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Abstract. Quantum game theory aims to study interactions of people (or other agents) using
quantum devices with possibly conflicting interests. Recently Zhang studied some quantitative
questions in general quantum strategic games of growing sizes [Zha12]. However, a fundamental
question not addressed there is the characterization of quantum correlated equilibria (QCE). In this
paper, we answer this question by giving a sufficient and necessary condition for an arbitrary state
ρ being a QCE. In addition, when the condition fails to hold for some player i, we give an explicit
positive-operator valued measurement (POVM) for that player to achieve a strictly positive gain of
payoff. Finally, we give some upper bounds for the maximum gain by playing quantum strategies
over classical ones, and the bounds are tight for some games.

1 Introduction

Game theory studies the interaction of different players with possibly conflicting goals [OR94,FT91,VNRT07].
Equilibrium is a central solution concept which characterizes the situation in which no player likes to
deviate from the current strategy provided that all other players do not change theirs. In strategic games,
or games in strategic forms, each player i has a set Si of strategies, and when playing the game, all k
players choose their strategies at the same time. They then get payoffs according to their payoff functions
which, in general, depend on all the players’ strategies. If each player i chooses her strategy si from a
distribution pi (on her own strategy space), then the joint distribution p = p1 × · · · × pk is a (mixed)
Nash equilibrium if no player i can increase her average payoff by changing her distribution pi to any
other p′i. A fundamental theorem by Nash says that any game with a finite set of strategies has at least
one Nash equilibrium [Nas51].

Aumann [Aum74] gave an important generalization of Nash equilibrium, called correlated equilibrium
(CE), where a Referee selects a joint strategy s = (s1, . . . , sk) from some distribution p and suggests si
to the i-th player. The joint distribution p is a correlated equilibrium (CE) if no player i, when sees only
her part si, can improve her expected payoff by deviating from this suggested strategy.

The notion of correlated equilibria captures the optimal solution in natural games such as the Traffic
Light and the Battle of the Sexes ([VNRT07], Chapter 1). Let us review the first one for illustration.
Suppose that two cars, one heading east and the other heading north, drive to an intersection at the
same time. Both cars have choices of crossing and stopping. If both choose to cross, then an accident
would happen, in which case both players suffer a lot. If exactly one car chooses to cross, then it does
not need to wait and thus gets payoff 1, and the other car stops and waits, having payoff 0. If both cars
stop then both have payoff 0. The payoff is summarized by the following payoff bimatrix, where in each
entry, the first number is the payoff for Player 1 and the second is for Player 2.

Cross Stop
Cross (-100,-100) (1,0)
Stop (0,1) (0,0)

There are two pure Nash equilibria in this game, namely (Cross,Stop) and (Stop,Cross). But neither
of them is fair, since it clearly prefers one car to the other. Therefore, different cars have different
preferences over these two Nash equilibria. In the language of games, it is the issue of which equilibrium
the players should agree on. There is actually a third Nash equilibrium, a mixed one: Each car crosses
with probability 1/101. This solves the fairness issue, but loses the efficiency: The total expected payoff
is very small (0) because most likely both cars would stop. Even worse, there is a positive probability of
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car crash. The issue in the real world is easily solved by introducing a traffic light, from which each car
gets a signal. Each signal can be viewed as a random variable uniformly distributed on {red, green}. But
the two random signals/variables are designed to be perfectly correlated that if one is red, then the other
is green. This is actually a correlated equilibrium, i.e. a distribution over {Cross,Stop}×{Cross,Stop}
with half probability on (Cross,Stop) and half on (Stop,Cross). It is easy to verify that it simultaneously
achieves high payoff, fairness, and zero-probability of car accident.

The set of CE also has good mathematical properties. For example, the set of CE is convex, with
Nash equilibria being some of the vertices of the polytope. Computationally, we can find the best CE (of
any game with constant number of players), measured by a weighted summation of individual payoffs,
simply by solving a linear program. This is in contrast with the fact that finding one Nash equilibrium
is PPAD-hard [DGP09,CDT09]. Other nice properties include that a natural learning dynamics lead to
an approximate variant of CE ([VNRT07], Chapter 4), and all CE in a graphical game with n players
and log(n) maximum degree can be found in polynomial time ([VNRT07], Chapter 7).

