
How many rounds can Random Selection handle?∗

Shengyu Zhang†

Abstract

The construction of zero-knowledge proofs can be greatly simplified if the protocol is only
required be secure against the honest verifier. Damg̊ard, Goldreich and Wigderson invented a
Random Selection technique to transform a public-coin honest verifier zero-knowledge proto-
col to a general zero-knowledge protocol. Though all the three variants of Zero Knowledge,
i.e. Perfect Zero-Knowledge(PZK), Statistical Zero-Knowledge(SZK), Computational Zero-
Knowledge(CZK) can be handled, their method, however, only applies to constant-round pro-
tocols. Later, Goldreich, Sahai and Vadhan extended the transformation result to being able
to handle the general SZK and CZK protocols of a polynomial number of rounds, but their ex-
tension fails on the PZK case. In this paper we show that applying the original DGW transfor-
mation technique twice in a nested way enables the transformation handle O(log(n)/ log log(n))
rounds.

Key words: cryptography, zero knowledge

1 Introduction

Zero-knowledge (ZK) proofs are interactive proofs yielding nothing beyond the validity of the state-
ment being proven. Since their invention [8, 6], zero-knowledge proofs have been extensively studied
for more than two decades, and have reinforced their central position of the modern cryptography.
More formally, a proof is zero-knowledge if there is an efficient procedure, called the simulator, to
simulate the transcript of the real prover-verifier interaction. Three variants are defined — Per-
fect Zero-Knowledge (PZK), Statistical Zero-Knowledge(SZK) and Computational Zero-Knowledge
(CZK), according to different requirements of the simulation quality.

To make the zero-knowledge proofs robust to be useful in many cryptography settings, it is
required that the verifier cannot learn anything even if it deviates its behavior from the specified
protocol in an arbitrary way. If we only require a protocol to be zero-knowledge against the honest
verifier, i.e. the verifier who behaves exactly as specified in the protocol, then the construction is
usually much easier. Therefore, it is desirable to have a generic procedure transforming an arbitrary
honest verifier zero-knowledge protocol to a general zero-knowledge protocol.

Considerable attention has been paid to these transformations [1, 9, 2, 3, 7]. Damg̊ard, Gol-
dreich and Wigderson [3] invented a technique to transform a constant-round public-coin honest

∗This work was supported by the National Science Foundation under grant PHY-0456720 and the Army Research
Office under grant W911NF-05-1-0294 through the Institute for Quantum Information at the California Institute of
Technology.

†Computer Science Department and Institute for Quantum Information, California Institute of Technology, 1200
E California Bl, Pasadena, CA 91125, USA. Email: shengyu@caltech.edu

1

verifier PZK/SZK/CZK protocol to a general PZK/SZK/CZK protocol (against arbitrary veri-
fiers). The technique they used was referred to as Random Selection. Their results were later
extended by Goldreich, Sahai and Vahdan [7] to the general polynomial-round protocols for SZK
and CZK cases by introducing other hashing structures. This structure, however, introduces new
deviation in the simulation, so it does not apply to the PZK case.

One shortcoming of the DGW Random Selection technique is that it seems only to work for a
constant number of rounds by itself because of the competing requirements of the zero-knowledge
and soundness properties. In this paper, we show that applying it twice in a nested way can boost
the success probability of the zero-knowledge simulator, allowing us to handle PZK protocols of
c log n/ log log n rounds, where c is any constant.

2 Preliminaries

In this section we give the definition of zero-knowledge protocols and review the Random Selection
transformation. For basic notions like interactive proofs, statistical difference and computational
indistinguishibility, we refer readers to, for example, [4].

Definition 1 An interactive proof (P, V) is zero-knowledge if for any probabilistic polynomial time
machine V ∗, called the cheating verifier, there exists a probabilistic polynomial time machine S∗,
called the simulator, s.t. for all x ∈ L

〈P, V ∗〉(x) ∼ S∗(x). (1)

where 〈P, V ∗〉(x) is the view of V ∗ on x, consisting of three parts: V ∗’s random string, all messages
from P and the final acceptance/rejection decision. S∗(x) is the (random) output of S∗ on x, and
the symbol ∼ has different meanings for different settings as follows:

1. Perfect Zero-Knowledge (PZK): S∗(x) may output “Fail” with probability less than 1/2, but
conditioned on the output is not “Fail”, it is identically distributed as 〈P, V ∗〉(x).

