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Abstract

Least squares regression is the simplest and most widely used technique for solving overde-
termined systems of linear equations Ax = b, where A ∈ Rn×p has full column rank and
b ∈ Rn. Though there is a well known unique solution x∗ ∈ Rp to minimize the squared error
‖Ax − b‖22, the best known classical algorithm to find x∗ takes time Ω(n), even for sparse and
well-conditioned matrices A, a fairly large class of input instances commonly seen in practice.
In this paper, we design an efficient quantum algorithm to generate a quantum state propor-
tional to |x∗〉. The algorithm takes only O(log n) time for sparse and well-conditioned A. When
the condition number of A is large, a canonical solution is to use regularization. We give ef-
ficient quantum algorithms for two regularized regression problems, including ridge regression
and δ-truncated SVD, with similar costs and solution approximation.

Given a matrix A ∈ Rn×p of rank r with SVD A = UΣV T where U ∈ Rn×r, Σ ∈ Rr×r
and V ∈ Rp×r, the statistical leverage scores of A are the squared row norms of U , defined
as si = ‖Ui‖22, for i = 1, ..., n. The matrix coherence is the largest statistic leverage score.
These quantities play an important role in many machine learning algorithms. The best known
classical algorithm to approximate these values runs in time Ω(np). In this work, we introduce
an efficient quantum algorithm to approximate si in time O(log n) when A is sparse and the
ratio between A’s largest singular value and smallest non-zero singular value is constant. This
gives an exponential speedup over the best known classical algorithms. Different than previous
examples which are mainly modern algebraic or number theoretic ones, this problem is linear
algebraic. It is also different than previous quantum algorithms for solving linear equations and
least squares regression, whose outputs compress the p-dimensional solution to a log(p)-qubit
quantum state.

Keywords least square regression, statistical leverage score, quantum algorithms

1 Introduction

Quantum algorithms for solving linear systems, and the controversy The past two
decades witnessed the development of quantum algorithms [Mos09], and one recent discovery is
quantum speedup for solving linear systems Ax = b for sparse and well-conditioned matrices
A ∈ Rn×p. Solving linear systems is a ubiquitous computational task, and sparse and well-
conditioned matrices form a fairly large class of inputs frequently arising in many practical ap-
plications, especially in recommendation systems where the data set can be very sparse [ZWSP08].
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The best known classical algorithm for solving linear systems for this class of matrices runs in
time O(

√
κsn) [She94], where κ is the condition number of A (i.e. the ratio between A’s largest

and smallest singular values), and the sparseness parameter s is the maximum number of non-zero
entries in each row of A. Harrow, Hassidim and Lloyd [HHL09] introduced an efficient quantum al-
gorithm, thereafter referred to as HHL algorithm, for the linear system problem, and the algorithm
runs in time O(s2κ2 log n). The dependence on κ is later improved by Ambainis [Amb12] and the
algorithm was used for solving least squares regression (defined next) by Wiebe, Braun and Lloyd
[WBL12]. HHL algorithm was also extended in [CJS13] to more general problem specifications.

Though the costs of these quantum algorithms are exponentially smaller than those of the best
known classical algorithms, there is a catch that these quantum algorithms do not output the
entire solution x∗, but compress x∗ ∈ Rn (assuming n = p) into a log n-qubit quantum state. More
precisely, the output is a quantum state |x∗〉 proportional to

∑n
i=1 x

∗
i |i〉. This important distinction

between outputs of classical and quantum algorithms caused some controversy for these quantum
algorithms. After all, one cannot read out the values x∗i from |x∗〉. Indeed, if outputting all x∗i is
required as classical algorithms, then any quantum algorithm needs Ω(n) time even for just writing
down the answer, thus no exponential speedup is possible.

Despite this drawback, the quantum output |x∗〉 can be potentially useful in certain context
where only global information of x∗ is needed. For instance, sometimes only the expectation value of
some operator associated with x∗, namely x∗TMx∗ for some matrix M is needed [HHL09]. Another
example is when one desires to compute only the weighted sum

∑
cix
∗
i , then SWAP test can be

used on |c〉 =
∑

i
ci
‖c‖2 |i〉 and |x∗〉 to get a good estimate of

∑
cix
∗
i in time O(log n). As argued in

[Amb12], this is impossible for classical algorithms unless P = BQP.
In this paper, we give new quantum algorithms, which also address the controversial issue on

two levels. First, we design an efficient quantum algorithm for least squares regression, which runs
in time O(log n) for sparse and well-conditioned A. Same as the one in [WBL12], our quantum
algorithm outputs a quantum sketch |x∗〉 only, but our algorithm is simpler, and more efficient with
a better dependence on s and κ.

In addition, we consider the case that A is ill-conditioned, or even not full-rank. Classical
resolutions for such cases use regularization. We give efficient quantum algorithms for two popular
regularized regression problems, including ridge regression and δ-truncated SVD, based on our
algorithm for least squares regression.

