
The approximate degree, the quantum query

complexity and the total influence

Yaoyun Shi∗ and Shengyu Zhang †

Abstract

In this note we show that the quantum query complexity is lower bounded by the total
influence for any biased probability p. The same lower bounds holds for the approximate degree
(with a log factor loss). This proves the quantum version of a recent result by O’Donnell and
Servedio [8], and generalizes a result by Shi [12], who showed the special case of p = 1/2.
Interestingly, the quantum lower bound does not use the assumption of monotonicity which
O’Donnell and Servedio [8] used for the randomized result.

1 Introduction

The effect of symmetry on the query complexity, or called decision tree complexity, has drawn much
attention from early 1970’s. The most famous example is the Aanderaa-Rosenberg Conjecture [11],
which says that any monotone n-node graph property has the deterministic decision tree complexity(
n
2

)
. While this was settled (up to a constant factor) [6, 10], its randomized variant – which says

that the randomized query complexity for any monotone graph property is Ω(n2) – is still open.
Yao made the first breakthrough by using the graph packing technique [13] to give a Ω(n log1/12(n))
lower bound, and later King [5] and Hajnal [4] improved the result to Ω(n4/3) by more elaborative
usage of the graph packing technique. This method seemed to be pushed to its limit: The only
further improvement over the past two decades was by Chakrabarti and Khot [3] who proved a
lower bound of Ω(n4/3 log1/3(n)) along the same approach.

It is also natural to consider the quantum variant, i.e. the question whether any monotone
graph property has the quantum query complexity Ω(n). Using the similar technique, Santha and
Yao proved the Ω(n2/3) lower bound for the quantum query complexity (unpublished).

Very recently, O’Donnell, Saks, Schramm and Servedio used the influence of variables to give a
new and much simpler proof of the Ω(n4/3) randomized lower bound [7]. We now give more details
about this different approach.

For Boolean function f : {0, 1}n → {0, 1}, let µp be the distribution on {0, 1}n s.t. µp(x) =
p|x|qn−|x|, where q = 1 − p and |x| is the number of 1’s in x. In other words, the distribution is
obtained by independently letting each xi = 1 with probability p. Define the influence of the i-th
variable to be infi(f, p) = Prx∼µp [f(x) 6= f(xi)], where xi is obtained from x by flipping the i-th
variable of x, and x ∼ µp means that x is drawn from the distribution p. The total influence is
then defined as the summation of the influences of all variables, i.e. inf(f, p) =

∑
i infi(f, p).
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Denote by R(f) the error-free randomized decision tree complexity of f and by Q2(f) the 2-
sided bounded error quantum query complexity of f . For more details about the decision tree and
quantum query models, we refer to [2] as an excellent survey. What O’Donnell, Saks, Schramm
and Servedio [7] showed is that

R(f) ≥ Var[f ]
pq maxi infi(f, p)

, (1)

for any Boolean function f and any p. Another recent result by O’Donnell and Servedio [8] is

R(f) ≥ pq inf(f, p)2, (2)

for any monotone Boolean function f and any p. Using these two, one gets R(f) ≥ N2/3/p
1/3
c for

any monotone function f that is variant to any permutation from a transitive group, where pc is a
critical probability, i.e. Ex∼µpc

[f(x)] = 1/2. Here N is the number of variables, corresponding to(
n
2

)
in graph properties, in the setting of which the lower bound is actually Ω(n4/3/p

1/3
c ).

Since it is widely believed that the quantum and randomized query complexities for any total
Boolean function is quadratically related, it is natural to conjecture

Q2(f) ≥ Ω

(√
Var[f ]

pq maxi infi(f, p)

)
(3)

for any Boolean function f and
Q2(f) ≥ Ω(

√
pq inf(f, p)) (4)

for any monotone Boolean function f . Combining inequalities (3) and (4) we have Q2(f) ≥ n2/3.
Shi showed (4) in the case of p = 1/2 for any Boolean function [12].

In this note we prove (4) for any f (not necessarily monotone), generalizing Shi’s result [12].
There are two main techniques for proving quantum lower bounds, one is the polynomial method
[9], using the fact that the approximate degree is a lower bound for the quantum query complexity;
the other is the quantum adversary method [1]. In this paper we will give two proofs for Inequality
(4), one by each method. The one using the polynomial method only shows the case of monotone
functions, and it has a log factor loss. However, it implies that the lower bounds not only holds
for the quantum query complexity but also holds for the approximate degree. The proof using the
quantum adversary method gives exactly the inequality (4) in a simple way. Interestingly, unlike
the result (2) and our first proof mentioned above, the assumption of monotonicity is not needed in
the second proof. This implies that the quantum lower bound of Ω(n2/3) actually hold not only for
monotone transitive functions, but for all balanced transitive functions, unless the quantum and
randomized query complexities have a super-quadratic gap, which is widely believed to be false for
total functions.