2. Statistical Zero-Knowledge (SZK): The statistical difference between S∗(x) and 〈P, V ∗〉(x) is
negligible, i.e. o(1/poly(n)).

3. Computational Zero-Knowledge (CZK): The ensembles {〈P, V ∗〉(x)}x∈L and {S∗(x)}x∈L are
computationally indistinguishable.

The constant 1/2 in the PZK definition is not crucial; any constant gives the same class of functions.
Though the above definition does not deal with the more general auxiliary inputs case, it is easy

to see that results in both previous work [3, 7] and the current paper hold for ZK with auxiliary
inputs too. For more detailed introductions of the area, see [4, 5] for excellent surveys.

Next we review the DGW Random Selection procedure [3]. First, for any integers 0 < t < s,
there is a family Fd

s,t of almost d-wise independent hash functions from {0, 1}s to {0, 1}t s.t.

1. Every function f ∈ Fd
s,t can be described by an sd-bit string;

2. ∀y ∈ {0, 1}t, the cell y, i.e. the set f−1(y), has size 1 ≤ |f−1(y)| ≤ d2s−t;

3. ∀y ∈ {0, 1}t, the whole cell y can be computed in time polynomial in d2s−t. (Note that we
will later set d = s = poly(n) and s− t = O(log n), so 2s−t is still poly(n).)

2

4. Fd
s,t is a family of almost d-wise independent hashing functions in the following sense: for

every d distinct images, x1, ..., xd ∈ {0, 1}s − {0, 1}t0s−t, for a uniformly chosen f ∈ Fd
s,t, the

random variables f(x1), ..., f(xd) are independently and uniformly distributed in {0, 1}t.

Now suppose that in some round, the honest verifier V sends its public coin random string
α ∈R {0, 1}s and the prover P responds with β. Here the notation a ∈R A means to pick an
element a uniformly at random from the set A. Then the Random Selection transforms this one-
round protocol to the following two-round protocol (P1, V1) as follows.

1. V1 chooses f ∈R Fs
s,t and sends f to P1.

2. P1 chooses y ∈R {0, 1}t and sends y to V1.

3. V1 chooses α ∈R f−1(y) and sends α to P1.

4. P1 checks whether f(α) = y and terminates the protocol if not. Otherwise, P1 responds with
a message β in the same way as P does when seeing α.

It is proved in [3] that the DGW protocol satisfies the following simulation deviation property.

Fact 1 For the honest prover P1, no matter what strategy V1 uses, as long as α ∈ f−1(y), the α is
at most 2s2−(s−t)/4 + 2−s away from the uniform distribution in {0, 1}s (under the total variance
distance).

We denote the original r-round public-coin protocol by (α1, β1, ..., αr, βr), which means that in
the round i, the verifier sends its random string αi ∈R {0, 1}s and the prover responds with message
βi. Then for this general r-round protocol, the DGW transformation uses the above procedure to
transform each (αi, βi) and gets a new protocol (f1, y1, α1, β1, ..., fr, yr, αr, βr). Here βi is chosen
the same way by P1 as by P on seeing the previous history α1, ..., αi. By the above fact, it is
immediate that the DGW protocol satisfies the following soundness property.

Fact 2 Suppose the original r-round public coin protocol has the soundness error ε0, then the DGW
transformation gives a new protocol with the soundness error

ε1 = ε0 + r · (2s2−(s−t)/4 + 2−s). (2)

The soundness is proved by the following hashing lemma.

Fact 3 For any fixed subset A ⊆ {0, 1}s of size at least 2s−1, we have

Prf∈RFs
s,t

[∣∣|f−1(y) ∩A| − |A|/2t
∣∣ > ε|A|/2t, ∀y ∈ {0, 1}t

]
≤

(
2s

ε2(s−t)/2

)s

(3)

For the zero-knowledge property, one can define the following simulator S∗
1 for any cheating

verifier V ∗
1 as follows [3]. Suppose the random string used by V ∗

1 is of length l.