Second, we also design new efficient quantum algorithms for calculating statistic leverage scores
(SLS) and matrix coherence (MC), two quantities playing important roles in many machine learn-
ing algorithms [Sar06][DMM08][MD09][BMD09][DMMS11]. Our algorithm has cost O(log n) for
approximately calculating the k-th statistic leverage score sk for any index k ∈ [n], exponentially
faster than the best known classical algorithms. Repeatedly applying this allows us to approxi-
mately calculate all the statistic leverage scores in time O(n log n) and to calculate matrix coherence
in time O(

√
n log n), which has a polynomial speedup to their classical counterparts of cost O(n2)

[DMIMW12]. Note that different than all aforementioned quantum algorithm that outputs a quan-
tum sketch only, our algorithms for calculating SLS and MC indeed produce the requested values,
same as their classical counterpart algorithms’ output. Our algorithms are based on the phase esti-
mation idea as in the HHL algorithm, and the results showcase the usefulness of the HHL algorithm
even in the standard computational context without controversial issue any more.

Next we explain our results in more details.
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Least Squares Regression Least squares regression (LSR) is the simplest and most widely used
technique for solving overdetermined systems. In its most important application – data fitting, it
finds a hyperplane through a set of data points while minimizing the sum of squared errors. The
formal definition of LSR is as follows. Given an n × p matrix A (n ≥ p) together with an n-
dimensional vector b, the goal of LSR is to compute a p-dimensional vector

x∗ = arg min
x∈Rp

‖Ax− b‖22 . (1)

For well-conditioned problems, i.e. those with the condition number of A being small (which
in particular implies that A has full column rank), it is well known that Eq.(1) has a unique and
closed-form solution

x∗ = A+b, (2)

where A+ is the Moore-Penrose pseudoinverse of A. If one computes x∗ naively by first computing
A+ and then the product A+b, then the cost is O(min{p2n, n2p}), which is prohibitively slow in
the big data era1. Therefore, finding fast approximation algorithms which output a vector x̃ ≈ x∗

is of great interest. Classically, there are known algorithms that output an x̃ with a relative error
bound ‖x̃− x∗‖2 ≤ ε ‖x∗‖2 for any constant error 0 < ε < 1, and run in time Õ(nnz(A) + nr)
[CW13][NN13], where nnz(A) is the number of non-zero entries in A, r is the rank of A and the
Õ notation hides a logarithmic factor. These algorithms are much faster than the naive ones for
the special case of sparse or low rank matrices, but remain linear in size of A for general cases.
Given that it is impossible to have classical approximation algorithms to run in time o(np) for
general cases, it would be great if there exist much faster quantum algorithms for LSR. Similar
to [HHL09], one can only hope to produce a quantum state close to |x∗〉 fast. [WBL12] gives a
quantum algorithm which outputs a quantum state close to |x∗〉 in time O(log(n+ p)s3κ6). Their
algorithm is based on the observation that x∗ = A+b = (ATA)−1AT b when A has full column rank,
and their main idea is to construct the quantum state |x∗〉 by applying the operator (ATA)−1 to the
state |AT b〉. In this paper, we propose another quantum algorithm that outputs a quantum state
close to |x∗〉 in time Õ(log(n+ p)sκ3), where the Õ notation hides the slower growing functions.

We highlight four advantages of our algorithm compared to [WBL12]. First, our algorithm is
much simpler since we directly apply the operator A+ to the state |b〉, while they first applied AT

to |b〉 to get |AT b〉, then prepared (ATA)−1 and applied it to |AT b〉. (Thus, despite solving the
same LSR problem as in [WBL12], our algorithm is more similar to the one in [HHL09] than to
[WBL12].) Second, the simplicity also leads to a better dependence on s and κ in our algorithm.
Third, [WBL12] assumes that A is Hermitian, which is usually not the case for typical machine
learning applications2. Our algorithm works for non-Hermitian matrices as well, for which we need
to work on singular Hermitian matrices A. Fourth, note that |x∗〉 misses one important information
of x∗, namely its `2 norm, which is actually crucially needed when we want to compute

∑
i cixi by

SWAP test. Our algorithm also gives a good estimate to ‖x∗‖22 without introducing much extra
running time.

1Though theoretically more efficient algorithms for matrix multiplication exist [Sto10], in practice they are sel-
dom used due to the complication in implementing, parallelization and non-robustness. Thus in machine learning
algorithms matrix multiplication Am×nBn×k is assumed to take time O(mnk). In any case it is just a polynomial
saving, in contrast to the exponential gap to the quantum algorithm cost.

2Although they mentioned a standard pre-processing technique to deal with the non-Hermitian case, but they
seem to have overlooked the fact that after the pre-processing, the new input matrix is not full (column) rank (unless
n = p, which is hardly the case in machine learning settings).
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The more precise description of the performance of our algorithm is stated in the next theorem.
As in [HHL09], we assume that the vector b is in a nice form in the sense that each bi and

∑i2
i1
|bi|2

can be efficiently computed, which enables us to prepare |b〉 efficiently [GR02].

Theorem 1. Let A ∈ Rn×p and b ∈ Rn be the input of the least squares regression problem and
suppose that x∗ is its optimal solution. Assume that each row and column of A has at most s non-
zero entries, and all the non-zero singular values of A are in the range [ 1κ , 1]. Then there exists a
quantum algorithm that, with probability 0.99, outputs a quantum state proportional to x̃ satisfying

‖x̃− x∗‖2 ≤ ε ·max{‖x∗‖2 , ‖b‖2},

and outputs a value ` satisfying

|`− ‖x∗‖22| ≤ ε(‖x
∗‖22 + ‖b‖22),

in time O(sκ3ε−2(log(n+ p) + poly log(s, κ))).

