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Abstract

We investigate the fundamental problem of generating bi-
partite classical distributions or quantum states. By de-
signing efficient communication protocols and proving their
optimality, we establish a number of intriguing connections
to fundamental measures in optimization, convex geometry,
and information theory.

1. To generate a classical distribution P (x, y), we tightly
characterize the minimum amount of quantum commu-
nication needed by the psd-rank of P (as a matrix), a
measure recently proposed by Fiorini, Massar, Pokutta,
Tiwary and de Wolf (Proceedings of the 44th ACM Sym-
posium on Theory of Computing, pages 95-106, 2012) in
studies of the minimum size of extended formulations
of optimization problems such as TSP. This echos the
previous characterization for the optimal classical com-
munication cost by the nonnegative rank of P . The re-
sult is obtained via investigating the more general case
of bipartite quantum state generation and designing an
optimal protocol for it.

2. When an approximation of ε is allowed to generate
a distribution (X,Y ) ∼ P , we present a classical
protocol of the communication cost O((C(X,Y ) +
1)/ε), where C(X,Y ) is common information, a well-
studied measure in information theory introduced by
Wyner (IEEE Transactions on Information Theory,
21(2):163-179, 1975). This also links nonnegative rank
and common information, two seemingly unrelated
quantities in different fields.

3. For approximately generating a quantum pure state
|ψ〉, we completely characterize the minimum cost by
a corresponding approximate rank, closing a possibly
exponential gap left in Ambainis, Schulman, Ta-Shma,
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1 Introduction

Shared randomness and quantum entanglement among
spatially separated parties are important resources for
various distributed information processing tasks. This
motivates us to study the minimum cost for establish-
ing a specified shared randomness or quantum entan-
glement. For the case of shared randomness, we are
also interested in contrasting the efficiency of quantum
protocols with that of classical protocols. Such compar-
isons will deepen our understanding on the power and
the limitation of quantum information processing, and
complement numerous studies for the same purpose but
on different perspectives such as computational com-
plexity, cryptography, and nonlocal games. We will fo-
cus on the bipartite case in this study. For simplicity, we
also use the binary alphabet for classical distributions
and qubit space for quantum states.

Let us be more specific on the quantities involved.
We use the convention of defining the size of a bipartite
distribution as the half of the total number of bits.
Similarly, the size of a bipartite quantum state is the
half of the total number of qubits. Consider the
situation in which two parties, Alice and Bob, aim to
output random variables X and Y , respectively, so
that (X,Y ) is distributed according to a target joint
distribution P . In general, when P is not a product
distribution, Alice and Bob can share a seed correlation
(X ′, Y ′) and each apply a local operation on their own
part. The minimum size of this seed distribution is
the randomized correlation complexity of P , denoted
R(P ). The two parties can also share a quantum
state σ as a seed, on which local quantum operations
are applied to generate (X,Y ). The minimum size
of the quantum seed σ is the quantum correlation
complexity, denoted Q(P ). More generally, the target
can be a bipartite quantum state ρ 1, and the quantum
correlation complexity of generating ρ, denoted Q(ρ),
is again defined as the minimum size of the quantum

1As always, one can think of classical distributions as a special
class of quantum states.



seed σ. Since Alice and Bob can always just share ρ
itself, Q(ρ) is at most the size of ρ, so the correlation
complexity is a sublinear complexity measure.

Instead of sharing seed states, Alice and Bob
can also generate a correlation by communication.
The quantum communication complexity of ρ, denoted
QComm(ρ), is defined as the minimum number of qubits
exchanged between Alice and Bob, initially sharing noth-
ing, to produce ρ at the end of the protocol. Again,
when the target state ρ is a classical distribution P , one
can also define the randomized communication complex-
ity of P , denoted RComm(P ), as the minimum number
of bits exchanged to produce P . It turns out that for
any state ρ, the correlation complexity and the com-
munication complexity are always the same, namely
QComm(ρ) = Q(ρ) (and RComm(P ) = R(P ) when ρ
is a classical distribution P ) [17]. Therefore in the fol-
lowing, we will ignore the difference between correlation
and communication complexity, and just use notation Q
and R to denote the quantity in quantum and classical
settings.2

Throughout the paper, the target distribution P is
over X × Y, where set X is at Alice’s side, and set Y
is at Bob’s. We will use x, x′ to range over X , and y,
y′ over Y. For quantum states, Alice’s output space is
HA = CX , and |x〉, |x′〉 range over HA; similarly for
HB = CY and |y〉, |y′〉 over HB . We usually identify a
distribution P with the matrix P = [P (x, y)]x,y (whose
(x, y)-th entry is P (x, y)).

We summarize below our main results in three
directions, in the context of previous related works.

1. Distribution generation. Correlation complexity
and communication complexity in the above model were
proposed and studied in [17], while the communication
complexity of generating certain special distributions
(arising from Boolean functions on distributed inputs)
was considered much earlier in [1]. In [17] a distribution
P of size n is exhibited with R(P ) ≥ log2(n) and
Q(P ) = 1. Later developments [10, 7] 3 gave a
distribution P of size n with R(P ) ≥ Ω(n) and Q(P ) =
O(log(n)). These results can be viewed as complexity-
theoretic versions of results on nonlocal games, a central
area of study in quantum mechanics and quantum

2One can also consider an intermediate model where Alice and

Bob use both shared state and communication, and the measure is
the size of the shared state plus the amount of the communication.
It is not hard to see that this complexity is also the same as the

correlation and communication complexities.
3The two papers independently obtained the same distribution

and used the same upper bound, though in [7] the purpose

of constructing the distribution was not exactly for separating
classical and quantum correlation complexities.

information that contrasts quantum and classical input-
output correlations (see, e.g. [4], for a survey). Note
that a crucial difference between the non-local game
model and in ours is that in non-local games, the two
parties are given private (and random) inputs, which
are necessary to differentiate the power of classical
and quantum shared resource in those settings. In
comparison, there is no private inputs in the model
that we adopt, which is thus simpler and more basic.
So it is somewhat surprising that it can still separate
the power of shared classical randomness and quantum
entanglement.