In the quantum world, quantum game theory focuses on the study of the interaction of people
using quantum computers with conflicting interests. Indeed, quantization of classical strategic games
has drawn much attention in the past decade. Despite the rapid accumulation of literature on quantum
games [EWL99,BH01b,LJ03,FA03,FA05,DLX+02a,DLX+02b,PSWZ07], the whole picture of the area is
not as clean as one desires, partially due to controversy in models [BH01a,vEP02,CT06] and partially
due to lack of studies for general games. Recently, Zhang initialized systematic studies in a simpler yet
rich, arguably more natural quantization of classical games in strategic form [Zha12]3; also see that
paper for a review of the existing literature under the name of “quantum games”. Other than the
model, what mainly distinguishes that work from previous ones is the generality of the classical game
it studies: Unlike previous work focusing on specific games of small sizes or refereed extensive games,
the paper studies general strategic games of growing sizes. In addition, rather than aiming at qualitative
questions such as whether playing quantum strategies has any advantage as in previous work, [Zha12]
studies quantitative questions such as how much quantum advantage a general game can have. The work
triggered some follow-up studies [KZ12,ZWC+12,JSWZ13] on efficiency of quantum games in various
settings and measures.

Solution concepts such as Nash equilibrium and correlated equilibrium are naturally extended to the
quantum model. While quantum Nash equilibria can be easily characterized as all product states whose
probability distribution by the measurement in the computational basis is a classical Nash equilibrium,
quantum correlated equilibria seem to be much more elusive. Given the importance of correlated equilibria
in game theory and computer science, it is desirable to understand quantum correlated equilibria well,
and indeed a correspondence between classical and quantum correlation equilibria was established in
[Zha12], which also answers the questions such as the hardness of finding a quantum Nash or correlated
equilibrium. However, one fundamental question that [Zha12] did not address is the following: For an
arbitrary (classical) strategic game, can we characterize all the quantum correlated equilibria (QCE) in
the quantum game?

In this paper, we answer this question by giving the following sufficient and necessary condition for
any given game and any state ρ. Recall that in a classical game with k players, each player t has a set St
of strategies. This space of strategies extends to Ht = CSt in the quantized game, and each player can
apply an arbitrary completely positive and trace preserving (CPTP) map in her space. We use notation
S−t to denote the set

∏
i6=t Si.

Theorem 1 A quantum state ρ in space H =
⊗k

i=1Hi is a QCE if and only if for each player t, when we

write ρ = [ρi1i2j1j2
]i1j1,i2j2 , where i1, i2 ∈ [m]

def
= {1, 2, ...,m} and j1, j2 ∈ [n] with m = |St| and n = |S−t|,

we have

Bi
def
=
[ n∑
j=1

ρi1i2jj (aij − ai1j)
]
i1i2
� 0, ∀i ∈ [m]. (1)

Here aij is the payoff of Player t when she takes strategy i and the others take the joint strategy indexed
by j. (Note that the matrices Bi’s are different for different players.)

3 The author later learned that a similar model was also considered in [Mey04] by Meyer, though only qualitative
studies are conducted and only on pure states are studied there, whereas [Zha12] emphasizes quantitative
studies on general mixed states.
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Let us compare this with the definition of QCE. For a given strategic quantum game, a quantum
state ρ is a QCE if and only if no player could obtain a positive gain by any local quantum operation Φ.
Compared to this definition, the above characterization eliminates the quantifier ∀Φ, and makes checking
the QCE property as easy as checking positivity of some matrices.

The proof of the theorem is based on semi-definite programming (SDP) duality, which makes the
proof desirably simple. However, using the duality also fails to provide a good intuition for the above
characterization. To give more intuitions for the condition, and also to provide a constructive way for a
player to gain if the above condition is not satisfied, we give an explicit operation for the player to get a
strictly positive payoff. This can serve as an operational explanation for the necessity of the condition.
This part is more technical, and consists of two steps. First, we show that a weaker condition∑

j

ρi1i2jj ai1j =
∑
j

ρi1i2jj ai2j , ∀i1, i2 ∈ [m], (2)

is needed for ρ to be a QCE, and if this condition is violated, then we give an explicit unitary operation
(followed by the measurement in the computational basis) by which the player has a positive gain. In the
next step, we show that if Eq. (2) holds, but the condition in the characterization does not hold, then we
can use further spectral properties provided by Eq. (2) to construct an explicit positive-operator valued
measurement(POVM) by which the player has a positive gain.

