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Abstract. This paper studies the three known lower bound methods for one-way quan-
tum communication complexity, namely the Partition Tree method by Nayak, the Trace
Distance method by Aaronson, and the two-way quantum communication complexity. It
is shown that all these three methods can be exponentially weak for some total Boolean
functions. In particular, for a large class of functions generated from Erdös-Rényi random
graphs G(N, p) with p in some range of 1/poly(N), the two-way quantum communication
complexity gives linear lower bound while the other two methods only gives constant lower
bounds. This denies the possibility of using any of these known quantum lower bounds for
proving the fundamental conjecture that the classical and quantum one-way communica-
tion complexities are polynomially related. En route of the exploration, we also discovered
that the power of Nayak’s method is exactly equal to the extended equivalence query com-
plexity in learning theory.



1 Introduction

Communication complexity studies the minimum amount of communication needed to
compute a function of inputs distributed over two (or more) parties. Through more than
three decades of studies since its invention by Yao [33], it has flourished into a research
field with connections to numerous other computational settings such as circuit complexity,
streaming algorithms, data structures, decision tree complexity, VLSI design, and so on.
See [20] for a comprehensive introduction of the field, and [32] for exhibitions of connections
to more areas such as algorithmic game theory, optimization, and pseudo-randomness.

Different models were proposed and studied in the basic two-party setting, where the
two parties, usually called Alice and Bob, are given inputs x ∈ {0, 1}n and y ∈ {0, 1}m,
respectively, and they need to compute f(x, y). In the two-way model, Alice and Bob
are allowed to send messages back and forth; in the one-way model, only Alice sends
a message to Bob. The protocol (with the parties) can be deterministic, randomized and
quantum, with the latter two allowing a bounded error. The least amount of communication
needed for the worst-case input is the communication complexity in the corresponding
models. We denote by D(f), R(f) and Q(f) the deterministic, randomized and quantum
communication complexities of function f in the two way model, and D1(f), R1(f) and
Q1(f) the corresponding complexities in the one-way model.

Though much weaker than the two-way model, the one-way model has also caused much
attention for various reasons: First, the model is powerful enough to admit many effi-
cient protocols, including both cases for specific functions (such as Equality) and cases
for general functions (such as the one with cost in terms of the γ∞2 -norm [22]). Second,
the one-way communication complexity has close connections to some other areas such as
space complexity of streaming algorithms [24]. Third, proving lower bounds of the one-
way communication complexity for general functions turns out to be mathematically quite
challenging.

Lower bound methods for communication complexity are of particular interest since in
most, if not all, connections to other theoretical areas, communication complexity serves
as a lower bound of the other complexity measures under concern. In the quantum sce-
narios, lower bounds on quantum communication complexity are interesting for another
important reason. One of the most fundamental questions in the field is to pin down the
largest gap between classical and quantum communication complexities for total Boolean
functions. Despite its importance, however, the problem is notoriously hard and our knowl-
edge is very limited: the largest known gap between Q(f) and R(f) for a total function
is quadratic (achieved by, for example, Disjointness [17, 28, 7, 3, 14, 29, 30]), while the best
upper bound of R(f) in terms of Q(f) is still exponential. The situation in the one-way
model is more embarrassing: Despite a lot of efforts [1, 2, 16, 31], we have still not able to
find any super-constant separation between Q1(f) and R1(f), while the best upper bound
of gap is exponential. Actually, it was highly nontrivial to find even relations [5] or par-
tial functions [11, 18] with exponential gaps between Q1(f) and R1(f). Based on this and
various other facts such as Holevo’s bound, it is reasonable to conjecture that R1(f) and
Q1(f) are polynomially related for all total Boolean functions f .