These separations [17, 10, 7] are obtained as follows.
First, R(P ) is fully characterized as dlog2 rank+(P )e,
where rank+(P ) is the nonnegative rank, a measure in
linear algebra with numerous applications in combina-
torial optimization [16], nondeterministic communica-
tion complexity [11], algebraic complexity theory [13],
and many other fields [5]. Showing large R(P ) thus
boils down to lower bounding nonnegative rank, which
are proven either via merely looking at the nonzero lo-
cations [3, 17], or via nondeterministic communication
complexity [10, 7]. Second, one needs to upper bound
Q(P ). It is showed in [17] that
(1.1)
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log2 rank(P ) ≤ Q(P ) ≤ min

M : M◦M̄=P
log2 rank(M),

where ◦ is the Hadamard product (i.e. entry-wise
product) and M̄ is the complex conjugate of M . In [7],
en route to discovering an exponential lower bound in
extended formulation of TSP, the authors also derived
the same upper bound as above though for a different
communication complexity measure Q′. This was not a
coincidence as we will later show that the measure Q′ is
the same as the Q(P ) above. Also see more work related
to the upper bound in convex geometry [8, 2].

Despite the application of the upper bound in
Eq.(1.1), it is not clear how tight the bound is. In-
deed, a full characterization of Q(P ) was called for in
[17] as an open question. In this paper, we answer
this by showing a tight characterization in terms of
psd-rank of P , a concept recently proposed in [7] by
Fiorini, Massar, Pokutta, Tiwary and de Wolf. For an
entry-wise nonnegative matrix P , its psd-rank, denoted
rankpsd(P ), is the minimum r such that there are r× r
positive semi-definite matrices Cx, Dy, satisfying that
P (x, y) = tr(CxDy), for all x and y. We show the fol-
lowing result.

Theorem 1.1. For any bipartite distribution P (x, y),

(1.2) Q(P ) = dlog2 rankpsd(P )e.

Along with the foregoing characterization R(P ) =



dlog2 rank+(P )e, it is interesting to see that the clas-
sical complexity for generating a bipartite distribution
P is all about its nonnegative rank, and in comparison,
its quantum complexity is all about the psd-rank.

The above theorem is shown via studying a more
general task of generating a bipartite quantum state ρ,
for which we also show the following characterization of
Q(ρ).

Theorem 1.2. Let ρ be a quantum state in HA ⊗HB.
Let |x〉, |x′〉 range over the computational basis states
for HA, and |y〉, |y′〉 for HB. Then Q(ρ) = dlog2 re,
where r is the minimum number such that there exist
matrices {Ax} and {By}, each with r columns, and

ρ =
∑

x,x′;y,y′

|x〉〈x′| ⊗ |y〉〈y′| · tr
(

(A†x′Ax)T (B†y′By)
)
.

2. Distribution approximation. While in the afore-
mentioned connections to optimization, the quantity
that matters corresponds to exact generation of a dis-
tribution, if we go back to the original motivation of
distributively sampling, it is natural to relax the re-
quirement by allowing a small deviation. After all, if
two distributions are close, then they are hard to dis-
tinguish information theoretically. Next, we give a pro-
tocol approximating a classical distribution P , with the
cost bounded by the common information introduced
by Wyner [15].

Definition 1.1. (Wyner, [15]) The common infor-
mation C(X : Y ) between two random variables X and
Y is the minimum value of I(XY : W ), the mutual in-
formation between XY and W , where the minimum is
over all random variables W conditioned on which X
and Y are independent.

For (X,Y ) ∼ P , it is not hard to see that R(P ) ≥ C(X :
Y ). Though the bound can be loose, we show that if
we allow a small deviation of δ in sampling P , then the
complexity is roughly upper bounded by C(X : Y )/δ.
The approximate version of correlation complexity is
defined as follows.

Definition 1.2. Let ε > 0. Let p be a prob-
ability distribution on X × Y. The ε-correlation

complexity is defined as Rε(p)
def
= min{R(q) :

q is a probability distribution on X × Y with ‖p−q‖1 ≤
ε}.
We show the following result which can be viewed as a
single-shot version of Wyner’s result in the asymptotic
setting that limn→∞ R(Xn, Y n)/n = C(X : Y ) [15].

Theorem 1.3. Let δ > 0. Let (X,Y ) ∼ P be a
distribution on X × Y. Then,

R7δ(P ) ≤ 1

δ
(C(X : Y ) + 1) +O(log(1/δ)).

Combining the above theorem with the characteriza-
tion of R(P ), we have the following corollary, which re-
lates an approximation version of nonnegative rank and

common information, defined naturally as rank
(δ)
+ =

min{rank+(P ′) : ‖P ′ − P‖1 ≤ δ} (where ‖P ′ − P‖1 is
the total variance between the two distributions), and
Cδ(X : Y ) = min{C(X ′ : Y ′) : ‖(X ′, Y ′) − (X,Y )‖1 ≤
δ}.

Corollary 1.1. Suppose that δ > 0 and (X,Y ) ∼ P ,
then

Cδ(X : Y ) ≤ log2 rank
(δ)
+ (P ) ≤ O((C(X : Y ) + 1)/δ).

3. Pure state approximation. Apart from classi-
cal distributions, we also consider the other end of the
spectrum of general quantum states, namely quantum
pure states. While the correlation complexity of exactly
generating a pure state |ψ〉 is easily seen to be the log-
arithm of the Schmidt-rank of |ψ〉, its approximation
version is more complicated. In [1], Ambainis, Schul-
man, Ta-Shma, Vazirani and Wigderson considered to
approximate a pure state |ψ〉 by another pure state.
Define the approximate communication complexity by
Qpureε (|ψ〉) = min{Q(|ψ′〉) : |〈ψ|ψ′〉| ≥ 1 − ε}. They
showed that for any pure state |ψ〉 =

∑
x,y ax,y|x〉⊗ |y〉,

dlog2 rank2ε(A)e ≤ Qpureε (|ψ〉〈ψ|) ≤ dlog2 rankε(A)e.

