Making Classical Honest Verifier Zero Knowledge
Protocols Secure against Quantum Attacks

Sean Hallgren!, Alexandra Kolla?, Pranab Sen®, and Shengyu Zhang*

E Pennsylvania State University, University Park, PA, U.S.A.
2uc Berkeley, Berkeley, CA, U.S.A.
akolla@cs.berkeley.edu
3 Tata Institute of Fundamental Research, Mumbai, India
pgdsen@tcs.tifr.res.in
* California Institute of Technology, Pasadena, CA, U.S.A.
shengyu@caltech.edu

Abstract. We show that any problem that has a classical zero-knowledge proto-
col against the honest verifier also has, under a reasonable condition, a classical
zero-knowledge protocol which is secure against all classical and quantum poly-
nomial time verifiers, even cheating ones. Here we refer to the generalized notion
of zero-knowledge with classical and quantum auxiliary inputs respectively.

Our condition on the original protocol is that, for positive instances of the
problem, the simulated message transcript should be quantum computationally
indistinguishable from the actual message transcript. This is a natural strengthen-
ing of the notion of honest verifier computational zero-knowledge, and includes
in particular, the complexity class of honest verifier statistical zero-knowledge.
Our result answers an open question of Watrous [Wat06)], and generalizes classi-
cal results by Goldreich, Sahai and Vadhan [GSV98]}, and Vadhan who
showed that honest verifier statistical, respectively computational, zero knowl-
edge is equal to general statistical, respectively computational, zero knowledge.

1 Introduction

Zero knowledge protocols are a central concept in cryptography. These protocols allow
a prover to convince a verifier about the truth of a statement without revealing any addi-
tional information about the statement, even if the verifier cheats by deviating from the
prescribed protocol. For a nice overview of definitions and facts about zero-knowledge
we refer the reader to [GolO1]]. In practice, zero-knowledge protocols are used as prim-
itives in larger cryptographic protocols in order to limit the power of malicious parties
to disrupt the security of the larger protocol. For example, at the start of a secure on-
line transaction Alice may be required to prove her identity to Bob. She does this by
demonstrating that she knows a particular secret which only she is supposed to know.
However, Alice wants to prevent the possibility of Bob committing identity theft, that
is, Bob should not be able to masquerade as Alice later on. Thus, Bob should gain no
information about Alice’s secret even if he acts maliciously during the identity verifica-
tion protocol.
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With the advent of quantum computation an important question rears its head: what
happens to classical zero-knowledge protocols when the cheating verifier has access to
a quantum computer? Note that even if the verifier cheats quantumly, the messages ex-
changed with the prover and the prover itself continue to be classical. Thus, the prover
does not know if it is interacting with a classical or quantum verifier. One may ex-
pect that quantum computers can break some classical zero-knowledge protocols, i.e. a
quantum verifier interacting with the prover may be able to extract information about
from the message transcript (sequence of all messages exchanged) that a classical ver-
ifier cannot. As one example, the Feige-Fiat-Shamir zero-knowledge protocol
for identity verification can be broken by a quantum computer simply because it relies
on the hardness of factoring for security.

Watrous [Wat06] recently showed that two well-known classical protocols continue
to be zero-knowledge against cheating quantum verifiers. In particular, he showed that
the graph isomorphism protocol of Goldreich, Micali and Wigderson [GMWI91] is se-
cure, and also that the graph 3-coloring protocol in is secure if one can find
classical commitment schemes that are concealing against quantum computers. How-
ever, the general question of which classical zero-knowledge protocols continue to be
secure against cheating quantum verifiers was left open by Watrous.

In this paper, we answer this question for a large family of classical protocols. We
show that all protocols that are honest verifier zero-knowledge (HVZK) and satisfy
some reasonable assumption on their simulated transcripts can be made secure against
all efficient classical and quantum machines. More specifically, any protocol which is
honest verifier statistical zero-knowledge (HVSZK) can be transformed to be statis-
tical zero-knowledge against all classical and quantum verifiers (SZKQ). Also, any
protocol which is honest verifier computational zero-knowledge and has classical mes-
sage transcripts of the interaction between the prover and the honest verifier that yield
no information to an efficient quantum machine (HVCZKq), can be transformed to
be computational zero knowledge against all classical and quantum verifiers (CZKQ).
Note that classically it was shown that any language in HVCZK also has a protocol
which is zero-knowledge against any cheating verifier (the class CZK).