Finally, if a quantum state ρ is not a QCE, we also give two upper bounds on the maximum gain
a player could achieve. There results are based on analyzing the structure of Bi’s. We also provide an
example to show that there upper bounds could be (almost) tight.

The paper is organized as follows. Some preliminary notions are introduced in Section 2. In Section 3
we give the sufficient and necessary condition, and in Section 4 the necessity part is reproved construc-
tively, which can be regarded as the operational explanation of this condition. In Section 5, we obtain
some upper bounds of the gain when ρ is not a QCE. Some open problems are listed in Section 6.

2 Definitions and notation

Matrix theory A matrix A ∈ Cn×n is Hermitian if A† = A, or equivalently, A has a spectral decom-
position and all eigenvalues are real numbers. A matrix A ∈ Cn×n is positive (semi-definite), written as
A � 0, if 〈ψ|A|ψ〉 ≥ 0 for all column vectors |ψ〉. Equivalently, A � 0 if and only if A has a spectral
decomposition and all eigenvalues are nonnegative numbers. Thus all positive matrices are Hermitians.
Define A � 0 if −A � 0.

Quantum computing A pure quantum state in a vector space H is a unit vector in `2 norm, usually
denoted by the ket notation |·〉. A mixed quantum state is represented by a density matrix, i.e. a positive
matrix ρ whose trace is 1. An linear operator Φ acting on a vector space of matrices is completely positive
if Φ ⊗ In is positive for all n. A quantum admissible operation is a completely positive linear operator
that preserves the trace, usually shortened as a CPTP (completely positive and trace preserving) map.
A particular class of quantum operations are measurements. A general measurement, called POVM
measurement, is a collection of positive operators {Ei} satisfying that Ei � 0 and

∑
iEi = I. When we

use this measurement on a mixed state ρ, a label i will be observed with probability pi = tr(Eiρ); the
two above conditions just imply that the probability pi ≥ 0 and

∑
i pi = 1.

2.1 Classical strategic games

Suppose that in a classical game there are k players. Each player i has a set Si of strategies. To play
the game, each player i selects a strategy si from Si. We use s = (s1, . . . , sk) to denote the joint strategy
selected by the players and S = S1× . . .×Sk to denote the set of all possible joint strategies. Each player
i has a utility function ui : S → R, specifying the payoff or utility ui(s) to player i on the joint strategy
s. We use subscript −i to denote the set [k]− {i}, so s−i is (s1, . . . , si−1, si+1, . . . , sk).

Definition 1 A pure Nash equilibrium is a joint strategy s = (s1, . . . , sk) ∈ S satisfying

ui(si, s−i) ≥ ui(s′i, s−i), ∀i ∈ [k],∀s′i ∈ Si.
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A (mixed) Nash equilibrium (NE) is a product probability distribution p = p1 × . . . × pk, where each pi
is a probability distributions over Si, satisfying∑

s−i

p−i(s−i)ui(si, s−i) ≥
∑
s−i

p−i(s−i)ui(s
′
i, s−i), ∀i ∈ [k], ∀si, s′i ∈ Si with pi(si) > 0.

There are various extensions of (mixed) Nash equilibria. Aumann [Aum74] introduced a relaxation
called correlated equilibrium. This notion assumes an external party, called Referee, to draw a joint
strategy s = (s1, ..., sk) from some probability distribution p over S, possibly correlated in an arbitrary
way, and to suggest si to Player i. Note that Player i only sees si, thus the rest strategy s−i is a random
variable over S−i distributed according to the conditional distribution p|si , the distribution p conditioned
on the i-th part being si. Now p is a correlated equilibrium if any Player i, upon receiving a suggested
strategy si, has no incentive to change her strategy to a different s′i ∈ Si, assuming that all other players
stick to their received suggestion s−i.

Definition 2 A correlated equilibrium (CE) is a probability distribution p over S satisfying∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s
′
i, s−i), ∀i ∈ [k], ∀si, s′i ∈ Si.

Notice that a correlated equilibrium p is an Nash equilibrium if p is a product distribution.

2.2 Quantum strategic games

In this paper we consider quantum games which allow the players to use strategies quantum mechanically.
We assume the basic background of quantum computing; see [NC00] and [Wat08] for comprehensive
introductions. The set of admissible super operators, or equivalently the set of CPTP maps, of density
matrices in Hilbert spaces HA to HB , is denoted by CPTP(HA, HB). We write CPTP(H) for CPTP(H,H).