Here A = [ax,y], and rankε(A)
def
= min{rank(B) : ‖A −

B‖22 ≤ ε}. Using Lemma 2.1 (as mentioned in the next
section), one can easily construct a state |ψ〉 ∈ CN⊗CN
such that rank2ε(A) = 1 but rankε(A) = N/2, making
the above two bounds arbitrarily far from each other.

In this paper, we consider approximate versions of
Q(ρ) for general quantum states as follows. We first
extend the above definition by allowing to use a mixed
state to approximate a target state. (In what follows,
F(ρ, ρ′) represents the fidelity between ρ and ρ′. See the
next section for formal definitions.)

Definition 1.3. For ε > 0 and ρ a bipartite quantum
state in HA ⊗HB. Define

Qε(ρ)
def
= min{Q(ρ′) : F(ρ, ρ′) ≥ 1− ε; ρ′ ∈ HA ⊗HB}.

Qpureε (ρ)
def
= min{Q(|φ〉〈φ|) : F(ρ, |φ〉〈φ|) ≥ 1−ε; |φ〉 ∈ HA⊗HB}.

That is, Qpureε (ρ) and Qε(ρ) are the complexities to
generate an approximation of the target state ρ by
a pure and mixed state, respectively. We show the
following tight characterization.

Theorem 1.4. Let ε > 0. Let |x〉 and |y〉 range
over the computational basis states for HA and HB,
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respectively. Let |ψ〉 =
∑
x,y ax,y|x〉 ⊗ |y〉, and matrix

A = [ax,y]. Then

Qε(|ψ〉〈ψ|) = Qpureε (|ψ〉〈ψ|) = dlog2 rank2ε−ε2(A)e.

Note that our result not only improves the bounds in [1]
to the optimal, but also shows that allowing a mixed
state to approximate a pure state |ψ〉 does not help, for
any |ψ〉 and any ε.

As we mentioned, for information processing tasks
as fundamental as bipartite state generation, previous
studies in [17] soon found connections to optimizations,
etc. We believe that our new and tight characterizations
would find more applications in various areas.

We conclude this section by relating our work to
several additional works. The paper [9] studies the
communication complexity for generating a correlation
(X,Y ), where the complexity is measured in expecta-
tion as follows. Suppose Alice samples x← X and tries
to let Bob sample from Y |(X = x), [9] asks the minimum
expected communication needed (where the expectation
is over the randomness of protocol as well as the ini-
tial sample x ← X). For comparison, the model here
measures the worst-case cost, over all randomness in the
protocol. And also note that protocols in [9] uses a large
amount of public coins, which is exactly the resource we
hope to save.

The complexity for generating correlation in the
asymptotic setting has a long history in information the-
ory, dating back to Wyner’s classic paper [15]. Asymp-
totic complexity in the corresponding quantum case was
studied by Winter [14].

When introduced in [7], psd-rank is also used to
characterize one-way quantum communication complex-
ity of computing P (x, y) in expectation, where Bob uses
a POVM {Eyθ } on a message ρx sent by Alice s.t. the ex-
pected outcome θ is equal to P (x, y). Unfortunately, we
do not know any direct argument for why the task and
our distributive sampling have the same complexity.

2 Preliminaries

Matrix theory. For a natural number n we let [n]
represent the set {1, 2, . . . , n}. We sometimes write
A = [ax,y] to mean that A is a matrix with the (x, y)-th
entry being ax,y. For a matrix A, we let AT represent
the transpose of A, A∗ or Ā represent the conjugate
of A and A† represent the conjugate transpose of A.
An operator A is said to be Hermitian if A† = A. A
Hermitian operator A is said to be positive semi-definite
(PSD) if all its eigenvalues are non-negative. For any
vectors |v1〉, . . . , |vr〉 in Cn, the r× r matrix M defined

by M(i, j)
def
= 〈vi|vj〉 is positive semi-definite.

If A is positive semi-definite then so is AT = A∗.
We let σ1(A) ≥ · · · ≥ σn(A) ≥ 0 denote singular values
of A. The rank of A, denoted rank(A), is defined to
be the number of non-zero singular values of A. The
Frobenius norm of A is ‖A‖2 =

√∑
i σi(A)2 and the

trace norm is ‖A‖1 =
∑
i σi(A). For ε > 0, define

rankε(A) = min{rank(B) : ‖A − B‖22 ≤ ε}. The
following well-known result says that the best way to
approximate A (under the Frobenius norm) with the
least rank is by taking the large singular values part.

Lemma 2.1. (Eckart-Young, [6]) Let ‖A‖2 = 1 and
ε > 0. Then, rankε(A) = the minimum k such that∑k
i=1 σi(A)2 ≥ 1− ε.

The following definition of psd-rank of a matrix was
proposed in [7].

Definition 2.1. For a matrix P ∈ Rn×m+ , its psd-
rank, denoted rankpsd(P ), is the minimum number r
such that there are PSD matrices Cx, Dy ∈ Cr×r with
tr(CxDy) = P (x, y), ∀x ∈ [n], y ∈ [m].