Ridge regression and truncated SVD For ill-conditioned problems, i.e. when the condition
number of A is large, the solution given by Eq.(2) becomes very sensitive to errors in A and
b. A prevailing solution in practice is to use regularization. Two of the most commonly used
regularization methods are ridge regression [GHO99] (a.k.a Tikhonov regularization) and truncated
singular value decomposition [Han87].

For ridge regression (RR) problem, we are given an n× p matrix A, an n-dimensional vector b
together with a parameter λ > 0, and we want to compute

x∗ = arg min
x∈Rp

‖Ax− b‖22 + λ ‖x‖22 . (3)

The unique minimizer of Eq.(3) is x∗ = (ATA+λIp)
−1AT b [Tik63], which takes O(np2+p3) time

to compute in the naive way. An alternative solution uses the dual space approach by computing an
equivalent expression x∗ = AT (AAT +λIn)−1b [SGV98], which takes O(n2p+n3) time to compute in
the naive way, and is faster than the original one when p� n. When approximation is allowed, the
best known classical algorithm for ridge regression outputs an approximation solution x̃ satisfying
‖x̃− x∗‖2 ≤ ε ‖x∗‖2 in time Õ(nnz(A) +n2r) [CLL+15]. This algorithm has an significant speedup
over the previous algorithms when A is sparse or of low rank, but still slow for general cases. Based
on the algorithm in Theorem 1, we design a quantum algorithm to solve ridge regression problem
efficiently (in the sense of generating quantum sketch of the solution).

Theorem 2. Let A ∈ Rn×p, b ∈ Rn and λ be the input of the ridge regression problem and
suppose that x∗ is its optimal solution. Assume that each row and column of A has at most s
non-zero entries, and all the non-zero singular values of A are in the range [ 1κ , 1]. Then there
exists a quantum algorithm that, with probability 0.99, generates a quantum state proportional to
|x̃〉 satisfying

‖x̃− x∗‖2 ≤ ε ·max{‖x∗‖2 , ‖b‖2},

and outputs a value ` satisfying

|`− ‖x∗‖22| ≤ ε(‖x
∗‖22 + ‖b‖22),

in time O(sκ′3ε−2(log(n+ p) + poly log(s, κ′))), for κ′ = max{1,
√
λ}

min{ 1
κ
,
√
λ} .
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Next we discuss truncated singular value decomposition (truncated SVD). In this problem we
are given an n × p matrix A, an n-dimensional vector b together with a parameter k < rank(A),
and we want to compute

x∗ = arg min
x∈Rp

‖Akx− b‖22 , (4)

where Ak is the best rank-k approximation of A obtained through SVD. More specifically, let
A =

∑r
i λiuiv

T
i be the SVD of A, where r is the rank of A, λi is the i-th largest singular value of

A, and ui ∈ Rn, vi ∈ Rp are the corresponding left and right singular vectors for i = 1, ..., r. Then
it is well known ([EY36]) that Ak is equal to Ak =

∑k
i=1 λiuiv

T
i .

The basic idea of truncated SVD is to impose an additional requirement that the `2 norm of
the solution x∗ should be small by removing the large influence from the small non-zero singular
values of A. If the number k is chosen properly, the ratio between λ1 and λk is small and then
the solution x∗ = A+

k b to Eq.(4) becomes not sensitive to errors in A and b. A more direct way to
remove the influence by the small non-zero singular values of A is to set a gap δ on the singular
values and neglect all those singular values smaller than δ. Define the δ-truncated singular value
decomposition (δ-TSVD) problem as follows.

Given an n × p matrix A, an n-dimensional vector b together with a parameter δ > 0 and we
want to find

x∗ = arg min
x∈Rp

‖Aδx− b‖22 , (5)

where Aδ =
∑

i:λi≥δ λiuiv
T
i , assuming A =

∑r
i λiuiv

T
i is the SVD of A.

A naive algorithm to solve δ-TSVD needs to first compute the matrix Aδ and then solve the
least squares regression problem with the new input Aδ and b in O(min{n2p, np2}) time. Our
algorithm in Theorem 1 can be also adapted to solve δ-TSVD efficiently (again in the sense of
generating quantum sketch of the optimal solution).

Theorem 3. Let A ∈ Rn×p, b ∈ Rn and δ be the input of the δ-truncated singular value decomposi-
tion problem and let x∗ be the optimal solution of this problem. Assume that each row and column
of A has at most s non-zero entries, and that the largest singular value of A is at most 1. Let
Λ1 = max{λi : λi < δ, i ∈ [n]}, Λ2 = min{λi : λi ≥ δ, i ∈ [n]} where λi is the i-th largest singular
value of A. Let Λ = Λ2 − Λ1. Then there exists a quantum algorithm that, with probability 0.99,
generates a quantum state proportional to |x̃〉 satisfying

‖x̃− x∗‖2 ≤ ε ·max{‖x∗‖2 , ‖b‖2},

and outputs a value ` satisfying

|`− ‖x∗‖22| ≤ ε(‖x
∗‖22 + ‖b‖22),

in time O(s(log(n+ p) + poly log(s, κ))/(min{Λ, δε}δ2ε)).

Calculating statistic leverage scores and matrix coherence The definition of statistic
leverage scores (SLS) and matrix coherence (MC) are as follows. Though the definition uses A’s
SVD, which is not necessarily unique, it is not hard to see that each si depends on A only, not on
any specific SVD decomposition of A.
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Definition 1. Given an n×p matrix A of rank r with SVD A = UΣV T where U ∈ Rn×r, Σ ∈ Rr×r
and V ∈ Rp×r, the statistic leverage scores of A are defined as si = ‖Ui‖22, i ∈ {1, ..., n}, where
Ui is the i-th row of U . The matrix coherence of A is defined as c = maxi∈{1,...,n} si, the largest
statistic leverage score of A.