Two approaches were previously taken to understand the relation. One is trying to sim-
ulate a quantum protocol directly by a randomized one. Unfortunately, the cost of all
classical simulations so far have parameters other than Q1(f), and those parameters can
be easily as large as n for some total functions; see the end of this section for more de-
tails of related work. The other natural approach is to firstly derive a general lower bound
Q1(f) = Ω(L(f)), and then prove a matching upper bound R1(f) = poly(L(f)). Recently
Jain, Klauck and Nayak proved that the one-way rectangle bound tightly characterizes
R1(f) [15], which raised the hope of proving the polynomial relation by establishing a
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matching quantum lower bound. Jain and Zhang tried along this way [16], but only suc-
ceeded partially1. This second approach was also taken by some other researchers before
[31], but there were always subtle gaps to the goal.
Note that for this approach to succeed for a general total function f , the tightness of
the quantum lower bound L(f) is crucial: If it is not always polynomially tight, then any
attempt on establishing a matching classical upper bound is doomed to fail. There are two
methods particularly for the quantum one-way model. One is the trace distance method for
general functions by Aaronson [1]. The other lower bound method is given by Nayak [25]
for the Random Access Code (RAC) problem, based on a simple but elegant information
theoretical argument; we will refer to this technique as the partition tree method (for the
reason that will be clear from later discussions). Besides these two methods, the two-way
quantum communication complexity Q(f) can also serve as a lower bound for Q1(f) by
definition. In this paper, we show that

Theorem 1. None of the above three known lower bound methods for Q1(f) is polynomi-
ally tight. Actually, they can all be exponentially weak.

This theorem implies that any one of the known methods does not suffice to prove the
conjecture that R1(f) = poly(Q1(f)). It can also be viewed as an partial explanation on
why the conjecture, if true, is so hard to prove. These negative results on the tightness
call for new lower bound methods for Q1(f), and we hope that the exhibited weakness of
the methods can guide us searching for new and more powerful ones, which is helping on
proving this conjecture as well as other potential applications.

Next we discuss in more details about our studies of the various lower bound methods.
First, unlike the trace distance method, the partition tree method does not have a well-
defined formula for general functions. This paper starts from cleaning up the picture of
the partition tree method, leading to a robust generalization to arbitrary total Boolean
function. The new formula also enjoys a nicer form which makes analysis of its ultimate
power much easier. As an unexpected connection, it turns out that the best lower bound
achievable by this method is exactly equal to the extended equivalence query complexity in
computational learning theory.
We then analyze the power of the three lower bound techniques. Various relations between
these techniques are studied, among which the advantage of Q(f) over the other two
methods is particularly interesting. Presumably Q(f) should not be a good lower bound for
Q1(f) which in general can be much larger; for example, for Index function Q(f) ≤ log2 n
but Q1(f) = 1. However, it turns out that for most functions induced by a random graph
G(N, p) for a large range of p = 1/poly(N), both the partition tree method and the trace
distance methods can only give a constant lower bound for Q1(f), while we can show that
Q(f) = Ω(n) by the generalized discrepancy method [22].

More related work On the relation of R1(f) and Q1(f), if parameters other than Q1(f)
are allowed, then nontrivial classical upper bounds are known: Nayak’s Ω(n) lower bounds
on RAC, Klauck’s observation that Nayak’s result actually shows Q1(f) ≥ V C(f) (the
VC-dimension of f) [19], and Sauer’s lemma that D1(f) = O(mV C(f)) together imply
the upper bound D1(f) = O(mQ1(f)) for all total functions f . Aaronson later generalized
this to partial functions D1(f) = O(mQ1(f) logQ1(f)) [1] and R1(f) = O(mQ1(f)) [2].
Jain and Zhang [16] improved the last bound to R1(f) = O((Iµ(X;Y )+1)V C(f)) for total
functions where Iµ(X;Y ) is the mutual information of the correlated inputs (X,Y ) under
a hard distribution µ.

1 Technically, we proved that the distributional quantum one-way communication complexity is lowered
bounded by the distributional rectangle bound for all product distributions.
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There are quite a few results on separations of classical and quantum communication
complexities for total functions in the so-called SMP model [6] and for partial functions or
relations in various other models [7, 27, 12, 10].

2 Preliminaries

Suppose Alice’s input set is X with N = 2n and Bob’s input set is Y with size M = 2m.
We usually use x to denote Alice’s input and y to denote Bob’s input. The set of inputs
{(x, y) : f(x, y) = b} is called b-inputs.
For a graph G = (V,E), the function fG : V × V → {0, 1} is defined as fG(x, y) = 1
iff (x, y) ∈ E. We assume that f(x, x) = 0. For a vertex v ∈ V , its neighbor set is
denoted by N(v). An N -node random graph in the Erdös-Rényi model G(N, p) is obtained
by connecting each pair of vertices independently with probability p. For a graph G, its
adjacency matrix is AG. For a matrix A, let σ1(A), ..., σr(A) be the singular values of A
in the decreasing order, where r = rank(A).