For a strategic game being played quantumly, each player i has a Hilbert space Hi = span{si : si ∈
Si}, and a joint strategy can be any quantum state ρ in H = ⊗iHi. The players are supposed to measure
the state ρ in the computational basis, giving a distribution over the set S of classical joint strategies,
and yielding a payoff for each player. Therefore the (expected) payoff for player i on joint strategy ρ is

ui(ρ) =
∑
s

〈s|ρ|s〉ui(s). (3)

Please refer to [Zha12] for more explanations of the model.
Corresponding to changing strategies in a classical game, now each player i can apply an arbitrary

CPTP operation on Hi. So the natural requirement for a state being a quantum Nash equilibrium is that
each player cannot gain by applying any admissible operation on her strategy space. The concepts of
quantum Nash equilibrium, and quantum correlated equilibrium, and quantum approximate equilibrium
are defined in the following, where we overload the notation by writing Φi for Φi ⊗ I−i if no confusion is
caused.

Definition 3 A quantum Nash equilibrium (QNE) is a quantum strategy ρ = ρ1 ⊗ · · · ⊗ ρk for some
mixed states ρi’s on Hi’s satisfying

ui(ρ) ≥ ui(Φi(ρ)), ∀i ∈ [k], ∀Φi ∈ CPTP(Hi).

Note that in the above definition, only produce states are allowed. One can also consider general quantum
states, leading to the following notion.

Definition 4 A quantum correlated equilibrium (QCE) is a quantum strategy ρ in H satisfying

ui(ρ) ≥ ui(Φi(ρ)), ∀i ∈ [k], ∀Φi ∈ CPTP(Hi).

An ε-approximate quantum correlated equilibrium (ε-QCE) is a quantum strategy ρ in H satisfying that

ui(Φi(ρ)) ≤ ui(ρ) + ε, ∀i ∈ [k],∀Φi ∈ CPTP(Hi).

4



When we later characterize quantum correlated equilibrium, we will need that no player can increase
her payoff, so a condition is required for each player. For easy presentation, we fix an arbitrary player,
say, Player t, and consider the possible increase of her payoff by local operations. Write the state as

ρ =
[
ρi1i2j1j2

]
i1j1,i2j2

,

where i1, i2 ∈ Ht and j1, j2 ∈ H−t. Suppose that the dimensions of Ht and H−t are m and n, respectively.

3 Characterization of quantum correlated equilibrium

We will first give an explicit expression of Player t’s gain of payoff by applying a POVM measurement
{Ei} (compared to the measurement in the computational basis). Recall that St is the set of strategies
of Player t, and S−t = S1 × · · · × St−1 × St−1 × · · · × Sk is the set of joint strategies of other players.
Under this notation, denote by {aij} the payoff of Player t when she takes strategy i and the others take
the joint strategy indexed by j.

Lemma 2 Suppose that Player t uses a POVM measurement E = {Ei : i ∈ St} and other players use
M = {|j〉〈j| : j ∈ S−t} to measure their parts in the computational basis. Then the gain of Player t’s
payoff by applying E than measuring in the computational basis {|i〉〈i| : i ∈ St} is

Gain
def
= u1

(
(E ⊗M)ρ

)
− u1(ρ) =

∑
i

tr(EiBi), where Bi =
[ ∑
j∈S−t

ρi1i2jj (aij − ai1j)
]
i1i2

.

Proof. The probability of choosing strategies (i, j) is tr((Ei⊗|j〉〈j|)ρ) =
∑
i1,i2

Ei(i1, i2)∗ρi1i2jj . Note that∑
ij

∑
i1i2

Ei(i1, i2)∗ρi1i2jj ai1j =
∑
i1i2j

(∑
i

Ei(i1, i2)∗
)
ρi1i2jj ai1j =

∑
i1j

ρi1i1jj ai1j =
∑
ij

ρiijjaij (4)

where the second equality is because {Ei}, as a POVM measurement, satisfies
∑
iEi(i1, i2) = δi1,i2 .