As in the classical case, by starting with fairly weak assumption on protocols, we
show that a much stronger protocol exists. Note that being zero-knowledge against
quantum verifiers does not imply being zero-knowledge against classical verifiers ow-
ing to a technical requirement in the definition of zero-knowledge to be elucidated
later. The significance of our result is that we give a single classical protocol zero-
knowledge against both types of verifiers. Our work substantially generalizes Watrous’
results [Wat06]].

Formally, a protocol is said to be zero-knowledge if for every non-uniform polyno-
mial time verifier there is a non-uniform polynomial time simulator that can produce,
for inputs in the language, a simulated view of the verifier that is indistinguishable to the
verifier’s view in an actual interaction with the prover. The view of the verifier consists
of the message transcript together with the internal state of the verifier, and represents
what the verifier can ‘learn’ from interacting with the prover. The existence of a poly-
nomial time simulator for every polynomial time verifier captures the intuition that the
verifier learns nothing that it could not have learned on its own from the input, even
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by being malicious. For a classical verifier the simulator is required to be classical. For
a quantum verifier the simulator is quantum. Thus, zero-knowledge against quantum
verifiers does not immediately imply zero-knowledge against classical verifiers.

Constructing a simulator appears to be counterintuitive since it seems to replace the
role of the prover who is usually assumed to be computationally unbounded whereas
the simulator is polynomial time. The difference between the prover and the simulator
is that the prover has to respond to verifiers queries in an ‘online’ fashion, that is im-
mediately, whereas the simulator can work ‘offline’ and generates the messages ‘out of
turn’, as well as ‘rewind’. By rewinding, we mean a simulator runs parts of the veri-
fier during the simulation and produces a fragment of the conversation that has some
desired property with a certain probability. If the simulator fails then it rewinds, that is
it just runs the part of the verifier again from scratch. In the quantum case one would
have a quantum simulator using the quantum verifier to produce such a fragment of the
conversation and attempting to rewind if it fails.

Protocols that are classically zero-knowledge are not necessarily zero-knowledge
against quantum verifiers. In the case of the two problems graph isomorphism and graph
3-coloring that Watrous studied, the essential difference between classical and
quantum simulators comes from one additional requirement of zero-knowledge proto-
cols. In order for zero-knowledge protocols to sequentially compose, which is essential
to achieve reasonable error parameters as well as ensure the security of the protocol
when used as part of a larger cryptographic system, the simulator must still work when
the simulators and verifiers are given an arbitrary auxiliary state. This is a natural re-
quirement if one considers that, for example, perhaps the verifier has interacted with
the prover already to compute some intermediate information modeled by the auxil-
iary state, and now during the next interaction it gains even more information. In the
quantum case the auxiliary state is an unknown quantum state. But unknown quantum
states cannot be copied, and measurements of unknown quantum states are irreversible
operations in general, and as pointed out by Watrous [Wat06], even determining if the
simulator was successful in producing a fragment of the conversation with the desired
property may destroy the state. Therefore the simulator cannot trivially rewind since it
cannot feed the auxiliary state into the verifier a second time if the state was destroyed
during the first attempt at simulation. Nevertheless, Watrous showed that it
is possible to quantumly rewind in a clever way in the case of Goldreich, Micali and
Wigderson’s classical zero-knowledge protocols for graph isomorphism and
graph 3-coloring.

When searching for more classical zero-knowledge protocols that are secure against
quantum cheating verifiers we come across new difficulties not encountered by Wa-
trous [Wat06]. One restriction of the protocols he analyzes is that they are three-round
public coin protocols where the second message is O(logn) uniformly random bits
from the verifier. This leaves out many languages in SZK and CZK including the com-
plete problems statistical difference [SVO3|| and entropy difference for SZK.
In a different vein [Wat06], Watrous showed that every problem in SZK has a
quantum protocol that is statistical zero-knowledge against any cheating non-uniform
polynomial time quantum verifier. Very recently, Kobayashi extended Wa-
trous’ result to the case of quantum protocols that are quantum computationally zero
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knowledge. However, it is preferable that the prescribed protocols themselves are clas-
sical since they can be implemented using current technology yet remain secure against
all potential quantum attacks in the future. In this paper, we show that a large class of
polynomial round, polynomial verifier message length classical zero-knowledge proto-
cols can be made secure against cheating quantum verifiers.