Quantum information. A quantum state ρ in Hilbert
space H, denoted ρ ∈ H, is a trace one positive semi-
definite operator acting on H. The size of a state ρ
is defined to be half the number of qubits of ρ. 4

A quantum state ρ is called pure if it is rank one,
namely ρ = |ψ〉〈ψ| for some vector |ψ〉 of unit `2
norm; in this case, we often identify ρ with |ψ〉. For
quantum states ρ and σ, their fidelity is defined as

F(ρ, σ)
def
= tr(

√
σ1/2ρσ1/2). For ρ, |ψ〉 ∈ H, we have

F(ρ, |ψ〉〈ψ|) =
√
〈ψ|ρ|ψ〉. We define norm of |ψ〉 as

‖|ψ〉‖ def
=
√
〈ψ|ψ〉. For a quantum state ρ ∈ HA ⊗HB ,

we let trHBρ represent the partial trace of ρ in HA after
tracing out HB . Let ρ ∈ HA and |φ〉 ∈ HA ⊗ HB be
such that trHB |φ〉〈φ| = ρ, then we call |φ〉 a purification
of ρ. For a pure state |ψ〉 ∈ HA ⊗ HB , its Schmidt
decomposition is defined as |ψ〉 =

∑r
i=1

√
pi · |vi〉⊗ |wi〉,

where the states |vi〉 ∈ HA are orthonormal, and so
are the states |wi〉 ∈ HB , and p is a probability
distribution. It is easily seen that r is also equal to
rank(trHA |ψ〉〈ψ|) = rank(trHB |ψ〉〈ψ|) and is therefore
the same in all Schmidt decompositions of |ψ〉. This
number is also referred to as the Schmidt rank of |ψ〉
and denoted S-rank(|ψ〉). Sometimes we absorb the
coefficients

√
pi in |vi〉 ⊗ |wi〉, in which case |vi〉, |wi〉

may not be unit vectors. It is not hard to verify that
local unitary operations do not change Schmidt rank of

4We take the factor of half because we shall talk about

a correlation as a shared resource. It is consistent with the
convention that when the two parties shares a classical correlation

(X,Y ), where Y = X = R for a r-bit random string R, we say
that they share a random variable R of size r.



a bipartite state. The next fact follows by considering
Schmidt decomposition of the pure states involved; see,
for example, Ex(2.81) of [12].

Fact 1. Let |ψ〉, |φ〉 ∈ HA ⊗ HB be such that
trHB |φ〉〈φ| = trHB |ψ〉〈ψ|. There exists a unitary op-
eration U on HB such that (IHA ⊗ U)|ψ〉 = |φ〉, where
IHA is the identity operator on HA.

We will also need another fundamental fact, shown by
Uhlmann [12].

Fact 2. (Uhlmann, [12]) Let ρ, σ ∈ HA. Let |ψ〉 ∈
HA ⊗ HB be a purification of ρ and dim(HA) ≤
dim(HB). There exists a purification |φ〉 ∈ HA⊗HB of
σ such that F(ρ, σ) = |〈φ|ψ〉|.

We define the approximate Schmidt rank as follows.

Definition 2.2. Let ε > 0. Let |ψ〉 be a pure state in
HA ⊗HB. Define

S-rankε(|ψ〉)
def
= min{S-rank(|φ〉) : |φ〉 ∈ HA ⊗HB

(2.3)

and F(|ψ〉〈ψ|, |φ〉〈φ|) ≥ 1− ε}.

Define linear map vecinv : HA⊗HB → L(HB ,HA),
where L(HB ,HA) is the set of operators from HB to

HA, by vecinv(|x〉 ⊗ |y〉) def
= |x〉〈y|, and extend to all

vectors in HA ⊗HB by linearity. For |ψ〉 ∈ HA ⊗HB ,
it is easily seen that ‖|φ〉‖ = ‖vecinv(|ψ〉)‖2.

In the following sections we assume Hilbert spaces
HA,HA1 ,HA2 etc. are possessed by Alice and Hilbert
spaces HB ,HB1

,HB2
etc. are possessed by Bob. We

start by showing the following key lemma which we will
use many times in the following sections.

Lemma 2.2. Let ρ be a quantum state in HA ⊗ HB.
Then,

Q(ρ) = min
HA1

,HB1

{
⌈

log2 S-rank(|ψ〉)
⌉

: |ψ〉 is a pure state

in HA1 ⊗HA ⊗HB ⊗HB1 , ρ = trHA1
⊗HB1

|ψ〉〈ψ|}.

Proof. Let r
def
= minHA1

,HB1
{
⌈

log2

(
S-rank(|ψ〉)

)⌉
:

ρ = trHA1
⊗HB1

|ψ〉〈ψ|}. We first show Q(ρ) ≤ r. Let
|ψ〉 be such that

r =
⌈

log2

(
S-rank(|ψ〉)

)⌉
and ρ = trHA1

⊗HB1
|ψ〉〈ψ|.

Let t
def
= S-rank(|ψ〉). Let |ψ〉 have a Schmidt decom-

position

|ψ〉 =

t∑
i=1

√
pi · |vi〉 ⊗ |wi〉,

Let Alice and Bob start with the state

|φ〉 =

t∑
i=1

√
pi · |i〉 ⊗ |i〉,

and transform |φ〉 to |ψ〉 using local unitary transfor-
mations. This shows that Q(ρ) ≤ dlog2 te = r.

For the other direction let s
def
= Q(ρ). Let Alice

and Bob start with the seed state σ and apply local
completely positive trace preserving maps ΦA,ΦB re-
spectively to produce ρ. Let us assume without loss

of generality that the number of qubits of σA
def
= trHBσ

is at most s. Let σA =
∑2s

i=1 ai|vi〉〈vi|, where ai ≥ 0 is
the i-th eigenvalue of σA with eigenvector |vi〉. Define

|φ〉 def
=

2s∑
i=1

√
ai · |vi〉 ⊗ |vi〉

and let

|φ′〉 =

2s∑
i=1

√
ai · |vi〉 ⊗ |wi〉

be a purification of σ, where ∀i : |vi〉 ∈ HA and |wi〉 ∈
HB ⊗HB2 .

Now consider the following operations by Alice and
Bob. They start with the shared state |φ〉. Bob
using local unitary (after attaching ancilla |0〉 if needed)
transforms |φ〉 to |φ′〉 (Bob can do this due to Fact 1).
Alice and Bob then simulate their maps ΦA,ΦB on σ by
local unitaries (each after attaching ancilla |0〉 if needed
on their parts; such a simulation is a standard fact,
please refer to [12]) and finally produce a purification
|θ〉 ∈ HA⊗HA1

⊗HB ⊗HB1
of ρ. Since Alice and Bob,

using local unitary operations and attaching ancilla |0〉,
transform |φ〉 to |θ〉, we have 2s ≥ S-rank(|φ〉) =
S-rank(|θ〉). This shows that r ≤ s.