1. Run the original honest verifier simulator S for (P, V) and get a transcript (α1, β1, ..., αr, βr).
For the PZK case, if S fails, then S∗

1 also outputs “Fail” and terminates the simulation.

2. Pick rand ∈R {0, 1}l and use rand as V ∗
1 ’s random string throughout the following simulation.

3. for i = 1 to r

3

(a) Get the fi ∈ Fd
s,t from V ∗

1 after feeding βi−1 to V ∗
1 in the last round. (For the first

round, V ∗
1 initializes the protocol).

(b) Let yi = fi(αi) and feed yi to V ∗
1 .

(c) Get the α′
i from V ∗

1

(d) If α′
i = αi, feed βi to V ∗

1 ; else, output “Fail” and terminate the simulation.

4. Output (rand; y1, β1, ..., yr, βr; decision) to simulate V ∗
1 ’s view, where decision ∈ {0, 1} is the

acceptance/rejection bit of V ∗
1 in the last step.

Note that after its randomness fixed, the verifier V ∗
1 is a deterministic machine. In particular, it

will output one particular α′
i, which we will call representative, for each cell yi. We say S∗

1 passes
round i if it does not output “Fail”’ in Step 3d. It is not hard to see that S∗

1 passes round i if and
only if αi is one of these 2t representatives. For the PZK case which we will mainly focus on, since
the honest verifier simulator S outputs all αi uniformly and independently at random, we have the
following fact.

Fact 4 For the originally r-round PZK protocol (P, V), the DGW simulator S∗
1 for the new pro-

tocol (P1, V
∗
1) passes all rounds with probability 2−(s−t)r, for any possibly cheating verifier V ∗. In

addition, conditioned on the event that S∗
1 passes all r rounds, its output has exactly the same

distribution as V ∗
1 ’s view.

When (s− t)r = O(log(n)), the success probability of S∗ is 1/poly(n), thus repeating it poly(n)
times gives a simulator which outputs “Fail” only with probability no more than 1/2. This upper
bound for (s− t)r is necessary to let the success probability of S∗ be non-negligible. On the other
hand, note that to make the soundness error smaller than 1, we need s−t = Ω(log(rs)) = Ω(log(n)).
These two requirements together force r = O(1).

In the next section, we will show how to increase the success probability of zero-knowledge
simulator to relax this tension and handle more rounds.

3 A new transformation: construction and properties

Note that in the simulator, the success probability in each round is 2t−s, which is polynomially
small if s − t = Θ(log(n)) as in the original paper [3]. Actually the success probability is the
number of representatives (2t) divided by the total number of points (2s). Since each cell only has
one representative, the probability is 2t−s. A basic idea for boosting the success probability is to
increase the number of representatives. Simply letting the verifier send many random points does
not work (not because of the soundness, but because of rewinding for some reason.) However, it
turns out that we can use nested Random Selections to achieve any O(log(n)/ log log(n)) rounds.

Theorem 1 For any honest verifier PZK protocol with r = O(log(n)/ log log(n)) rounds, we can
transform it to a 3r-round general PZK protocol.

Construction

Suppose the original protocol is (P, V) : (α1, β1, ..., αr, βr). The new transformation is specified as
follows for each round (αi, βi), with parameters set as

s1 = s, t1 = s1 − 8 log(rs1), s2 = s1 − t1, t2 = s2 − 8 log(rs2), ε1 = 1/2. (4)

4

1. V2 chooses fi1 ∈R Fs1
s1,t1

and sends it to P2;

2. P2 chooses a random cell index yi1 ∈R {0, 1}t1 and sends it to V2;

3. V2 checks whether |f−1
i1 (yi1)| ∈ [2s1−t1 − ε1, 2s1−t1 + ε1]. If not, then V2 accepts and terminate

the whole protocol; else V2 chooses fi2 ∈R Fs2
s2,t2

and sends it to P2;

4. P2 chooses a random subcell index yi2 ∈R {0, 1}t2 and sends it to V2;

5. V2 chooses a random αi in the subcell indexed by (y1, y2) and sends it to P2;

6. P2 checks whether f(α) = y and terminates the protocol if not. Otherwise, P2 sends βi in
the same way as P does on seeing α1, ..., αi.