For general background of quantum computing, we refer to the textbook [26]. The following
Holevo’s bound is a fundamental result about the accessible information of a quantum state.

Theorem 2 (Holevo, [13]). Suppose Alice prepares a state ρX where X = 1, ..., n with
probability p1, ..., pn, and Bob performs a POVM measurement {E1, ..., En} on the state
with outcome Y . Then

I(X;Y ) ≤ S

(∑
x

pxρx

)
−
∑
x

pxS(ρx) (1)

The following Fano’s inequality relating the “error” of two random variables to their mutual
information can be found in textbooks such as [9].

Lemma 1 (Fano’s inequality). Let X and Y be two random variable taking values in

S. Let ε
def
= Pr[X 6= Y ], then

H(ε) + ε log(|S| − 1) ≥ H(X|Y ). (2)

The trace distance method was introduced by Aaronson [1] as a general lower bound for
Q1(f).

Theorem 3 (Aaronson, [1]). Let f : {0, 1}n×{0, 1}m → {0, 1} be a total Boolean func-
tion, and µ is a probability distribution on the 1-input set {(x, y) : f(x, y) = 1}. Let Dk be
the distribution over ({0, 1}n)k formed by first choosing y ∈ µ and then choosing k samples
independently from the conditional distribution µy. Suppose that Prx←µ, y←µ[f(x, y) =
0] = Ω(1), then

Q1(f) = Ω(log
1

‖D2 −D2
1‖

). (3)

Here “x← µ, y ← µ” is to draw x and y independently from the two marginal distributions
of µ.

Definition 1. The trace distance bound for Q1(f) is TD(f) = maxµ log2
1

‖D2−D2
1‖

where

the maximum is taken over all probability distributions µ on the 1-inputs.

Linial and Shraibman introduced the following lower bound for Q(f) based on the factor-
ization norm. For a matrix A, define γ2(A) = minA=BC ‖B‖2→∞‖C‖1→2 where for vector

norms ‖ · ‖X and ‖ · ‖Y , the operator norm ‖A‖X→Y
def
= max‖x‖X=1 ‖Ax‖Y . For a sign

matrix A and α ≥ 1, let γα2 (A) = minB:1≤aijbij≤α γ2(B).
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Theorem 4 (Linial and Shraibman, [22]). Qε(f) ≥ log2 γ
1/(1−2ε)
2 (f)−Oε(1).

The bound is also known as the generalized discrepancy method. The bound actually holds
even for Q∗(f), the quantum communication complexity with entanglement shared by Alice
and Bob, is lower bounded by the above quantity. Here we are mainly concerned with the
case without entanglement because the no-separation conjecture becomes trivial (due to
quantum teleportation) if we compare Q1,∗(f) and R1,∗(f).

Definition 2. The ε-factorization norm bound for Qε(f) is FNε(f) = log2 γ
1/(1−2ε)
2 (f),

and the factorization norm bound for Q∗(f) is FN(f) = FN1/3(f).

3 The partition tree method

The partition tree bound is defined as follows. Consider a binary partition tree T of X ,
where each node v = v1...vi (i is the depth of v) is associated with an input yv of Bob.
Let X be a random variable according to the distribution p over X . This tree induced
a subset Xv ⊆ X for each node v in the following inductive way: the root corresponds
to X , and suppose the set Xv is defined then the two subsets Xv0 and Xv1 for its two
children v0 and v1 is defined by Xvb = {x ∈ Xv : f(x, yv) = b}. Define a sequence
of random variables V1, ..., Vdepth(T ) by Pr[Vi+1 = b|V1...Vi] = p(XV1...Vib)/p(XV1...Vi).

For a node v = v1...vi, define p(v)
def
= p(Xv) and pv(b)

def
= p(Xvb|Xv) for b ∈ {0, 1} and

pv(min)
def
= min{pv(0), pv(1)}.