Classically, the construction of zero-knowledge protocols has been greatly simplified
by showing that HVSZK or HVCZK is equal to SZK or CZK [Vadog]].
Concretely, if one can design a protocol for a given language that is zero-knowledge
against (only) the honest verifier, which is typically much easier, then there is also a pro-
tocol for the language that is zero-knowledge against an arbitrary cheating verifier. We
follow this approach: we show that if one can find a classical protocol zero-knowledge
for just the honest (classical!) verifier such that the actual and simulated message tran-
scripts with respect to the honest verifier are indistinguishable by polynomial sized
quantum circuits, then there is also a classical protocol that is zero-knowledge against
all classical and quantum cheating verifiers. More precisely, our result can be stated as:

Result 1

1. SZK = HVSZK = SZKQ, where SZKQ is the class of languages with a clas-
sical protocol that is statistical zero knowledge against all classical and quantum
verifiers.

2. HVCZKq = CZKQ = CZKq, Where HVCZKq (resp. CZK q) is the class
of languages with a classical protocol that is honest verifier computational zero-
knowledge (resp. computational zero-knowledge) and for YES instances,the classi-
cal message transcripts of the interaction between the prover and the honest verifier
are quantum computationally indistinguishable from the simulated message tran-
scripts. Similarly, CZKQ is the class of languages with a classical protocol that
is computational zero knowledge against all classical and quantum verifiers.

We note that the classical results HVSZK = SZK and HVCZK = CZK are known
and can be found in Goldreich, Sahai and Vadhan and Vadhan [Vad06]. Also,
observe that HVSZK C HVCZKq C HVCZK.

Finally, we would like to remark that the definition of zero knowledge in quantum
computation in the literature assumes that we can do error-free computation. Construct-
ing a simulator for a cheating verifier typically involves a polynomial multiplicative
factor overhead. Thus in reality, it may happen that a simulator fails to successfully
simulate the cheating verifier’s view because of additional noise incurred by the over-
heads. However, if we take the view that noise rates in hardware can be decreased by
polynomial factors with polynomial effort, the current definition of zero knowledge in
quantum computation is justified.

1.1 Overview of Our Proof: Ideas and Difficulties

Damgérd, Goldreich and Wigderson gave a method, hereafter called DGW,
for transforming any classical constant round public coin honest verifier zero knowledge
protocol into another classical constant round public coin protocol that is zero knowl-
edge against all classical verifiers. We first observe that Watrous’ quantum rewinding



596 S. Hallgren et al.

trick can be used to show that the new protocol resulting from DGW is secure
against all quantum verifiers also. This allows us to handle protocols with verifier mes-
sages of polynomial length. The shortcoming is that, as in the classical case, the quantum
simulator succeeds in almost correctly simulating the prover-verifier interaction with non-
negligible probability only if the original protocol has a constant number of rounds. This
arises from the fact that the classical and quantum simulators from DGW ‘rewind from
scratch’, that is, they attempt to simulate all the rounds of the protocol in one shot, and if
they fail, they rewind the verifier to the beginning of the protocol. The success probability
of one attempt at simulation drops exponentially in the number of rounds, and hence, we
can only handle a constant number of rounds using the DGW transformation.

BuildingonDamgardetal.’swork,Goldreich,Sahaiand Vadhan gaveamethod,
hereafter called GSV, for transforming any classical public-coin HV ZK protocol into an-
other public-coin protocol ZK againstall classical verifiers. Their transformation handles
protocols with a polynomial number of rounds. However, one cannot apply Watrous’ quan-
tumrewinding technique to the new protocol resulting from GSV for the following
technical reason: the simulator for the new protocol rewinds the new verifier polynomial
number of times for each round. In order to do the same thing quantumly using Watrous’
rewinding lemma, one needs that for most messages of the verifier in the original protocol,
the success probability of the simulation attempt conditioned on the old verifier’s message
beindependentofthe quantum auxiliary state. Unfortunately this cannotbe ensured for any
message of the verifier in the original protocol, and hence, we are unable to show that GSV
makes the protocol secure against cheating quantum verifiers.