The following lemma is credited to Nayak (personal
communication) in [17]; we include a proof in Appendix
for completeness.

Lemma 2.3. For a quantum state ρ in HA × HB ,
Q(ρ) = QComm(ρ).

Classical information theory. Let p be a probability
distribution on X . For x ∈ X , we let p(x) denote
the probability of x under p. For X1 ⊆ X , we define

p(X1)
def
=

∑
x∈X1

p(x). The entropy of p, denoted

H(p) is defined as H(p)
def
=
∑
x∈X −p(x) log p(x). Let

p, q be probability distributions on X . Then the `1
distance between them, denoted ‖p − q‖1 is defined as∑
x∈X |p(x) − p(y)|. Let p be a distribution on X × Y.

For (x, y) ∈ X × Y, define p(y|x)
def
= p(x,y)

p(x) and p(y)
def
=
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∑
x∈X p(x, y). Similarly one can define p(x|y) and

p(x). We identify a random variable to also represent
its distribution. Let joint random variable (X,Y )
be distributed in X × Y and have joint distribution
p. The mutual information between X and Y is

defined as I(X : Y )
def
= H(X) + H(Y ) − H(XY ) =∑

(x,y)∈X×Y p(x, y) log p(x,y)
p(x)·p(y) .

We will use the following fact, which follows from
the log sum inequality, see for example [9].

Fact 3. Let p, q be a probability distributions on X .

Then for all X ′ ⊆ X :
∑
x∈X ′ p(x) log p(x)

q(x) ≥ −1.

3 Correlation complexity of precisely
generating a quantum state and a classical
distribution

In this section we show characterizations of correlation
complexities for general quantum states (Theorem 1.2)
and also for classical distributions (Theorem 1.1). We
start with the following lemma, which, together with
Lemma 2.2, implies Theorem 1.2. The proof is deferred
to Appendix.

Lemma 3.1. Let ρ be a quantum state in HA ⊗ HB.
Let |x〉, |x′〉 range over the computational basis states
for HA, and |y〉, |y′〉 for HB. Then there exists a
purification |ψ〉 of ρ, with S-rank(|ψ〉) = r, if and
only if there exist matrices {Ax} and {By}, each with r
columns, such that

ρ =
∑

x,x′;y,y′

|x〉〈x′| ⊗ |y〉〈y′| · tr
(

(A†x′Ax)T (B†y′By)
)
.

We now use similar arguments as in the proof of the
above lemma to show Theorem 1.1

Proof. (of Theorem 1.1) We will first show Q(ρ) ≤
dlog2 rankpsd(P )e, where ρ =

∑
x,y p(x, y)|x〉〈x| ⊗ |y〉〈y|

(and generating P is just the same as generating ρ). Let
r = rankpsd(P ). We will exhibit a purification |ψ〉 of ρ
with S-rank(|ψ〉) = r. This combined with Lemma 2.2
will show Q(ρ) ≤ dlog2 re. Let Cx, Dy ∈ Cr×r
be positive semi-definite matrices with tr(CxDy) =
P (x, y), ∀x ∈ X , y ∈ Y. For i ∈ [r], let |vix〉 be the
i-th column of

√
CTx and let |wiy〉 be the i-th column of√

Dy. Define |ψ〉 in HA⊗HA⊗HA1
⊗HB ⊗HB ⊗HB1

as follows.

|ψ〉 def
=

r∑
i=1

(∑
x

|x〉⊗|x〉⊗|vix〉
)
⊗
(∑

y

|y〉⊗|y〉⊗|wiy〉
)
.

It is clear that S-rank(|ψ〉) ≤ r. Also,

trHA⊗HA1
⊗HB⊗HB1

|ψ〉〈ψ|

=
∑
x,y

|x〉〈x| ⊗ |y〉〈y|

 r∑
i,j=1

〈vjx|vix〉 · 〈wjy|wiy〉


=
∑
x,y

|x〉〈x| ⊗ |y〉〈y| · tr(CxDy) = ρ.

Note that Alice and Bob after sharing |ψ〉 can measure
their first registers in their respective computational
basis (discarding the second and third registers) to
obtain ρ.

Now we will show Q(ρ) ≥ dlog2 rankpsd(P )e. Let
|ψ〉 ∈ HA⊗HA1 ⊗HB⊗HB1 be a purification of ρ with
S-rank(|ψ〉) = r and Q(ρ) = dlog2 re, as guaranteed by
Lemma 2.2. We will show r ≥ rankpsd(P ) and this will
show the desired. Let

|ψ〉 =

r∑
i=1

(∑
x

|x〉 ⊗ |vix〉

)
⊗

(∑
y

|y〉 ⊗ |wiy〉

)
.

For all x, define r × r matrices Cx such that Cx(j, i) =
〈vjx|vix〉 for all i, j ∈ [r]. Similarly for all y, define
r × r matrices Dy such that Dy(i, j) = 〈wjy|wiy〉 for all
i, j ∈ [r]. Then Cx, Dy are positive semi-definite for all
x and y. Consider

ρ = trHA1
⊗HB1

|ψ〉〈ψ|

=
∑
x,y

|x〉〈x| ⊗ |y〉〈y|

 r∑
i,j=1

〈vjx|vix〉 · 〈wjy|wiy〉


=
∑
x,y

|x〉〈x| ⊗ |y〉〈y| · tr(CxDy).

Therefore for all x and y we have px,y = P (x, y) =
tr(CxDy). Hence rankpsd(P ) ≤ r.

4 Classical complexity of approximating a
distribution

In this section we prove Theorem 1.3, and we will use
the lower-case p to denote the distribution P in the
statement.