Statistic leverage scores measure the correlation between the singular vectors of a matrix and
the standard basis and they are very useful in large-scale data analysis and randomized matrix
algorithms [MD09][DMM08]. These quantities have been used in statistical data analysis since a
long time ago. Actually they are equal to the diagonal entries of the “hat-matrix” which inter-
prets the influence associated with the data points and so they are widely used to indicate possible
outliers in regression diagnostics [HW78][CH+86]. They have also been found useful in many the-
oretical computer science and machine learning problems. Many random sampling algorithms for
matrix problems like least-squares regression [Sar06][DMMS11] and low-rank matrix approxima-
tion [Sar06][DMM08][MD09][BMD09] use them as an important indicator to design the sampling
distribution which are used to sample the input data matrix.

The related parameter, matrix coherence, has also been of interest recently in problems like
Nystrom-based low-rank matrix approximation [TR10] and matrix completion [CR09].

A naive algorithm to compute the statistic leverage scores and matrix coherence first performs
SVD or QR decomposition to get an orthogonal basis of A, and then calculates the squared `2 norm
of the rows of the basis matrix to get the statistic leverage scores. This takes O(np2) time (assuming
n ≥ p), which is extremely slow when n and p are large. The best known classical approximation
algorithm for the problem of calculating statistic leverage scores runs in time O((np + p3) log n)
[DMIMW12], which is much faster than the naive algorithm for the case when n >> p >> 1. This
algorithm is also the best for calculating matrix coherence for now.

An important difference of calculating SLS/MC than previously mentioned LSR related prob-
lems is that each SLS si (and the MC c) is a scalar instead of a vector. Thus the previous barrier of
outputting a vector does not exist, which makes it possible to design efficient quantum algorithm
for complete solution to the problem rather than generating a quantum sketch as before. In this
work, we design a fast quantum algorithm to approximate the statistic leverage score si for any
index i ∈ {1, ..., n} in time O(log n) when A is sparse and the ratio between A’s largest singular
value and smallest non-zero singular value is small. And thus we can approximate all the statistic
leverage scores in time O(n log n) by running the algorithm for index i = 1, ..., n. And we can
approximate the matrix coherence in time O(

√
n log n) by using amplitude amplification. More

specifically, we have the following theorem and corollary.

Theorem 4. Let A ∈ Rn×p, let si be the i-th statistic leverage score of A for i = 1, ..., n. Assume
that each row and column of A has at most s non-zero entries, and all the non-zero singular values
of A are in the range [ 1κ , 1]. Then there exists a quantum algorithm that, on any requested i ∈ [n],
returns s̃i satisfying |s̃i − si| ≤ ε in time O(sκε−1(log(n+ p) + poly log(s, κ))).

Corollary 5. Let A ∈ Rn×p, let c be the coherence of A. Assume that each row and column
of A has at most s non-zero entries, and all the non-zero singular values of A are in the range
[ 1κ , 1]. Then there exists a quantum algorithm that returns c̃ satisfying |c̃ − c| ≤ ε in time O(

√
n ·

sκε−1(log(n+ p) + poly log(s, κ))).
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2 Preliminaries

Given a matrix A ∈ Rn×p with rank r ≤ min{n, p}, let Ai denote the transpose of the i-th row of
A, namely take the i-th row and view it as a column vector ∈ Rp. Let nnz(A) denote the number
of non-zero entries of A. Let λi denote the i-th largest singular value of A, and let λmax denote
the largest singular value of A, unless specified otherwise. Let Ir denote the identity matrix of
dimension r × r, ei the unit vector with the i-th coordinate being 1 and all the rest being 0, and
0n the zero vector of dimension n.

For a rank-r matrix A ∈ Rn×p, its thin SVD is A = UΣV T where U ∈ Rn×r, V ∈ Rp×r satisfy
UTU = V TV = Ir, and Σ = diag(λ1, ..., λr) with the λi’s being the singular values of A. The Moore-
Penrose pseudoinverse of A is defined to be A+ = V Σ−1UT . The full SVD of A is A = UFΣFV

T
F

where UF ∈ Rn×n,ΣF ∈ Rn×p, VF ∈ Rp×p and UTF UF = UFU
T
F = In, V

T
F VF = VFV

T = Ip. When a
matrix A ∈ Rn×n is full rank, the thin SVD and full SVD are the same.

Quantum phase estimation [Kit95][CEMM97][BDM99] or quantum eigenvalue estimation allows
one to estimate the eigenphase of an eigenvector of a unitary operator. It has been widely used as
subroutine in other algorithms. In the Phase Estimation problem, we are given a unitary matrix
U by black-boxes of controlled-U , controlled-U2, controlled-U22 , · · · , controlled-U2t−1

operations,
and an eigenvector |u〉 of U with eigenvalue e2πiϕ with the value of ϕ ∈ [0, 1) unknown. The task
is to output an n-bit estimation of ϕ.

Theorem 6. There is a quantum algorithm that, on input |0t〉|u〉 where t = log 1
εδ +O(1), outputs

|ϕ̃〉|u〉 in time O(t) using each controlled-U2i once, and |ϕ− ϕ′| ≤ δ with probability at least 1− ε.