2 Proofs

2.1 Proof by the polynomial method

Proposition 1 For monotone f and any p ∈ (0, 1),

Q2(f) = Ω
(√

pq inf(f, p)
log n

)
(5)

where q = 1− p.
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Proof By simple probability amplification, we know that Q2(f) log n ≥ Q1/2n(f), where Q1/2n(f)
is the quantum query complexity with 1/2n error probability. (The standard definition of the
quantum query complexity, Q2(f), only requires a small constant error probability.) Denote by
d̃eg1/2n(f) a lowest degree of the polynomial approximating f with error no more than 1/2n for any

input. Since Q1/2n(f) = Ω(d̃eg1/2n(f)), it is enough to show that d̃eg1/2n(f) = Ω(
√

pq inf(f, p)).
We will use Bernstein’s Inequality, which says that any polynomial r(t) with degree d and

‖r‖[−1,1] = 1 has d ≥ √
1− t2|r′(t)|, ∀t ∈ (−1, 1). Denote by fε the best polynomial to approximate

f up to ε, and let φp(fε) = Ex∼µp [fε(x)]. We will use Bernstein’s Inequality for φp(fε). By some
simple scaling t = 2p − 1, we know that

√
1− t2 = 2

√
pq. So it is enough to lower bound dφp(fε)

dp
by inf(f, p).

Let ~p = (p1, ..., pn) and φ~p(fε) = Ex∼µp [fε(x)]. Then dφp(fε)
dp =

∑
i

∂φ~p(fε)
∂pi

|pi=p by chain law. We
use x[n]−i to denote x1...xi−1xi+1...xn, and use x[n]−i ◦ b to denote x1...xi−1bxi+1...xn for b ∈ {0, 1}.
Fix ε = 1/2n, then

∂φ~p(fε)
∂pi

= (∂
∑

x

µ~p(x)fε(x))/∂pi (6)

= (∂
∑

x:xi=1

µ~p(x[n]−i)pifε(x) +
∑

x:xi=0

µ~p(x[n]−i)(1− pi)fε(x))/∂pi (7)

=
∑

x:xi=1

µ~p(x[n]−i)fε(x)−
∑

x:xi=0

µ~p(x[n]−i)fε(x) (8)

=
∑

x[n]−i

µ~p(x[n]−i)(fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)) (9)

=
∑

x[n]−i�i

µ~p(x[n]−i)
[
fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)

]
(10)

+
∑

x[n]−i∼i

µ~p(x[n]−i)
[
(fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)

]
(11)

where x[n]−i ∼ i means x[n]−i is sensitive at i, i.e. f(x[n]−i◦1) 6= f(x[n]−i◦0). Since fε approximates
f , we know that for x[n]−i � i, −2ε ≤ fε(x[n]−i ◦1)−fε(x[n]−i ◦0) ≤ 2ε. And for x[n]−i ∼ i, we have
f(x[n]−i◦1) = 1 and f(x[n]−i◦0) = 0 because f is monotone, and thus fε(x[n]−i◦1)−fε(x[n]−i◦0) ≥
1− 2ε. Therefore,

∂φ~p(fε)
∂pi

≥
∑

x[n]−i�i

µ~p(x[n]−i)(−2ε) +
∑

x[n]−i∼i

µ~p(x[n]−i)(1− 2ε). (12)

Note that
∑

x[n]−i∼i µ~p(x[n]−i)|~p=(p,...,p) is nothing but infi(f, p), so

∂φ~p(fε)
∂pi

|~p=(p,...,p) ≥ (1− infi(f, p))(−2ε) + infi(f, p)(1− 2ε) = infi(f, p)− 2ε. (13)

Now

dφp(fε)
dp

=
∑

i

∂φ~p(fε)
∂pi

|~p=(p,...,p) ≥
∑

i

(inf(f, p)− 2ε) = inf(f, p)− 2nε = inf(f, p)− 1. (14)

¤
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2.2 Proof by the quantum adversary method

Basically, the quantum adversary method first picks a relation, i.e. a set of 0 and 1 input pairs,
and assign a weight to each pair. It turns out that the initial total weight decreases by a constant
fraction after the computation. So by upper bounding the average progress by one query, we can
give a lower bound of the number of queries.