Proof. Let W be a random variable, taking values in
the set W, that achieves the minimum in the definition

of C(X,Y ). Let Z
def
= (X,Y ) and Z def

= X × Y. The
idea is to find a small number (in terms of C(X,Y )) of
wi ∈ W’s such that the uniform average, over wi’s, of
the conditional distributions (Z|wi) is close to Z itself.
Recall that (X,Y ) ∼ p.



Lemma 4.1. Let q be the joint distribution of (Z,W ),
and

k
def
= C(X : Y ) = I(Z : W )

=
∑

(z,w)∈Z×W

q(z, w) log
q(z|w)

q(z)
,

where we use convention 0 log(0/0) = 0. For any δ ∈
(0, 1), there exists an n = O(2(k+1)/δ · δ−3 log(1/δ)) and
a set {w1, ..., wn} s.t. the distribution p′ on Z defined

by p′(z)
def
= 1

n

∑n
i=1 q(z|wi) satisfies ‖p− p′‖1 ≤ 7δ.

Proof. Define

Good1
def
= {(z, w) ∈ Z ×W : q(z|w) ≤ 2(k+1)/δq(z)}.

Using Fact 3 and then Markov’s inequality on the set
{(z, w) : q(z|w) ≥ q(z)}, we have that q(Good1) ≥ 1−δ.
Define

Good2
def
= {z :

∑
w:(z,w)∈Good1

q(z, w) ≥ δ
∑
w

q(z, w)}.

Define a function q′ on Z ×W as follows.

q′(z, w)
def
=

{
q(z, w) if (z, w) ∈ Good1 and z ∈ Good2

0 otherwise

and define q′(z|w)
def
= q′(z, w)/q(w) and q′(z)

def
=∑

w q
′(z, w) =

∑
w q(w)q′(z|w). Note that q′(z, w) is

not a distribution, but it can be seen that q′ deviates
from q by a small amount:∑

(z,w)∈Z×W

∣∣q′(z, w)− q(z, w)
∣∣(4.4)

=
∑

(z,w)/∈Good1

q(z, w) +
∑

(z,w)∈Good1: z/∈Good2

q(z, w)

≤ 1− q(Good1) +
∑

z/∈Good2

δ · q(z) ≤ 2δ.(4.5)

Let us sample {w1, w2, . . . , wn}, where each wi ∈ W is
sampled independently according to W . For all z ∈ Z
we have, Ewi←W [q′(z|wi)] = q′(z) by the definitions of
q′(z|wi) and q′(z). Also for all (z, w) ∈ Z ×W

(4.6) q′(z|w) ≤ 1

δ
q′(z)2(k+1)/δ.

The inequality above is easily seen for z /∈ Good2 or
(z, w) /∈ Good1. Now assume that z ∈ Good2 and
(z, w) ∈ Good1, then by definition,

q′(z|wi) = q(z|wi) ≤ 2(k+1)/δq(z) ≤ 1

δ
2(k+1)/δq′(z),

where the first inequality is because (z, w) ∈ Good1 and
the second inequality is because z ∈ Good2.

With these bounds set up, we are able to apply
Chernoff’s bound and get that for all z with q′(z) 6= 0,

Pr{wi}

[∣∣∣q′(z|w1) + · · ·+ q′(z|wn)

n
− q′(z)

∣∣∣ > δq′(z)
](4.7)

=Pr{wi}

[∣∣∣ ∑
i q
′(z|wi)

q′(z)2(k+1)/δ/δ
− n

2(k+1)/δ/δ

∣∣∣ > δn

2(k+1)/δ/δ

]
≤2e−δ

3n/(3·2(k+1)/δ) ≤ δ.

In the second step we used Eq. (4.6). Since the bound is
trivially true if q′(z) = 0, we have the bound regardless
of the value of q′(z). Therefore,

E{wi}

[∑
z

|p′(z)− p(z)|

]

= E{wi}

[∑
z

∣∣∣∑i q(z|wi)
n

− p(z)
∣∣∣]

≤ E{wi}

[∑
z

(∣∣∣∑i q(z|wi)
n

−
∑
i q
′(z|wi)
n

∣∣∣
+
∣∣∣∑i q

′(z|wi)
n

− q′(z)
∣∣∣+ |q′(z)− p(z)|

)]
≤ E{wi}

[ 1

n

∑
i

∑
z

|q(z|wi)− q′(z|wi)|
]

+
∑
z

E{wi}

[∣∣∣∑i q
′(z|wi)
n

− q′(z)
∣∣∣]+

∑
z

|q′(z)− p(z)|

= Ew←W

[∑
z

|q(z|w)− q′(z|w)|
]

+
∑
z

E{wi}

[∣∣∣∑i q
′(z|wi)
n

− q′(z)
∣∣∣]+

∑
z

|q′(z)− p(z)|

The first summand is
∑
w,z |q(z, w) − q′(z, w)| ≤ 2δ,

by Eq.(4.4). The second summand is at most (1 −
δ)
∑
z δq
′(z)+2δ ≤ 3δ, by Eq.(4.7). The third summand

is at most
∑
z,w |q′(z, w) − q(z, w)| ≤ 2δ, again by

Eq.(4.4). Putting these bounds together, we have
E{wi} [

∑
z |p′(z)− p(z)|] ≤ 7δ. Thus there exists {wi}

to make ‖p′ − p‖1 ≤ 7δ as well. This completes the
proof of Lemma 4.1.

We now continue the proof of Theorem 1.3. Consider
the set {wi} given by the above lemma. Consider
the protocol in which Alice and Bob sample i ∈ [n]
uniformly using public-coins and generate X|(W = wi)
and Y |(W = wi), respectively locally (since X|(W =
wi) and Y |(W = wi) are independent). Then by the
lemma above, their joint distribution p′ (on X × Y)
satisfies ‖p − p′‖1 ≤ 7δ. The correlation cost of the
protocol is dlog ne = (k + 1)/δ +O(log(1/δ)).
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5 Correlation complexity of approximating a
pure state

In this section we prove Theorem 1.4. We start by
characterizing the approximate Schmidt rank.