Our crucial observation is that if the honest-verifier simulator for the original clas-
sical public coin ZK protocol uses its internal randomness in a stage-by-stage fashion,
where each stage consists of a constant number of rounds, then applying DGW gives a
new protocol which is zero-knowledge against all classical and quantum verifiers. This
is still the case even the original protocol has a polynomial number of rounds. This is
because now the classical or quantum simulator for the new protocol can rewind the
verifier polynomial number of times within each stage, where each iteration preserves
the simulated message transcript of the earlier rounds and uses fresh random coins to
attempt to simulate the current round. Since the success probability of one simulation
attempt for a stage is inverse polynomial as it has a constant number of rounds, polyno-
mially many rewinding steps will result in a successful simulation of the current stage
with very high probability. This leads us to the question of which problems possess
zero-knowledge protocols with stage-by-stage honest-verifier simulators.

Our next observation is that the standard technique of converting any public coin
interactive protocol into a zero-knowledge protocol based on bit
commitments actually gives rise to a new protocol with a stage-by-stage honest veri-
fier simulator. Note that any interactive protocol can be converted into a public coin
protocol where the messages of the verifier are uniformly distributed random
strings independent of the previous messages of the protocol, and the final decision
of the verifier to accept or reject is a deterministic function of the message transcript
and the input. The only caveat is that the existence of bit commitment schemes seems
to be conditional on the existence of one-way functions. However, the recent work of
Vadhan [Vad06], Nguyen and Vadhan [NVO06] and Ong and Vadhan [OV0S] gives a
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way of replacing standard bit commitments by instance-dependent bit commitments,
which exist unconditionally as shown by them. An instance-dependent bit commitment
scheme is a protocol which depends on the input instance to the problem such that the
protocol is hiding on the bit to be committed for positive instances of the problem and
binding on the bit for negative instances of the problem. Since the hiding and binding
properties are not required to hold simultaneously, the need for unproven assumptions
like the existence of one-way functions is avoided. Ong and Vadhan [OVO0S8]] show that
every problem with an honest verifier zero-knowledge protocol gives rise to a public
coin constant round instance dependent bit commitment scheme which is statistically
binding on the negative instances. For positive instances, the hiding property of the
commitment scheme is statistical if the original protocol is HVSZK, and computa-
tional against polynomial sized classical circuits if the original protocol is HVCZK.
We can show that their proofs can be modified to ensure that the hiding property is
computational against polynomial sized quantum circuits if the original classical pro-
tocol is in HVCZK q. Replacing the bit commitments in the standard compilation
of interactive proofs to zero-knowledge by instance dependent commitments gives us
a zero-knowledge protocol with an honest-verifier simulator that uses its internal ran-
domness in a stage-by-stage fashion, where each stage consists of a constant number of
rounds. Applying the DGW transformation to such a protocol gives rise to a new public
coin classical protocol zero-knowledge against all non-uniform polynomial time clas-
sical and quantum verifiers. That fact follows since the success probability of correctly
simulating a stage in the new protocol continues to be inverse polynomial and also the
simulator for the new protocol can rewind in a stage-by-stage fashion.

2 Preliminaries

2.1 The DGW Transformation

We denote a classical N-round public coin interactive protocol by the notation (P, V') :
(a1, 81, ..., an, BN ), which means that in the round 4, the (honest) classical verifier V'
sends a uniformly random string «; and the (honest) classical prover P responds with
a string (;, which in general is a function of the previous transcript and the prover’s
randomness. Without loss of generality, each o; has the same length s. Let ¢ < s be a
positive integer. Damgérd, Goldreich and Wigderson describe a family F ;
of nearly s-wise independent hash functions from {0,1}* to {0, 1}!. Every function
f € Fs.+ has a description of length s? bits and for all y € {0,1}, 1 < |f~1(y)| <
(s —1)2°7t + 1, where f~1(y) := {z € {0,1}* : f(z) = y}. Computing f~1(y) can
be done in randomized time polynomial in s and 2°~*. In DGW, s — t is taken to be
logarithmic in the input length, so 2°~* will be a polynomial in the input length. Using
this family F,;, Damgérd et al. describe a process to transform a random message
a €r {0,1}° from the verifier in the original protocol, giving rise to a new protocol
with twice as many messages.