Analysis of the Zero-Knowledge property

As before, since the messages αi outputted by S is uniformly at random in {0, 1}s, independent
of all previous messages, the simulator S∗

2 passes a round i if and only if the αi is one of the
representatives. But now we have 2t1+t2 representatives, thus S∗

2 passes the round with probability
2−(s1−t1−t2). Thus it passes all r rounds with probability 2−(s1−t1−t2)r, which is O(log n) with the
current setting of parameters and for r = O(log n/ log log n). Also similar as before, conditioned on
S∗

2 passes all rounds, the output is equally distributed as V ∗
2 ’s view. Thus the ZK property holds.

Analysis of the soundness error

Note that the inner Random Selection produces an αi deviating from being uniform in f−1
i1 (yi1) by

at most 2s22−(s2−t2)/4 + 2−s2 . Thus finally the αi deviates from uniform in {0, 1}s by at most

2s12−(s1−t1)/4 + 2−s1 + 2s22−(s2−t2)/4 + 2−s2 (5)

Another part of soundness error probability introduced by this transformation is due to the termi-
nation in Step 3. Applying the hashing lemma (Fact 3) with A = {0, 1}s, we can upper bound this
additional error probability by (

2s1

ε1
√

2s1−t1

)s1

(6)

for each round. Thus the soundness error of (P1, V1) is at most

ε0 + r

[
2s12−(s1−t1)/4 + 2−s1 + 2s22−(s2−t2)/4 + 2−s2 +

(
2s1

ε1
√

2s1−t1

)s1
]

(7)

where ε0 is the soundness error probability of the original protocol (P0, V0).
By either the padding argument or parallel composition, we can assume that s ≥ n. For any

r = c log(n)/ log log(n) where c is a constant, with the current setting of parameters, the soundness
error increases by at most 2/rs1 + r2−s + 2/rs2 + 1/r8s8

1 + (2/r4s3
1)

s1 = o(1). This completes the
proof.

Similar to the arguments also apply to SZK and CZK, but we will omit the details since it is
already known how to deal with polynomial-round protocols in those two cases [7].

5

4 Concluding discussions

The approach used in this paper seems not enough to break the log(n) barrier by itself. The reason
is that even if one can let s− t be a constant — and thus the probability of the simulator succeeds
in each round is a constant p — the probability of all rounds succeed is still pr, which is negligible if
r = ω(log(n)). So it seems that some new structure is needed, like as done in the work [7], with the
further requirement that the new structure does not introduce any further simulation deviation.

References

[1] M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero knowledge. In
Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing (STOC),
pages 494–502, 1990.

[2] I. Damg̊ard. Interactive hashing can simplify zero-knowledge protocol design without com-
putational assumptions (extended abstract). In Proceedings of the 13th Annual International
Cryptology Conference (CRYPTO), pages 100–109, 1993.

[3] I. Damg̊ard, O. Goldreich, and A. Wigderson. Hashing functions can simplify zero-knowledge
protocol design (too). Technical Report RS-94-39, BRICS, 1994.

[4] O. Goldreich. Foundations of cryptography, volume 1. Cambridge University Press, 2001.

[5] O. Goldreich. Zero-knowledge twenty years after its invention. Electronic Colloquium on Com-
putational Complexity (ECCC), (063), 2002.

[6] O. Goldreich, S. Micali, and A. Widgerson. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729,
1991. Preliminary version in Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), 1986.

[7] O. Goldreich, A. Sahai, and S. Vadhan. Honest-verifier statistical zero-knowledge equals general
statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 399–408, 1998.

[8] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof sys-
tems. SIAM Journal on Computing, 18:186–208, 1989. Preliminary version in Proceedings of
the 17th Annual ACM Symposium on Theory of Computing (STOC), 1985.

[9] R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-knowledge
protocol design. In Proceedings of the 12th Workshop on the Theory and Application of of
Cryptographic Techniques (EUROCRYPT), pages 267–273, 1993.

6