Lemma 5.1. Let ε > 0. Let |ψ〉 be a pure state
in HA ⊗ HB with a Schmidt decomposition |ψ〉 =∑r
i=1

√
pi · |vi〉 ⊗ |wi〉 (with p1 ≥ p2 ≥ . . . ≥ pr > 0

and
∑r
i=1 pi = 1). Let r′ be the minimum number such

that
∑r′

i=1 pi ≥ (1− ε)2. Then r′ = S-rankε(|ψ〉).

Proof. We will first show that r′ ≥ S-rankε(|ψ〉). Let

q =
∑r′

i=1 pi. Define

|φ〉 def
=

1
√
q
·
r′∑
i=1

√
pi · |vi〉 ⊗ |wi〉.

Then F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉| = √q ≥ 1 − ε. Clearly
S-rank(|φ〉) = r′ and hence r′ ≥ S-rankε(|ψ〉).

Now we will show that r′ ≤ S-rankε(|ψ〉). Let
s = S-rankε(|ψ〉). Let |θ〉 ∈ HA ⊗ HB be a pure
state such that |〈θ|ψ〉| = F(|ψ〉〈ψ|, |θ〉〈θ|) ≥ 1 − ε
and S-rank(|θ〉) = s. Without loss of generality (by
multiplying |θ〉 by an appropriate phase) let us assume

that β
def
= 〈ψ|θ〉 is real. Let |θ〉 =

∑s
j=1

√
qi · |v′j〉 ⊗ |w′j〉

be a Schmidt decomposition of |θ〉. Define

A
def
=

r∑
i=1

√
pi ·|vi〉〈wi| and B

def
= β ·

s∑
i=1

√
qi ·|v′i〉〈w′i|.

Note that A = vecinv(|ψ〉) and B = vecinv(|θ′〉), where
|θ′〉 = β|θ〉. Since {vi} and {wi} are orthonormal, {√pi}
form the singular values of A. Similarly {β · √qi} form
the singular values of B. Now,

1− (1− ε)2 ≥ 1− β2 = ‖|ψ〉‖2 + ‖|θ′〉‖2 − 2〈θ′|ψ〉
= ‖|ψ〉 − |θ′〉‖2 = ‖vecinv(|ψ〉 − |θ′〉)‖22
= ‖vecinv(|ψ〉)− vecinv(|θ′〉)‖22 = ‖A−B‖22.

Hence from Lemma 2.1, S-rank(|θ〉) = rank(B) ≥ r′.

We can now get the desired characterization for
Qpureε (|ψ〉〈ψ|).

Theorem 5.1. Let ε > 0. Let |ψ〉 be a pure state
in HA ⊗ HB with a Schmidt decomposition |ψ〉 =∑r
i=1

√
pi · |vi〉 ⊗ |wi〉 (with p1 ≥ p2 ≥ . . . ≥

pr > 0 and
∑r
i=1 pi = 1). Let A =

∑r
i=1

√
pi ·

|vi〉〈wi| = vecinv(|ψ〉). Then, Qpureε (|ψ〉〈ψ|) =
dlog2 rank2ε−ε2(A)e.

Proof. From the definitions and Lemma 2.2 it is
clear that Qpureε (|ψ〉〈ψ|) = dlog2 S-rankε(|ψ〉)e. Also

from Lemma 2.1 and Lemma 5.1 it follows that
S-rankε(|ψ〉) = rank2ε−ε2(A) (by noting that {√pi}
form singular values of A).

The following lemma shows a monotonicity prop-
erty for the approximate Schmidt rank.

Lemma 5.2. Let |ψ〉 be a pure state in HA ⊗ HB and
|θ〉 a pure state in HA1

⊗HB1
. Then,

S-rankε(|ψ〉 ⊗ |θ〉) ≥ S-rankε(|ψ〉).

Hence from Lemma 2.2,

Qpureε (|ψ〉〈ψ| ⊗ |θ〉〈θ|) ≥ Qpureε (|ψ〉〈ψ|).

Proof. Let |ψ〉 =
∑r
i=1

√
pi · |u1

i 〉⊗|v1
i 〉 (with p1 ≥ · · · ≥

pr > 0) and |θ〉 =
∑s
i=1

√
qi ·|u2

i 〉⊗|v2
i 〉 be some Schmidt

decompositions of |ψ〉 and |θ〉 respectively. Then

|ψ〉 ⊗ |θ〉 =
∑
i,j

√
piqj · |u1

i 〉 ⊗ |u2
i 〉 ⊗ |v1

i 〉 ⊗ |v2
i 〉.

Fix a minimal set S ⊆ [r]×[s] with
∑

(i,j)∈S piqj ≥ 1−ε.

Let r′
def
= S-rankε(|ψ〉). We will show |S| ≥ r′.

Assume for contradiction |S| ≤ r′ − 1. Let S1 = {i :
∃j such that (i, j) ∈ S}, then |S1| ≤ |S| ≤ r′ − 1. We
have ∑

(i,j)∈S

piqj ≤
∑
i∈S1

pi ≤ p1 + · · ·+ p|S1| < 1− ε,

where the first inequality is because
∑
j:(i,j)∈S qj ≤ 1

for all i, the second inequality is because pi’s are in
the non-increasing order, and the last one is by the
definition of S-rankε(|ψ〉) = r′, the smallest number
such that p1 + · · ·+ pr′ ≥ 1− ε (from Lemma 5.1). This
contradicts the way we picked S and hence

S-rankε(|ψ〉 ⊗ |θ〉) = |S| ≥ r′ = S-rankε(|ψ〉).

Theorem 5.2. Let ε > 0. Let |ψ〉 be a pure state in
HA ⊗HB. Then, Qε(|ψ〉〈ψ|) = Qpureε (|ψ〉〈ψ|).