Two comments are in order. First, if we do not have controlled-U2i , and need to implement
them, then the total time becomes O(1δ log 1

ε ) assuming that implementing controlled-U takes unit
time. Second, when the input is |0t〉|b〉 where b =

∑
i βi|ui〉, then the output is b =

∑
i βi|ϕ̃i〉|ui〉

where each ϕ̃i approximates ϕi.
The next Amplitude Estimation theorem estimates the success probability of an algorithm.

Theorem 7 ([BHMT00]). Suppose that an algorithm A has success probability p < 1−Ω(1), then
there exists an algorithm B running A exactly M times to output a number p′ satisfying that

|p′ − p| ≤ O
(√p
M

+
1

M2

)
.

Hamiltonian simulation is one of the central tasks in quantum information processing. The task
is to implement an operation close to eiHt, where the error is measured by diamond norm. The
simulation can be made efficient if the Hamiltonian H is sparse. We say H is s sparse if it contains
at most s non-zero entries in each row, and in this case, H can be specified by an oracle that gives
the index j of the `-th non-zero entry of any row i, and can also answer ` when queried (i, j). The
best known result is as follows [BCK15].

Theorem 8. If a Hamiltonian H acting on m qubits has at most s non-zero entries in each row,
then one can simulate eiHt with O(τ log(τ/ε)/ log log(τ/ε)) queries and O(τ(m + poly log(τ/ε)))
additional 2-qubit gates, where τ = s · t ·maxij |Hij |, within error ε.

When we later apply this theorem, m = log n, t = 1 and maxij |Hij | ≤ 1, thus the time
complexity is O(s(log n+ polylog(s, κ))).
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3 Quantum algorithm for LSR

In this section, we present our quantum approximation algorithm QLSR for Least Squares Regres-
sion, then analyze its error rate and running time.

Algorithm QLSR
Input: A ∈ Rn×n, b ∈ Rn. A is Hermitian with spectral decomposition A =

∑n
i=1 λi|vi〉〈vi|, where

all the eigenvalues λ1, ..., λn satisfy 1
κ ≤ |λi| ≤ 1 for i = 1, ..., r for some known value κ and λi = 0

for i = r + 1, ..., n. Suppose that b =
∑n
i=1 βi|vi〉.

Output: A quantum state proportional to |x̃〉 where x̃ ≈ x∗
def
= A+b, and a value ` ≈ ‖x∗‖22.

Algorithm:

1. Prepare the quantum state |b〉 = 1
‖b‖2

∑n
i=1 βi|vi〉.

2. Perform phase estimation to create the state 1
‖b‖2

∑n
i=1 βi|vi〉|λ̃i〉, where λ̃i is the estimated

value of λi satisfying |λ̃i − λi| ≤ δPE
def
= ε

2κ for i = 1, . . . , n.

3. Add a qubit |0〉 to the state and perform a controlled rotation as follows. If λ̃i ≥ 1
2κ , rotate

the qubit to ( 1
2κλ̃i
|1〉+

√
1− 1

4κ2λ̃2
i

|0〉); otherwise do nothing. The resulting state is

1

‖b‖2

r∑
i=1

βi|vi〉|λ̃i〉

(
1

2κλ̃i
|1〉+

√
1− 1

4κ2λ̃2
i

|0〉

)
+

1

‖b‖2

n∑
i=r+1

βi|vi〉|λ̃i〉|0〉. (6)

4. Use amplitude amplification by repeating the previous steps O(κ2/ε) times.

5. Measure the last qubit.

6. if we observe |1〉,

(a) The remaining state is proportional to
∑r
i=1

βi

λ̃i
|vi〉|λ̃i〉.

(b) Reverse the phase estimation process and get the state proportional to
∑r
i=1

βi

λ̃i
|vi〉 = |x̃〉

as our output.

else output 0 as an estimate to |x∗〉.

7. Use amplitude estimation to get an estimate p′ to the probability p of observing |1〉 when
measuring the state in Eq.(6), to precision δ = ε/(4κ2) and with success probability 0.99.
Output ` = p′ · 4‖b‖22κ2.

Without loss of generality, we can assume that A ∈ Rn×n with rank r is Hermitian and b ∈ Rn.
See appendix B for discussions on how to deal with the non-Hermitian case. Recall that our
goal is to compute x∗ = A+b. Now we will analyze the precision, error probability and the cost.
For convenience, we summarize the parameters here: the phase estimation error δPE = ε

2κ , the
Hamiltonian simulation error δHS = O(δ2PE) ·O(ε/κ2) and last-step measurement precision δ = ε

4κ2
.

Note that in one phase estimation procedure, we need to simulate H for O(1/δPE) time, thus
the O(κ2/ε) repetitions in Step 4 gives the total error δHSO(1/δPE)O(κ2/ε), which can be made
δPE/100 by choosing the constant small enough in the big-O in definition of δHS . Thus the
imperfection of the Hamiltonian simulation is negligible compared to the phase estimation error
δPE .

We first analyze the quality of the solution |x̃〉.
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Lemma 9. With probability at least 0.99, the outputted vector x̃ satisfies

‖x̃− x∗‖2 ≤ ε ·max{‖x∗‖2 , ‖b‖2}.