Therefore,

Gain =
∑
ij

(∑
i1,i2

Ei(i1, i2)∗ρi1i2jj − ρ
ii
jj

)
aij (5)

=
∑
ij

∑
i1,i2

Ei(i1, i2)∗ρi1i2jj aij −
∑
ij

ρiijjaij (6)

=
∑
ij

∑
i1,i2

Ei(i1, i2)∗ρi1i2jj aij −
∑
ij

∑
i1,i2

Ei(i1, i2)∗ρi1i2jj ai1j (7)

=
∑
i

∑
i1,i2

Ei(i1, i2)∗
∑
j

ρi1i2jj (aij − ai1j) (8)

=
∑
i

tr(E†iBi) =
∑
i

tr(EiBi), (9)

where we have utilized Eq.(4) and the definition of Bi.

The above lemma immediately gives a sufficient condition for a state ρ being a QCE.

Theorem 3 If for each player, the corresponding Bi � 0 holds for all i ∈ [m], then ρ is a QCE.

Proof. By the above lemma, the gain
∑
i tr(EiBi) ≤ 0 because each Bi � 0 and each Ei � 0. Since this

holds for all possible POVM measurement {Ei}, ρ is a QCE by definition.

Next we will use SDP duality to show that the condition is also necessary.

Theorem 4 Suppose that ρ is a QCE. Then for each player t, if we write ρ = [ρi1i2j1j2
]i1j1,i2j2 , where

i1, i2 ∈ [m] and j1, j2 ∈ [n] with m = dim(Ht) and n = dim(H−t), then we have

Bi
def
=
[ n∑
j=1

ρi1i2jj (aij − ai1j)
]
i1i2
� 0, ∀i ∈ [m]. (10)
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Proof. Since ρ is a QCE, Player t cannot increase her payoff by applying any POVM measurement.
Therefore, the value of the following maximization problem

max
∑
i

tr(EiBi)

s.t. Ei � 0, ∀i ∈ [m],
m∑
i=1

Ei = Im

is equal to 0. This maximization problem is a Semidefinite program (SDP), and it has the following dual
SDP problem. (See [Hel02,VB96] for more details of SDP.)

Dual:

min tr(Y )

s.t. Y � Bi, ∀i ∈ [m]

According to the strong duality theorem, these two SDP problems have the same value. Suppose Y is an
optimal solution of the dual, then we have tr(Y ) = 0. Note that each Y (i, i) ≥ Bi(i, i) = 0, so tr(Y ) = 0
implies that all Y (i, i) = 0, and thus (Y − Bi)(i, i) = 0. But note that as a feasible solution, Y satisfies
Y −Bi � 0, so actually the entries of the entire i-th row of Y −Bi are all 0’s. Since the i-th row of Bi is
also 0 by its definition, the i-th row of Y is that of Y −Bi plus that of Bi, which is equal to 0. Applying
this argument to all i, we reach the conclusion that the entire Y = 0, giving the claimed relation Bi � 0.

Since a negative matrix Bi is a Hermitian, and ρi1i2jj = (ρi2i1jj )∗ (as ρ � 0 is a Hermitian), we have an
immediate corollary as follows.

Corollary 5 If ρ is a QCE, then ∀i1, i2 ∈ [m],∑
j

ρi1i2jj ai1j =
∑
j

ρi1i2jj ai2j . (11)

Both necessary conditions in Theorem 4 and the above corollary are not constructive in the sense
that if ρ is not a QCE, they do not provide an explicit POVM measurement to realize a strictly positive
gain of payoff. We will resolve this issue in the next section.

4 A constructive proof of the characterization

In the last section, we give two necessary conditions Eq. (10) and Eq. (11), the first of which is also
sufficient (while the second is not by itself). In this section, we will give explicit local operations to
increase the payoff if these conditions are not satisfied. We will first study in Section 4.1 the violation of
Eq. (11), in which case a local unitary operation is explicitly given to achieve a positive gain. Based on
this result, we will then consider in Section 4.2 the general scenario of Eq. (10) being violated, in which
case we will exhibit an explicit POVM measurement with a positive gain for the player.

4.1 Eq. (11) violated: gain by an explicit local unitary

Lemma 6 If
∑
j ρ

i1i2
jj ai1j 6=

∑
j ρ

i1i2
jj ai2j for some i1, i2 ∈ [m], then there exists an explicit unitary only

on span{|i1〉, |i2〉} to make an increase of payoff for the player.

Proof. Consider the unitary operator U defined by

U |i1〉 = u11|i1〉+ u12|i2〉,
U |i2〉 = u21|i1〉+ u22|i2〉.