Proof. By definition, we have Qε(|ψ〉〈ψ|) ≤
Qpureε (|ψ〉〈ψ|). Now consider the other direction. By
the definition of Qε(|ψ〉〈ψ|), there exists a ρ ∈ HA⊗HB
such that

(5.8) Qε(|ψ〉〈ψ|) = Q(ρ) and F(ρ, |ψ〉〈ψ|) ≥ 1− ε.

By Lemma 2.2, there exists a purification |φ〉 in HA ⊗
HA1 ⊗HB ⊗HB1 of ρ with

(5.9) Q(ρ) = dlog2 S-rank(|φ〉〈φ|)e = Q(|φ〉〈φ|).

Without loss of generality, we can assume that
dim(HA1 ⊗ HB1) ≥ dim(HA ⊗ HB) (otherwise we can



attach |0〉 to |φ〉 appropriately). Now by Uhlmann’s
Theorem, there exists a purification |ψ′〉 ∈ HA⊗HA1

⊗
HB⊗HB1 of |ψ〉〈ψ| such that |〈φ|ψ′〉| ≥ 1−ε. Since |ψ〉
is a pure state, |ψ′〉 = |ψ〉⊗|θ〉 for some |θ〉 ∈ HA1⊗HB1 .
Therefore,

Qpureε (|ψ〉〈ψ|)
≤ Qpureε (|ψ′〉〈ψ′|) (from Lemma 5.2)

≤ Q(|φ〉〈φ|) (from def. of Qpureε (|ψ′〉〈ψ′|))
= Q(ρ) (from Eq. (5.9))

= Qε(|ψ〉〈ψ|). (from Eq. (5.8))

Theorem 1.4 now follows immediately by combining
Theorem 5.1 and Theorem 5.2 and noting that the
matrix A as defined in the statement of Theorem 1.4
is vecinv(|ψ〉).
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A Deferred proofs

A.1 Proof of Lemma 2.3

Proof. Clearly Q(ρ) ≥ QComm(ρ). For the other

direction let r
def
= QComm(ρ). Let Alice and Bob start

with the state σA ⊗ σB ∈ HA ⊗HB , do local quantum
operations, communicate r qubits and at the end output
ρ. This protocol can be converted into another protocol
where Alice and Bob start with a purification |φ〉 ∈ HA⊗
HA1 ⊗ HB ⊗ HB1 of σA ⊗ σB (with S-rank(|φ〉) = 1),
do local unitaries, exchange r qubits and at the end
output a purification |ψ〉 ∈ HA⊗HA1

⊗HB⊗HB1
of ρ.

Since local unitaries do not increase the Schmidt rank
of the shared state and exchanging r qubits increases
the Schmidt rank by a factor at most 2r (since the
rank of the marginal state possessed by Alice increases

9



by at most a factor 2 on receiving a qubit from Bob,
and similarly for Bob on receiving a qubit from Alice),
we have S-rank(|ψ〉) ≤ 2r. Hence from Lemma 2.2,
Q(ρ) ≤ r.

A.2 Proof of Lemma 3.1

Proof. We first show the ‘only if’ implication. Let |ψ〉
be a purification of ρ in HA ⊗ HA1

⊗ HB ⊗ HB1
. Let

S-rank(|ψ〉) = r. Consider a Schmidt decomposition of
|ψ〉.

|ψ〉 =

r∑
i=1

|vi〉 ⊗ |wi〉

=

r∑
i=1

(∑
x

|x〉 ⊗ |vix〉
)
⊗
(∑

y

|y〉 ⊗ |wiy〉
)
.

Above for any i, x, y, the vectors |vi〉, |wi〉, |vix〉, |wiy〉 are
not necessarily unit vectors. Consider

ρ = trHA1
⊗HB1

|ψ〉〈ψ|

= trHA1
⊗HB1

( r∑
i=1

(∑
x

|x〉 ⊗ |vix〉
)
⊗
(∑

y

|y〉 ⊗ |wiy〉
))

( r∑
j=1

(∑
x′

〈x′| ⊗ 〈vjx′ |
)
⊗
(∑
y′

〈y′| ⊗ 〈wjy′ |
))

= trHA1
⊗HB1

∑
i,j

(∑
x,x′

|x〉〈x′| ⊗ |vix〉〈v
j
x′ |
)

⊗
(∑
y,y′

|y〉〈y′| ⊗ |wiy〉〈w
j
y′ |
)

=
∑
i,j

(∑
x,x′

|x〉〈x′| · 〈vjx′ |vix〉
)
⊗
(∑
y,y′

|y〉〈y′| · 〈wjy′ |w
i
y〉
)

=
∑

x,x′;y,y′

|x〉〈x′| ⊗ |y〉〈y′|
(∑
i,j

〈vjx′ |vix〉 · 〈w
j
y′ |w

i
y〉
)
.

For each x, let us define matrices Ax
def
=

(|v1
x〉, |v2

x〉, . . . , |vrx〉). Similarly for each y, let us

define matrices By
def
= (|w1

y〉, |w2
y〉, . . . , |wry〉). Then from

above,

ρ =
∑

x,x′;y,y′

|x〉〈x′| ⊗ |y〉〈y′| · tr
(

(A†x′Ax)T (B†y′By)
)
.

Next we show the ‘if’ implication. Let there exist
matrices {Ax : x ∈ [dim(HA)]} and {By : y ∈
[dim(HB)]}, each with r columns, such that

ρ =
∑

x,x′;y,y′

|x〉〈x′| ⊗ |y〉〈y′| · tr
(

(A†x′Ax)T (B†y′By)
)
.

For i ∈ [r], let |vix〉 be the i-th column of Ax and let
|wiy〉 be the i-th column of By. Define

|ψ〉 def
=

r∑
i=1

(∑
x

|x〉 ⊗ |vix〉

)
⊗

(∑
y

|y〉 ⊗ |wiy〉

)

It is clear that S-rank(|ψ〉) = r. We can check, by
analogous calculations as above, that

ρ = trHA1
⊗HB1

|ψ〉〈ψ|.