Proof. First we will show that if we observe |1〉 in Step 6, then the outputted state (normalized)
|x̃〉 satisfies ‖x̃− x∗‖2 ≤ ε ‖x∗‖2. Indeed, if we observe |1〉, then the remaining state is proportional

to |x̃〉 =
∑r

i=1
βi
λ̃i
|vi〉. Recall that |x∗〉 =

∑r
i=1

βi
λi
|vi〉. Thus

‖x̃− x∗‖22 =

r∑
i=1

(
βi

λ̃i
− βi
λi

)2

=

r∑
i=1

β2i
λ2i

(
1− λi

λ̃i

)2

=

r∑
i=1

β2i
λ2i

(λ̃i − λi)2

λ̃2i

≤
( δPE

1
κ − δPE

)2
‖x∗‖22 ≤ ε

2 ‖x∗‖22 .
(7)

Next we show that if we do not observe |1〉, then the outputted 0 vector is still a good estimation
to |x∗〉, because |x∗〉 itself is too short. More precisely, define ρ = 1

‖b‖22

∑r
i=1 β

2
i , the fraction of |b〉

falling into the non-zero eigenspace of A. Note that the probability of observing |1〉 in Step 6 is

p =
1

‖b‖22

r∑
i=1

β2i
4κ2λ̃2i

=
1

4κ2‖b‖22

r∑
i=1

β2i
λ̃2i
≥ 1

4κ2‖b‖22

r∑
i=1

β2i =
1

4κ2
ρ.

If ρ ≥ ε2/κ2, then p ≥ ε2/(4κ4), thus the amplitude amplification already boosts the probability to
0.99 with O(κ2/ε) repetitions, enabling us to observe |1〉 almost for sure. When ρ < ε2/κ2, if we
observe |1〉, then Eq.(7) still holds. If we observe |0〉 and output 0 as an estimate to x∗, then the
error is

‖0− x∗‖22 = ‖x∗‖22 =
r∑
i=1

β2i
λ2i
≤ κ2ρ‖b‖22 < ε2‖b‖22.

Next we analyze the estimated norm.

Lemma 10. With probability at least 0.99, the outputted value ` satisfies∣∣`− ‖x∗‖22∣∣ ≤ ε(‖x∗‖22 + ‖b‖22
)
.

Proof. Recall that ` = p′ · 4‖b‖22κ2, and |p− p′| ≤ δ.∣∣`− ‖x∗‖22∣∣ ≤ ∣∣p · 4‖b‖22κ2 − ‖x∗‖22∣∣+ δ · 4‖b‖22κ2

=
∣∣∣ r∑
i=1

(β2i
λ̃2i
− β2i
λ2i

)∣∣∣+ δ · 4‖b‖22κ2

Using the fact that λi ≥ 1/κ and that |λi − λ̃i| ≤ δPE, it is not hard to see that∣∣∣ r∑
i=1

(β2i
λ̃2i
− β2i
λ2i

)∣∣∣ ≤ 2κδPE

r∑
i=1

β2i
λ2i

= 2κδPE‖x∗‖22 = ε‖x∗‖22.

Since δ = ε/4κ2, we have δ · 4‖b‖22κ2 = ε‖b‖22. Thus
∣∣`− ‖x∗‖22∣∣ ≤ ε(‖x∗‖22 + ‖b‖22

)
.

9



The error probability is a small constant as guaranteed by the error rate of phase estimation,
amplitude amplification, and amplitude estimation. Finally let us analyze the cost. For Step 1,
we can efficiently prepare |b〉 in time O(log n) provided that bi (i = 1, ..., n) and

∑i2
i1
|bi|2(1 ≤ i1 <

i2 ≤ n) are efficiently computable by using the procedure of [GR02].
For Step 2, we perform quantum phase estimation by simulating eiA, which takes timeO(s(log n+

poly log(s, κ))) by Theorem 8. In order that the eigenvalue estimation has error at most δPE = ε
2κ ,

the phase estimation algorithm needs O(κ/ε) calls of eiA simulation. Thus the total time for one
phase estimation is O(s(log n+poly log(s, κ))κ/ε). Repeating this for O(κ2/ε) time in Step 4 needs
time O(s(log n+ poly log(s, κ))κ3/ε2).

Therefore, if we do not need to estimate the norm ‖x∗‖2, then the algorithm can just stop before

Step 7. The total time cost is O((log n) · s2 · κε ·
κ2

ε ) = O((log n)s2κ3/ε2).
To estimate the norm ‖x∗‖2, the Amplitude Estimation needs to repeat Step 1 to 3 at most

O(1/δ) = O(κ2/ε) times. So the total cost is O((log n) · s2 · κε ·
κ2

ε ) = O((log n)s2κ3/ε2).
This completes the proof of Theorem 1.

Our quantum algorithms for the two extensions, Ridge Regression and Truncated SVD problem
are deferred to Appendix (Section A).

4 Quantum algorithm for calculating statistic leverage scores and
matrix coherence

In this section, we present quantum algorithms for calculating statistic leverage scores and matrix
coherence, and analyze their performance. Given an n×p matrix A of rank r with SVD A = UΣV T

where U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rp×r, the statistic leverage scores of A are defined as
si = ‖Ui‖22, i ∈ {1, ..., n}, and the matrix coherence c is the largest statistic leverage score of A.