Definition 3. The partition tree bound for Q1(f) is PT(f) = maxT ,p
∑
v∈T p(v)pv(min).

It is not quite immediate to generalize Nayak’s argument (for RAC) to this formula as a
lower bound of Q1(f). Please see Appendix for detailed explanations.
To study PT(f), first observe that if one can find a balanced binary subtree of height h,
then PT(f) ≥ h(1 − H(ε)) since one can put half-half probabilities on both branches of
each node of the subtree. (Note that this is at least V C(f) but could be much larger than
it, as shown in the Greater Than function in Appendix B.) The following theorem says that
this is actually also the best lower bound the partition tree method can provide.

Theorem 5. There exists a subset S ⊆ X and a partition tree T ∗ for f on (S,Y) s.t.

PT(f) = the length of the shortest path of T ∗. (4)

Proof. Fix a maximizer (T , p) in the definition of PT(f). Observe that the distribution
p conditioned on any subtree is also the optimal for the subtree, thus the overall best p
can be computed inductively. Suppose the best p has been assigned to both left and right
subtrees, and the resulting lower bounds are l(T0) and l(T1) respectively. Then the best
assignment of p at the root is easy to compute as follows. Suppose it gives pb to subtree
b, then the overall lower bound is max(p0,p1): p0+p1=1 min{p0, p1} + p0l(T0) + p1l(T1). By
case analysis (whether p0 ≤ p1, and then whether l(T1) − l(T0) ≥ ±1), it is easy to get
that the overall lower bound T is

l(T ) =


l(T0) l(T1)− l(T0) ≤ −1 (maximizer : p1 = 0)
1
2

+ 1
2
(l(T0) + l(T1)) −1 ≤ l(T1)− l(T0) ≤ 1 (maximizer : p0 = p1 = 1/2)

l(T1) l(T1)− l(T0) ≥ 1 (maximizer : p0 = 0)

(5)
This implies that with loss of generality we can apply the partition tree method only on a
sub-function, obtained by deleting some rows. And we can always use half-half probabilities
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for the two branches. In this way, the second case in the above formula for l(T ) is always
taken in the tree (for internal nodes). Now we start at the root and do the following
argument along a shortest path P from the root to a leaf. Suppose the length of the path
is d; namely there are d edges on the path. (Without loss of generality, assume that the
leaf is in T0.) We have

l(T ) = (l(T0) + l(T1) + 1)/2 ≤ l(T0) + 1 (6)

because |l(T0)− l(T1)| ≤ 1. Continue the argument until we reach the leaf, we get l(T ) ≤
l(v) + d = d, as desired.

Note that the standard decision tree complexity is to minimize the the length of the longest
path, but here the best PT bound is to maximize the length of the shortest path.
It turns out to have an interesting connection to the extended equivalence query complexity
in learning theory, which we will define using the language of communication complexity
as follows. Alice has an input x and Bob wants to exactly learn x by making queries to
Alice, who then responses with an answer. Different query models were studied in learning
theory.
1. membership query : Bob’s query is a column index y, and Alice’s response is f(x, y);
2. equivalence query : Bob’s query is a string a ∈ {0, 1}M as a guess of x. If a = x, then

Alice tells Bob so and the game is over. Otherwise, Alice not only tells Bob that his
guess is wrong, but also provides a column y which f(x, y) 6= ay.
If Bob is restricted to use strings a ∈ {0, 1}M appearing as rows in the matrix f as
queries, then this is called the equivalence query ; if Bob is allowed to use any string
a ∈ {0, 1}M as an query, it is called the extended equivalence query.

The minimal number of a particular type of queries Bob needs to make for the worst-case
input x is called the query complexity of that type. Denote by MQ(f), EQ(f) and XEQ(f)
the membership query complexity, the equivalence query complexity and the extended
equivalence query complexity of the function f , respectively. The following theorem gives
a characterization of XEQ(f) by relating it to membership query computation.

Theorem 6 (Littlestone, [23]).

XEQ(f) = max
T

min
x
d(x, T ), (7)

where T is a membership query computation tree and d(x, T ) is the depth of x in T .