The new probability distribution of strategy after the operation of U† on span{|i1〉, |i2〉} and identity on
other i’s is

pij = Tr((U |i〉〈i|U† ⊗ |j〉〈j|)ρ). (12)
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where we overload the notation by writing U for U ⊗ I[m]−{i1,i2}. Note that when i ∈ [m] − {i1, i2},
pij = Tr(|i〉〈i| ⊗ |j〉〈j|)ρ) = ρiijj . Thus, the gain of Player 1 by the operation Ψ is

Gain =
∑
ij

(
pij − ρiijj

)
aij

=
∑
j

(
pi1j − ρ

i1i1
jj

)
ai1j +

∑
j

(
pi2j − ρ

i2i2
jj

)
ai2j

=
∑
j

( 2∑
a,b=1

ρiaibjj u∗1,iau1,ib − ρ
i1i1
jj

)
ai1j +

∑
j

( 2∑
a,b=1

ρiaibjj u∗2,iau2,ib − ρ
i2i2
jj

)
ai2j

=
∑
j

(
|u11|2ρi1i1jj + u∗11u12ρ

i1i2
jj + u11u

∗
12ρ

i2i1
jj + |u12|2ρi2i2jj − ρ

i1i1
jj

)
ai1j

+
∑
j

(
(|u21|2ρi1i1jj + u∗21u22ρ

i1i2
jj + u21u

∗
22ρ

i2i1
jj + |u22|2ρi2i2jj − ρ

i2i2
jj

)
ai2j .

Since U is a unitary operation, we have

u∗11u12 + u∗21u22 = 0, u11u
∗
12 + u21u

∗
22 = 0, (13)

and
|u11|2 + |u21|2 = 1, |u12|2 + |u22|2 = 1. (14)

Thus, we obtain

Gain = u∗11u12
∑
j

(
ai1j − ai2j

)
ρi1i2jj + u11u

∗
12

∑
j

(
ai1j − ai2j

)
ρi2i1jj

−|u12|2
∑
j

(
ai2j − ai1j

)
ρi2i2jj − |u21|

2
∑
j

(
ai1j − ai2j

)
ρi1i1jj ,

Since
∑
j(ai1j − ai2j)ρ

i1i2
jj 6= 0, we have

∑
j(ai1j − ai2j)ρ

i2i1
jj =

∑
j(ai1j − ai2j)(ρ

i1i2
jj )∗ 6= 0 as well. Define

a positive real number c by

c =
max

{∑
j

(
ai2j − ai1j

)
ρi2i2jj ,

∑
j

(
ai1j − ai2j

)
ρi1i1jj

}
∣∣∣∑j

(
ai1j − ai2j

)
ρi1i2jj

∣∣∣ .

which is just to make ∑
j

(
ai2j − ai1j

)
ρi2i2jj < c

∣∣∣∑
j

(
ai1j − ai2j

)
ρi1i2jj

∣∣∣,
and ∑

j

(
ai1j − ai2j

)
ρi1i1jj < c

∣∣∣∑
j

(
ai1j − ai2j

)
ρi1i2jj

∣∣∣.
Now one could choose u11 =

√
1− x, and u12 = eir

√
x, where x is a positive real number, and r is a

proper real number such that u∗11u12
∑
j(ai1j−ai2j)ρ

i1i2
jj is also a positive real number. It can be checked

that if 0 < x < 1
c2+1 , we have

u11
|u12|

=

√
1− x
x

> c,

Finally, note that |u12|2 = |u21|2. We then have

Gain = 2|u11| · |u12|
∣∣∣∑
j

(
ai1j − ai2j

)
ρi1i2jj

∣∣∣
−|u12|2

∑
j

(
ai2j − ai1j

)
ρi2i2jj − |u21|

2
∑
j

(
ai1j − ai2j

)
ρi1i1jj

> 0.
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4.2 Eq. (10) violated: gain by an explicit POVM measurement

In the rest of this section, we assume that condition Eq. (11) holds, because otherwise there exists an
explicit local unitary operation to increase the payoff.

First note that under this assumption, all matrices Bi =
[∑

j ρ
i1i2
jj (aij − ai1j)

]
i1i2

are Hermitians.