Without loss of generality, we assume that A is Hermitian. (See Appendix C for the detailed
technique to deal with the non-Hermitian case.) We have the following quantum algorithm for
calculating the k-th statistic leverage score of A, sk for any index k ∈ [n]. Denote the k-th
computational basis by |ek〉, which has the form ek =

∑n
i=1 βi|vi〉 as a decomposition into A’s

eigenvectors |vi〉.
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Algorithm QSLS
Input: A ∈ Rn×n, k ∈ [n]. A is Hermitian with rank r and spectral decomposition A =∑n
i=1 λi|vi〉〈vi|. The eigenvalues λ1, ..., λn satisfy 1

κ ≤ |λi| ≤ 1 for i ≤ r and λi = 0 for i > r.
Suppose that ek =

∑n
i=1 βi|vi〉.

Output: A value s̃k ≈ sk.
Algorithm:

1. Prepare the quantum state |ek〉 =
∑n
i=1 βi|vi〉.

2. Perform phase estimation to create the state proportional to
∑n
i=1 βi|vi〉|λ̃i〉, where λ̃i is the

estimated value of λi satisfying |λ̃i − λi| ≤ δPE
def
= 1

3κ for i = 1, . . . , n.

3. Add one qubit |0〉 to the state and perform a controlled rotation as follows. If λ̃i ≥ 1
2κ , rotate

the qubit to |1〉; otherwise do nothing. The resulting state is proportional to

r∑
i=1

βi|vi〉|λ̃i〉|1〉+

n∑
i=r+1

βi|vi〉|λ̃i〉|0〉. (8)

4. Measure the last qubit. Denote by p the probability of observing |1〉.

5. Use Amplitude Estimation to get an estimate p′ of p to precision ε. Output s̃k = p′.

Now we analyze the running time and performance. The analysis of Hamiltonian simulation
error and running time is similar to that for Algorithm QLSR and is omitted here, and we will focus
on the difference. In order that the eigenvalue estimation has error ≤ δPE = 1

3κ , i.e. |λ̃i − λi| ≤
δPE,∀i = 1, ..., n, we need to run the procedure O(κ) times.

To estimate the probability p (of observing |1〉 in Step 4) to precision ε, the Amplitude Estima-
tion needs to repeat Step 1 to 4 at most O(1/ε) times. So the total cost is O(s(log n+polylog(s, κ))×
O(κ)×O(1ε ) = O(sκε−1(log n+ polylog(s, κ))).

The probability of seeing |1〉 in Step 4 of Algorithm QSLS is p =
∑r

i=1 β
2
i . On the other hand,

note that
AA+ = UΣV T (UΣ−1V T )T = UΣV TV Σ−1UT = UΣΣ−1UT = UUT ,

where we used the fact that V TV = Ir and ΣΣ−1 = Ir. Therefore, we can relate sk to the
probability p of observing |1〉 in the following way.

sk = ‖Uk‖22 =
∥∥eTkU∥∥22 = eTkUU

T ek = eTkAA
+ek.

Plugging ek =
∑n

i=1 βi|vi〉, A =
∑r

i=1 λi|vi〉〈vi| and A =
∑r

i=1 λ
−1
i |vi〉〈vi| in the above expression,

we have

eTkAA
+ek =

∑
i,`∈[r],j,k∈[n]

βiλjλ
−1
k β`〈vi|vj〉〈vj |vk〉〈vk|v`〉 =

r∑
i=1

β2i .

Putting the above two inequalities together yields

sk =

r∑
i=1

β2i = p.

Since the outputted estimate s̃k = p′, and |p′ − p| ≤ ε, we have that |s̃k − sk| ≤ ε. This proves
Theorem 4. Using a simple amplitude amplification, we easily get Corollary 5.
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5 Concluding remarks

In this paper we give efficient algorithms for least squares regression, ridge regression, δ-truncated
singular value decomposition and calculating statistical leverage scores and matrix coherence. The
latter is particularly interesting because it gives an example of exponential speedup for a natural
linear algebraic problem, instead of number theoretic or modern algebraic ones (such as problems
on groups, fields, polynomials, etc). We hope that phase estimation can find more applications in
quantum algorithm designing for linear algebraic problems.
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A Applications of our quantum algorithm for LSR

In this section, we present two applications of our quantum algorithm for LSR. First, we directly
apply our techniques to RR. Second, we design a quantum algorithm for δ-TSVD.

A.1 Quantum algorithm for ridge regression

Since we already handled the case for A being singular in previous section, we can use the algorithm
to the ridge regression problem, by a reduction based on the following key observation. Ridge
regression Eq.(3) can be reformulated into the following problem:

x∗ = arg min
x∈Rp

∥∥∥∥[ A√
λIp

]
x−

[
b
0p

]∥∥∥∥2
2

, (9)

which becomes a least squares regression problem. Thus we can use the quantum algorithm for

least squares regression with input

[
A√
λIp

]
and

[
b
0p

]
to solve this problem and prove Theorem

2. We give detailed explanation on how the κ′ comes.
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Let the SVD of A be A =
∑r

i=1 σiuiv
T
i where ui ∈ Rn and vi ∈ Rp. Let ur+1, ..., un be the rest

vectors in the orthonormal basis containing u1, ..., ur and let vr+1, ..., vp be the rest vectors in the

orthonormal basis containing v1, ..., vr. Then the SVD of

[
A√
λIp

]
is

[
A√
λIp

]
=
∑r

i=1 σiu
′
iv
T
i +∑p

i=r+1

√
λu′iv

T
i where u′i =

[
ui
0p

]
for i = 1, ..., r and u′i =

[
0n
vi

]
for i = r + 1, ..., p. So the

singular values of

[
A√
λIp

]
are σ1, ..., σr and

√
λ, ...,

√
λ (p− r times). If σ1, ..., σr are in the range

[ 1κ , 1], the all the singular values of

[
A√
λIp

]
will be in the range [min{ 1κ ,

√
λ},max{1,

√
λ}], thus

we set κ′ = max{1,
√
λ}

min{ 1
κ
,
√
λ} .