Theorem 2 We have for any Boolean function f and any p ∈ (0, 1) that

Q2(f) ≥ Ω(
√

pq inf(f, p)) (15)

Proof Consider the set {(x, x(i)) : f(x) 6= f(x(i))}. Put weight w(x, x(i)) = p(x). Use x ∼
i to denote that f(x) 6= f(xi). Let |ψ(k)

x 〉 be the state after exactly k queries, and let δk =∑
x,i:x∼i p(x)|〈ψ(k)

x |ψ(k)

x(i)〉|. Then

δ0 =
∑

x,i:x∼i

p(x) · |〈ψ(0)
x |ψ(0)

x(i)〉| =
∑

i

Prx[x ∼ i] =
∑

i

infi(f, p) = inf(f, p). (16)

and δT =
∑

x,i:x∼i p(x) · |〈ψ(T )
x |ψ(T )

x(i)〉| ≤ ε inf(f, p). The standard analysis of oracle operation tells

us that the average progress |δk−δk+1| =
∑

x,i:x∼i p(x)2
∣∣∣〈Piψ

(k)
x |Piψ

(k)

x(i)〉
∣∣∣, where Pi is the projector

onto the subspace spanned by index i, i.e. Pi(
∑

j,z αj,z|j, z〉) =
∑

z αi,z|i, z〉. Therefore,

|δk − δk+1| ≤ 2
∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x 〉
∥∥∥ ·

∥∥∥Pi|ψ(k)

x(i)〉
∥∥∥ (17)

≤ 2

√√√√√

 ∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x 〉
∥∥∥

2





 ∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x(i)〉
∥∥∥

2


 (18)

where both steps are by Cauchy-Schwartz Inequality. Furthermore, let y = x(i) and the above
quantity is equal to

= 2

√√√√√
(∑

x

p(x)
∑

i:x∼i

∥∥∥Pi|ψ(k)
x 〉

∥∥∥
2
)

 ∑

y,i:y∼i

p(y(i))
∥∥∥Pi|ψ(k)

y 〉
∥∥∥

2


 (19)

≤ 2
√ ∑

y,i:y∼i

p(y(i))
∥∥∥Pi|ψ(k)

y 〉
∥∥∥

2
(20)

= 2
√ ∑

y,i:y∼i,yi=1

p(y)
q

p

∥∥∥Pi|ψ(k)
y 〉

∥∥∥
2
+

∑

y,i:y∼i,yi=0

p(y)
p

q

∥∥∥Pi|ψ(k)
y 〉

∥∥∥
2

(21)

≤ 2
√

q

p
+

p

q
(22)

≤ 2√
pq

(23)

So T ≥ Ω(
√

pq inf(f, p)). ¤
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[4] Péter Hajnal. An ω(n4/3) lower bound on the randomized complexity of graph properties.
Combinatorica, 11(2):131–143, 1991.

[5] V. King. Lower bounds on the complexity of graph properties. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing (STOC), pages 468–476, 1988.

[6] D. Kirkpatrick. Determining graph properties from matrix representations. In Proceedings of
the Sixth Annual ACM Symposium on Theory of Computing (STOC), pages 84–90, 1974.

[7] R. O’Donnell, M. Saks, O. Schramm, and R. Servedio. Every decision tree has an influential
variable. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 31–39, 2005.

[8] R. O’Donnell and R. Servedio. Learning monotone functions from random examples in poly-
nomial time. manuscript.

[9] R. Cleve M. Mosca R. de Wolf R. Beals, H. Buhrman. Quantum lower bounds by polynomials.
Journal of the ACM, 48:778–797, 2001.

[10] R. Rivest and J. Vuillemin. On recognizing graph properties from adjacency matrices. Theo-
retical Computer Science, 3(3):371–384, 1976.

[11] A. Rosenberg. On the time required to recognize properties of graphs: a problem. SIGACT
News, 5(4):15–16, 1973.

[12] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximating polyno-
mials by influence of Boolean variables. Information Processing Letters, 75(1-2):79–83, 2000.

[13] A. Yao. Lower bounds to randomized algorithms for graph properties. Journal of Computer
and System Sciences, 42(3):267–287, 1991.

5