Indeed, we have

Bi(i2, i1)∗ =
∑
j

(ρi2i1jj )∗(aij − ai2j) (because aij , ai2j ∈ R) (15)

=
∑
j

ρi1i2jj (aij − ai2j) (because ρ is Hermitian) (16)

=
∑
j

ρi1i2jj (aij − ai1j) (by Eq. (11)) (17)

Therefore all Bi’s have spectral decompositions.
Now suppose that Bi � 0 is not true for some i ∈ [m]. Without loss of generality, assume that i = 1,

namely B1 has a positive eigenvalue. We denote it by λ, and suppose the corresponding eigenvector (with
unit `2 norm) is |ψ〉. Note that the first row of B1 contains all 0’s, and since we assumed Eq. (11), so is
the first column. This allows us to write |ψ〉 as |ψ〉 = (0, v2, v3, ..., vm)T . Since at least one vi 6= 0, for
the notational convenience, we assume |v2| 6= 0 without loss of generality.

In the following, we will construct a local POVM measurement {Ei} by which Player 1 can strictly
increase her payoff, which will complete the proof. Set {Ei} to be

E1 = ε|ψ〉〈ψ|+ |1〉〈1| =


1 0 0 · · · 0
0 ε|v2|2 εv2v

∗
3 · · · εv2v∗m

0 εv∗2v3 ε|v3|2 · · · εv3v∗m
...

...
...

. . .
...

0 εv∗2vm εv∗3vm · · · ε|vm|2

 , (18)

E2 =


0 0 0 · · · 0
0 d2,2 −εv2v∗3 · · · −εv2v∗m
0 −εv∗2v3 d2,3 · · · 0
...

...
...

. . .
...

0 −εv∗2vm 0 · · · d2,m

 , (19)

E3 =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 d3,3 −εv3v∗4 · · · −εv3v∗m
0 0 −εv∗3v4 d3,4 · · · 0
...

...
...

...
. . .

...
0 0 −εv∗3vm 0 · · · d3,m


, (20)

...

Em−1 =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 dm−1,m−1 −εvm−1v∗m
0 · · · 0 −εv∗m−1vm dm−1,m

 , (21)

Em =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 0 0
0 · · · 0 0 dm,m

 . (22)
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Here, ε < 1 is a small positive number that will be determined later. For any fixed ε, we choose di,j ’s as
follows. Firstly, note that we have the relationship

E1 + E2 + ...+ Em = I, (23)

by which one can obtain that d2,2 = 1 − ε|v2|2. Let d2,k = (ε|v2vk|)2/d2,2, thus d2,2d2,k = (ε|v2vk|)2.
After fixing E2, d3,3 can also be obtained by using

∑
iEi = I. In general, we have

di,i = 1− ε|vi|2 − d2,i − · · · − di−1,i, ∀i ≥ 3, (24)

di,k = ε2|vivk|2/di,i, ∀i ≥ 2, k ≥ i+ 1 (25)

By an induction on i, it is not difficult to see that for any fixed Bi’s, for ε→ 0, it holds that

di,i = 1− ε|vi|2 −O(ε2) = 1−O(ε) > 0, ∀i ≥ 2 (26)

and

di,k = ε2|vivk|2/di,i = O(ε2), ∀i ≥ 2,∀k ≥ i+ 1. (27)

It can be checked that E1 = ε|ψ〉〈ψ| + |1〉〈1| � 0, and every other Ei is also positive because it has
nonnegative diagonal entries and is actually diagonally dominant Hermitian for sufficiently small ε.
Besides, since the way we defined {Ei} satisfies

∑
iEi = I, {Ei} is a legal POVM measurement.

Next we calculate the gain of the Player by using {Ei} as in Lemma 2. Since 〈ψ|B1|ψ〉 = λ, we have

Tr(E1B1) = 〈1|B1|1〉+ ε〈ψ|B1|ψ〉 = ε〈ψ|B1|ψ〉 = ελ. (28)

For i = 2, ...,m, note that the only nonzero off-diagonal entries of Ei are on the i-th row and column, but
those entries in Bi are zero; this is the reason why we chose the POVM measurement {Ei}. So only the
diagonal entries of Ei and Bi contribute to Tr(ETi Bi), and the contribution is

∑m
k=i di,k(

∑
j ρ

kk
jj (aij −

akj)). Therefore,

Gain =
∑
i

Tr(EiBi) = ελ+

m∑
i=2

m∑
k=i

di,k

(∑
j

ρkkjj (aij − akj)
)

(29)

= ελ+

m∑
i=2

m∑
k=i+1

di,k

(∑
j

ρkkjj (aij − akj)
)

(because Bi(i, i) = 0) (30)

= ελ±O(ε2) (because of Eq. (27)) (31)

Here note that m and Bi are all fixed and only ε approaches to 0. So for sufficiently small ε, the gain is
strictly positive.