1. The verifier chooses f uniformly in F; ; and sends it to the prover.
2. The prover chooses y uniformly in {0, 1} and sends it to the verifier.
3. The verifier chooses o uniformly in f~!(y) and sends it to the prover.
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As described, the second message of the verifier in the DGW transformation is not
public coin. However, it can be made public coin by letting the verifier send a random
r € ((s —1)257t 4+ 1)!, which the prover interprets as the (r mod |f~1(y)|)th element
of f~1(y). Note that since (s — 1)2°~% + 1 is polynomial in the input size, r can be
described using polynomially many bits. Henceforth, we shall assume that the new
protocol arising from the application of DGW is public coin but we shall continue to
use the description of DGW given above for simplicity.

Applying DGW to an N-round public coin protocol (a1, 51, ..., an, BN ) gives a new
public coin protocol (f1,y1, a1, 1, ..., fN, YN, @n, Bn) where each §; is obtained in
the same way as the original prover does on seeing the previous (a1, ..., ;). The DGW
transformation satisfies the following soundness and completeness property which we

will crucially use [DGW94].

Fact 1. Suppose the original N-round public coin protocol has perfect completeness
and soundness error €, then the DGW transformation gives a new public coin protocol
with perfect completeness and soundness error €1 = €y + N(232(t_"")/4 +279).

The zero knowledge properties of DGW will be the main topic of discussion in the later
sections of this paper.

2.2 Stage-by-Stage Simulator

We now give the formal definition of the important notion of an interactive protocol
possessing a ‘stage-by-stage’ honest-verifier simulator, which is central to our work.

Definition 1. Suppose (P, V') is a classical public coin protocol with N stages, each
stage i containing constant number c of rounds (o1, Bit, ..., Qic, Bic), Where cj, Bi;
are verifier’s, respectively prover’s messages and all cvjs are of the same length. We
say that an honest-verifier simulator M is stage-by-stage if its internal random string r

can be decomposedasr =rio0---ory, ri,...,rN uniform and independent random
variables, such that in each stage i, the simulated messages (Bi1, . . ., Bic) are functions
of 11, ..., r; and the input alone, and (&1, . . ., e ) Is a function of r; alone.

A public coin constant round protocol can be trivially considered to be a stage-by-stage
with only one stage. Note that we do not assume anything about how the simulator uses
its randomness in each stage; it can be used arbitrarily. But since each stage only con-
tains a constant number of rounds, rewinding to the beginning of the stage is affordable
while simulating the new protocol arising from the application of DGW.

2.3 Instance-Dependent Bit Commitments

We recall the definition of instance-dependent bit commitment protocols which
will be used in our construction of interactive protocols with honest-verifier stage-by-
stage simulators. Below, by an exponentially small function ¢(n) we mean a function
of a positive parameter n that grows smaller than 2~ for some fixed ¢ > 0. By the
total variation distance, also known as statistical distance, between two probability
distributions P, () on the same sample space, we mean the ¢;-distance |P — Q| =

22 [P(i) = Q)]
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Definition 2. For a promise problem II = (Ily , I ), a classical public coin constant
round instance-dependent bit commitment scheme consists of a classical public coin
interactive protocol Com,, for every x € Ily U Il between two parties called sender
Sy and receiver R, with the following properties:

1. Protocol Com,, has two stages, a commit stage and a reveal stage;

2. At the beginning of the commit stage, S, gets a private input b € {0,1} which
represents the bit he has to commit to. The commit stage proceeds for a constant
number of rounds, and its transcript ¢y, is defined to be the commitment to the
bit b;

3. Later on, in the reveal stage, S, reveals the bit b and sends another string d,.
called the decommitment string for b. The receiver R, accepts or rejects determin-
istically based on c,.p, b and d.y,.