A membership query computation tree is a decision tree with membership queries in the
natural way; see the survey [4] for a formal definition (as well as an extensive review of
different types of queries in learning theory). Its important relation to our work is that
the membership query computation tree is exactly our partition tree, and thus the above
theorem and Theorem 5 combined give the following full characterization of PT.

Theorem 7. PT(f) = XEQ(f).

4 Comparisons between the powers

In this section we will study the power of the lower bound methods, the PT bound part of
which uses the limitation result established in the previous section. We will prove Theorem
1 by a circle of comparison results in the order of PT >> Q >> TD >> PT. The first
separation is easily exhibited by Index function. Next we will show that though as a lower
bound method merely for the two-way complexity, the factorization norm method can be
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much stronger than the other two methods for the one-way complexity. In fact, for almost
all functions f in some range (the precise meaning of which will be clear shortly) the
factorization norm gives a linear lower bound for Q(f) while the other two cannot even
prove a super constant lower bound for Q1(f). The advantage of FN over TD is given next,
and that of FN over PT is given in Section 4.3.

4.1 On the advantage of the factorization norm method over the trace
distance method

In this section we will show that for a random Erdös-Rényi graph G(N, p) for some range
of p, its adjacency matrix as a function f has FN(f) = Ω(n) but TD(f) = O(1).
Here we consider random graph G(N, p) since the corresponding limitations for TD and
PT are easier to show. Let A be the adjacency matrix of G = (V,E) and denote by di the
degree of vertex i. Let P = [pij ] with pij = 1/di, D = diag(d1, ..., dN ), and the normalized

Laplacian is L = I − D−1/2AD−1/2. Consider L̄ def
= I − L: Since it is symmetric, it

has a spectral decomposition L̄ =
∑N
i=1 λi|ηi〉〈ηi|. A standard fact is that λ1 = 1 and

|η1〉 = (
√
d1/(2|E|), ...,

√
dN/(2|E|)). It is known, for example from a general result in [8],

that

Lemma 2 (Chung, Lu, Vu, [8]). For p = ω( log4 N
N

), it holds with probability 1 − o(1)
that

max
i=2,...,n

|λi| ≤ O(1/
√
pN) (8)

This implies that the factorization norm method gives a good lower bound for most such
random graphs.

Theorem 8. If ω(log4N/N) ≤ p ≤ 1−Ω(1), then an N-node random graph G(N, p) has

FN(fG)−O(1) ≥ 1

2
log2(pN)−O(1) (9)

with probability 1− o(1).

Proof. Let S = 2A− J be the sign matrix of A, and let L̄−1 = L̄ − λ1|η1〉〈η1|. It is known
that γ∗2 (A) ≤ Nσ1(A) for every N ×N real matrix A (see [21]), thus

γ∗2 (L̄−1) ≤ Nσ1(L̄−1) = Nσ2(L̄) ≤ O(N/
√
pN) (10)

with probability 1− o(1). On the other hand, we have

γ∞2 (S) ≥ 〈S, L̄−1〉
γ∗2 (L̄−1)

≥ Ω
(√pN

N

)〈
2A− J,D−1/2AD−1/2 − |η1〉〈η1|

〉
(11)

It is not hard to verify that the (i, j)-entry of D−1/2AD−1/2 is 1/
√
didj if (i, j) ∈ E and

0 otherwise. Thus the above inner product is equal to∑
(i,j)∈E

(
1√
didj

−
√
didj

|E|

)
+

(
∑
i

√
di)

2

2|E| (12)

By the assumption, p < 1− c for some small constant c. By Chernoff bound, one can see

that Pr[∃di /∈ ((1− δ)pN, (1 + δ)pN)] ≤ Ne−δ
2pN/2 = o(1) for the small constant δ = c/4

and p = ω(logN/N). Putting this concentration bound into the above quantity, we have

γ∞2 (S) ≥
√
pN

N

(N(1− δ)pN
(1 + δ)pN

− 2(1 + δ)pN +
N2(1− δ)pN
N(1 + δ)pN

)
(13)

=

√
pN

N
2N
(1− δ

1 + δ
− p(1 + δ)

)
= Ω(

√
pN) (14)
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for p < 1− c and δ = c/4. Thus

FN(S) = log2 γ
1/(1−2ε)
2 (S) ≥ log2 γ

∞
2 (S) ≥ 1

2
log(pN)−O(1). (15)

Next we show that the trace distance method can only give a constant lower bound for
random graph functions.