5 Upper bounds for the gain

In the above sections, we have shown how to determine whether a given quantum state is a QCE or not.
In this section, we consider those quantum states that are not QCE. According to the definition of QCE,
one can find a proper POVM measurement {Ei} such that some player can get a strictly positive payoff
gain by this operation. A natural question is, how much is the maximal gain? In the following theorems
we provide two simple upper bounds as first-step attempts.

Theorem 7 Suppose that the maximum eigenvalue of Bi =
[∑

j ρ
i1i2
jj (aij − ai1j)

]
i1i2

is λi. Let λ =
maxi λi, then we have

Gain ≤ mλ. (32)

Proof. Since Bi � λiI and each Ei is positive, it holds that

Tr(EiBi) ≤ Tr(Ei(λiI)) = λiTr(Ei).
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Thus,

Gain =
∑
i

Tr(EiBi) (33)

≤
∑
i

λiTr(Ei) (34)

≤ λ
∑
i

Tr(Ei) (Tr(Ei) ≥ 0) (35)

= mλ (
∑
i

Tr(Ei) = Tr(
∑
i

Ei) = m). (36)

Another bound is the following.

Theorem 8 Suppose that the eigenvalues of Bi =
[∑

j ρ
i1i2
jj (aij − ai1j)

]
i1i2

are λi1, ..., λim. Then

Gain ≤
∑

ij:λij>0

λij . (37)

Proof. Suppose the spectral decomposition of Bi is Bi =
∑
j∈[m] λij |ψij〉〈ψij |. Then

Gain =
∑
i

Tr(EiBi) (38)

=
∑
i

Tr
(
Ei
∑
j∈[m]

λij |ψij〉〈ψij |
)

(39)

≤
∑

ij:λij>0

λij〈ψij |Ei|ψij〉 (40)

≤
∑

ij:λij>0

λij (〈ψij |Ei|ψij〉 ≤ 〈ψij |I|ψij〉 = 1) (41)

The above bounds can be pretty tight. By the dual SDP, it is not hard to see that the gain is the
following value:

min tr(Y )

s.t. Y � Bi, ∀i ∈ [m]

Consider the following example:

u1 =


1 · · · 1
0 · · · 0
...

. . .
...

0 · · · 0


m×n

, ρ =


1
mn

. . .
1
mn


mn×mn

It is not hard to verify that

B1 = diag(0, 1/m, ..., 1/m), B2 = ... = Bm = diag(−1/m, 0, ..., 0).

Therefore, the gain is tr(B1) = (m − 1)/m, which matches the second bound, and is also close to the
first bound 1.

6 Concluding remarks: complexity of verification and some open problems

The paper gives a complete characterization of the fundamental concept of quantum correlated equilibria
(QCE). For states that are not QCE, we give an explicit oeration for a player perform to obtain a strictly
positive gain in payoff. From Theorem 1, it is not hard to get a polynomial-time algorithm for testing
QCE. That is, for a given game (where the k payoff functions ai : S1 × ... × Sk → R are given as
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input) and a quantum state ρ (where each entry of ρ as a density matrix is given), one only needs to
check whether, for each player t, all the matrices Bi are negative semi-definite. Each Bi is of dimension
|St| × |St|, and each entry is a summation of |S−t| numbers. Since computing the eigenvalues takes only
polynomial time, overall the complexity of deciding whether ρ is a QCE is polynomial in the input size.

Some open problems are left for future explorations.

1. In Section 4, we showed that if the condition is not satisfied for Player i, then the player can use
a POVM measurement to obtain a strictly positive gain. A natural question is whether the POVM
measurement can be replaced by a unitary operation? In general, is the maximum gain always
achieved by a unitary operation?

2. Can the condition be simplified if ρ is a pure state?
3. Can we improve the bounds in Section 5?
4. Can we have a nice characterization of ε-approximate QCE? Results in Section 5 provide sufficient

conditions for ε-QCE, where the ε is the one of the given upper bounds. But it is desirable to obtain
more nontrivial results along this line.
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