4. Sender S, and receiver R, can be implemented in randomized time polynomial in

5. Forall x € IIy U IIn, forall b € {0,1}, R, accepts with probability 1 if both S,
and R, follow the prescribed protocol;

The scheme Com,, is said to be exponentially binding statistically for all x € I, if for
any sender S%, there exists an exponentially small function €(-) such that if ¢ denotes
the commitment obtained by the interaction of S} and the honest R, the probability
that there exist decommitment strings dy.., d3., in the reveal stage so that R, accepts
onc, 0, dy.qaswell as c;, 1, d; 4 is less than €(|x|). The binding property is required
to hold for malicious senders too who do not follow the prescribed protocol. In addi-
tion, the scheme Comy is said to be exponentially hiding statistically for all x € Ily
if the views of the honest receiver R, when b = 0 and b = 1 have exponentially small
total variation distance. Similarly, if the two views are negligibly distinguishable by
polynomial sized classical or quantum circuits, the scheme Com,, is said to be compu-
tationally, respectively quantum computationally, hiding.

Remark: Observe that we only require the hiding property to hold for the honest re-
ceiver R, in the above definition. The reason for this is as follows. As mentioned ear-
lier in the introduction, our initial aim is only to get a protocol with a stage-by-stage
honest verifier simulator. We will then make that protocol resilient against all malicious
verifiers by applying the DGW transformation. The hiding property of the commitment
scheme against the honest receiver translates to zero knowledge against the honest ver-
ifier in Proposition[Il where we show how to achieve our initial aim.

3 Applying DGW to Protocols with Stage-by-Stage Simulators

In this section, we will show that applying the DGW transformation to a classical public
coin interactive protocol with a stage-by-stage honest verifier simulator results in a
classical public coin protocol zero-knowledge against all non-uniform polynomial time
classical and quantum verifiers.
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Lemma 1. If a classical public-coin protocol P has a stage-by-stage honest-verifier
simulator M such that the simulated transcript is quantum computationally indistin-
guishable from the actual prover honest-verifier interaction, then applying DGW to it
gives a new classical public coin protocol P’ with inverse polynomially larger soundess
error that is computationally zero-knowledge against all non-uniform polynomial time
classical and quantum verifiers. If in addition P is statistical zero knowledge against
the honest verifier, P’ is statistically zero knowledge against all non-uniform polyno-
mial time classical and quantum verifiers.

Proof. (Sketch) The claim about soundness error follows from Fact[[lwith an appropri-
ate setting of the parameters of the DGW transformation. The zero-knowledge property
crucially relies on the stage-by-stage assumption and the zero-knowledge property of
DGW. Below we sketch the main points of difference from the standard classical set-
ting.

First, the classical proof attempts to simulate all the rounds of the protocol failing
which it rewinds from scratch. Here, we do a stage-by-stage simulation, that is, we try
to simulate all the rounds of one stage failing which we rewind to the beginning of the
stage only. The stage-by-stage property of the honest-verifier simulator M allows us
to do this, since rewinding to the beginning of stage ¢ just means tossing a fresh coin
r; without disturbing the earlier coin tosses r1,...,7;—1. Since each stage consists of
only a constant number of rounds, the success probability of one attempt at simulating
DGW on a stage is inverse polynomial. Thus polynomially many rewinding steps for a
stage suffices to simulate the stage successfully with very high probability. After suc-
cessfully simulating a stage, we can proceed to simulating the next stage, and so on for
polynomially many stages.

The second point of difference is that in the proof of security against quantum ver-
ifiers, we use Watrous’ rewinding technique [WatQ6] at the end of a stage. The reason
this is possible is because the DGW transformation ensures that the success probability
of one attempt at simulation of a stage is independent of the quantum auxiliary input.
Combined with the observation above that the probability of successfully simulating a
stage is inverse polynomial, this allows us to rewind a stage polynomially many times
quantumly without disturbing previous stages and ensure a successful simulation with
very high probability. d

A more formal proof of the classical and quantum parts of the above lemma is given in
the appendix.

4 Designing Protocols with Stage-by-Stage Simulators

In this section, we indicate how to design a classical public coin interactive protocol
for any promise problem in HVSZK and HVCZK q with perfect completeness, ex-
ponentially small soundness and possessing a stage-by-stage honest-verifier simulator.
For problems in HVSZK the simulated transcript will be exponentially close in to-
tal variation distance to the actual transcript, and for problems in HVCZKq the two
transcripts will be negligibly distinguishable against polynomial sized quantum circuits.
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The following statement follows by modifying the arguments of Vadhan [Vad06].
But first, we have to define the notion of a quantumly secure false entropy genera-
tor which is the natural quantum generalization of a so-called false entropy genera-

tor [HILL99].

