, then the solution achieves at least
2/3 of the optimal social welfare.
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