A.2 Quantum algorithm for δ-Truncated SVD

In this part, we generalize our techniques to solve the δ-TSVD problem. Let λi be the i-th largest
singular value of A for i = 1, ..., n, we assume that λi ≤ 1. Let r be the rank of A. Specially, let
Λ1 = max{λi : λi < δ, i ∈ [r]}, Λ2 = mini{λi : λi ≥ δ, i ∈ [r]}, and let Λ = Λ2 − Λ1.

We have the following algorithm QTSVD for δ-TSVD. The main difference between QTSVD
and QLSR is that in QLSR we need to distinguish the non-zero singular values and zero singular
values, while in QTSVD we need to distinguish the large singular values that are ≥ δ and the small
singular values that are < δ. More specifically, in Algoritm QTSVD we have a different requirement
on the phase estimation error δPE in Step 2 and a different rule to rotate the last register in Step
3; the rest are similar.
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Algorithm QTSVD
Input: A ∈ Rn×n, b ∈ Rn, δ, where A is Hermitian with rank r and spectral decomposition
A =

∑n
i=1 λi|vi〉〈vi|. |λi| ≤ 1 for i ∈ [n]. Λ1 = max{|λi| : |λi| < δ, i ∈ [r]}, Λ2 = mini{|λi| : |λi| ≥

δ, i ∈ [r]}, Λ = Λ2 − Λ1, b =
∑n
i=1 βi|vi〉.

Output: A quantum state proportional to |x̃〉 where x̃ is the approximation to the optimal solution

x∗ = A+b and a value ` as the approximation to ‖x̃‖22.
Algorithm:

1. Prepare the quantum state proportional to |b〉 =
∑n
i=1 βi|vi〉.

2. Perform phase estimation to precision δPE
def
= min{ εδ2 ,

Λ
2 } to create the state proportional to∑n

i=1 βi|vi〉|λ̃i〉, where |λ̃i − λi| ≤ δPE for i = 1, ..., n.

3. Add a qubit |0〉 to the state and make a controlled rotation as follows. If λ̃i ≥ Λ1+Λ2

2 − Λ
2 ,

rotate it to ( δ
2λ̃i
|1〉+

√
1− δ2

4λ̃2
i

|0〉); otherwise do nothing. We get the state proportional to

∑
i:λi≥δ

βi|vi〉|λ̃i〉

(
δ

2λ̃i
|1〉+

√
1− δ2

4λ̃2
i

|0〉

)
+
∑
i:λi<δ

βi|vi〉|λ̃i〉|0〉. (10)

4. Use amplitude amplification, which repeats the previous steps O( 1
δ2ε ) times.

5. Measure the last qubit.

6. if we observe |1〉,

(a) The remaining state is proportional to
∑
i:λi≥δ

βi

λ̃i
|vi〉|λ̃i〉.

(b) Reverse the phase estimation process and get the state proportional to
∑
i:λi≥δ

βi

λ̃i
|vi〉 =

|x̃〉 as our output.

else output 0 as an estimate to |x∗〉.

7. Use Amplitude Estimation to get an estimate p′ to the probability p of observing |1〉 when
measuring the state in Eq.(6) to precision εδ2/4. Output ` = p′ · 4‖b‖22/δ2.

The proof of Theorem 3 is very similar to that of Theorem 1, and we omit the details here.

B Non-Hermitian case for LSR

Assume A ∈ Rn×p with rank r ≤ min{n, p}, b ∈ Rn, and we want to calculate x∗ = A+b ∈ Rp.
Define

A′ =

[
0 A
AT 0

]
, (11)

and

b′ =

[
b
0p

]
. (12)

Now A′ ∈ R(n+p)×(n+p) is Hermitian with rank 2r. It is easily seen that if A has at most s nonzero
entries in each row and column, so is A′. Furthermore, the optimal solution (x∗)′ to the new LSR
problem (A′, b′) is related to that x∗ to the original one (A, b) as follows:

(x∗)′ = A
′+b′ =

[
0n
x∗

]
. (13)
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Thus, if A is not Hermitian, we can work on the instance (A′, b′) of LSR and read out the optimal
solution x∗ from Eq.(13).

C Non-Hermitian case for calculating statistic leverage scores

Given a matrix A ∈ Rn×p, suppose the thin SVD of A is A = UΣV T , we want to calculate the
values ‖Ui‖22 , i = i, · · · , n.

Let

A′ =

[
0 A
AT 0

]
, (14)

which is a Hermition. Note that

A′ =
1√
2

[
U U
V −V

]
·
[

Σ
−Σ

]
· 1√

2

[
U U
V −V

]T
. (15)

We can see that the statistic leverage scores of A are exactly the first n statistic leverage scores
of A′, which is a Hermition. Computing an individual leverage score of A reduces to computing
an individual leverage score of A′, and computing the maximum leverage score of A reduces to
computing the maximum, over the first n rows, leverage score of A′.
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