Definition 3. Let I C {0,1}*, and m(-) be a polynomial function. For x € I, a family
D, of probability distributions on {0, 1}m(|$|) is said to be P-sampleable if there exists
a probabilistic polynomial time algorithm whose output is distributed according to D,
on input x. A P-sampleable family D, is said to be a quantumly secure false entropy
generator if there exists a family F,, of probability distributions on {0, l}m(“”') that
is negligibly distinguishable from D, by polynomial sized quantum circuits such that
H(F,) > H(D,)+ 1, where H(-) is the Shannon entropy of a probability distribution.

Lemma 2. Suppose II = (IIy, IIn) is a promise problem in HVCZKq. Then there
is a family { Dy} ve 11y ity of P-sampleable probability distributions on {0,1}™]),
and a subset I C Iy such that {Dy}cr is a quantumly secure false entropy generator.
Also, (IIy \ 1, IIy) € HVSZK.

Proof. (Sketch) The proof follows by observing that the arguments of 20
through equally well for quantum indistinguishability as for classical indistinguishabil-
ity. Essentially, this is because the proof of [Vad06]| uses reducibility arguments where
the computational hardness of a primitive is used as a black box. A more detailed proof
is left for the full version of the paper. O

We need the following result about the existence of classical public coin constant round
instance dependent bit commitment protocols for problems in HVSZK by Ong and

Vadhan [[OVO0S].

Fact 2. Every promise problem in HVSZK gives rise to a classical constant round
public coin instance dependent bit commitment scheme that is exponentially hiding on
the positive instances and exponentially binding on the negative instances statistically.

Remark: In fact for our purposes, we do not really require the full strength of the above
fact. A weaker primitive of classical constant round public coin instance-dependent two-
phase bit commitment scheme that is statistically hiding on the positive instances and
statistically 1-out-of-2 binding on the negative instances suffices for us. Such schemes
were first constructed by Nguyen and Vadhan [NVO06]. However, our construction of an
interactive protocol with a stage-by-stage honest-verifier simulator is more complicated
if we use 1-out-of-2 binding schemes. Hence, we use the stronger scheme of the above
fact in our proof.

Finally, we need the following statement which follows by modifying the arguments
of Héstad, Impagliazzo, Levin and Luby [HILL99], and Naor [Nao91].

Lemma3. Ler I C J C {0,1}*. Suppose D,, x € J is a P-sampleable family of
probability distributions on {0, 1}’”('%). Also, suppose D, x € I is a quantumly secure
false entropy generator. Then there is a classical constant round public coin instance-
dependent bit commitment scheme for all x € J which is exponentially binding statisti-
cally for all x € J and quantum computationally hiding for all x € I.
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Proof. (Sketch) Same reasoning as in the proof of Lemmal[2l a

By combining Lemmas [2] and Bl and Fact Pl and using the techniques of Vadhan
[Vad06], we can conclude the following quantum analogue of results of Ong and Vad-
han [OVOS].

Lemma 4. Every promise problem in HVCZKq gives rise to a classical constant
round public coin instance dependent bit commitment scheme that is quantum compu-
tationally hiding on the positive instances and exponentially binding statistically on the
negative instances.

We are now finally in a position to show that every problem in HVCZKq has a clas-
sical public coin interactive protocol with a stage-by-stage honest verifier simulator.
For the classical counterparts of the proposition below, we refer the reader to Ong and

Vadhan [[OVO0g].

Proposition 1. Every promise problem II = (IIy,IIn) in HVCZKq has a clas-
sical public coin interactive protocol with perfect completeness, exponentially small
soundness and a stage-by-stage honest-verifier simulator that produces simulated tran-
scripts that are negligibly quantum computationally distinguishable from the actual
prover honest-verifier interaction transcripts. Furthermore if II € HVSZK, then the
resulting protocol is constant round and the simulated transcripts are exponentially
close in total variation distance from the actual transcripts.

A proof sketch can be found in the appendix.
Combining Lemma [Tl together with Proposition[Il we prove the main theorem of the

paper.
Theorem 1. HVCZKq C CZKQ and HVSZK C SZKQ.
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