Theorem 9. For p = o(N−6/7), a random graph G(N, p) has TD(fG) = O(1) with prob-
ability 1− o(1).

Here we are not aiming to maximize the range of p, though we believe that the result still
holds for larger p. The main goal is to show the existence of a range p = 1/poly(N).
We will first show in the following Lemma 4 that with probability 1−o(1), a random graph
G(N, p) has some good properties. The proof uses Lemma 3 which is on the relation of the
number of edges and that of vertices with some connection requirement. After these, we
will show that for graphs with those properties, the TD bound is very low.

Lemma 3. For any constant δ > 0, there are constants c and d s.t. for all distinct vertices
Vx = {x1, ..., xc} and Vz = {z1, ..., zd}, if
1. any xi and zk share at least one common neighbor, and
2. there is no vertex y connecting to all xi’s and zk’s.

then there exists Vy = {y1, ..., ye}, s.t. any pair (xi, zk) of vertices are connected via yj for
some j ∈ [e], and

g

c+ d+ e
≥ 4

3
− δ (16)

where g is the number of edges between Vx ∪ Vz and Vy.

Proof. For each (xi, zk), there is at least one y connecting them. Collect all these y’s to
form the set Vy. (For pairs (xi, zk) with more than one connectors y, we pick an arbitrary
one.) Thus each y has degree at least 2, and therefore

g/(c+ d+ e) ≥ 2e/(c+ d+ e). (17)

Now we will give another lower bound

g/(c+ d+ e) ≥ 1 + (d− 2)/(e+ 6). (18)

Combining the two inequalities gives the desired result.

V

V

Vx

y

z

1e 2e

Fig. 1. Illustration for the proof of Lemma 3

To show the second bound, fix a setting with g/(e + 6) minimized. See Figure 1 (where
every N(zk)∩ Vy is the same set simply for convenience of illustration). The way we chose
Vy guarantees that N(Vy) contains the whole Vx. Pick a subset S ⊆ Vy with the minimum
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size s.t. the N(S) ⊇ Vx. By definition, the number of edges from S to Vx is at least |Vx| = c.
Define e1 = |S| and e2 = e − |S|; Condition 2 implies e1 ≥ 2. Note that for each zk, its
neighbor set in Vy, i.e. N(zk)∩ Vy, also connects to all Vx, thus the number of edges from
zk to Vy is |N(xi) ∩ Vy| ≥ e1. Also note that each node in Vy − S has at least one edge to
Vx. Thus the total number of edges in this small graph Vx ∪ Vy ∪ Vz is at least

de1 + c+ e2 = (d− 1)e1 + c+ e ≥ 2(d− 1) + c+ e = 1 + (d− 2)/(e+ 6), (19)

as desired.

Lemma 4. For p = o(N−6/7), a random graph G = G(N, p) has all the following proper-
ties with probability 1− o(1).

1. For any vertex x with (at least) three neighbors y1, y2, y3, at least one of the two pairs
(y1, y2) and (y2, y3) only has x as their common neighbor.

2. There are universal constants c and d s.t. for any c vertices x1, ..., xc that do not share
a common neighbor, there are at most d − 1 vertices z1, ..., zd−1 which have distance
exactly 2 to all xi’s.

3. The graph does not contain a K3,2, the (3, 2)-complete bipartite graph, as a subgraph.

Proof. We will show that each condition is satisfied with probability 1− o(1) for a random
graph G(N, p) with the setting of p as in the stated range, thus the probability that all are
satisfied is also 1− o(1).

1. Consider the event that the statement is false, i.e. both pairs have a common neighbor
other than x. If these two other common neighbors are actually the same one, there
are 5 vertices and 6 edges needed, so this event happens with probability at most
N5p6; if these two common neighbors are not the same, then there are 6 vertices and 7
edges and thus the probability of this happening is at most N6p7. For the probability
p chosen in the Lemma, both probabilities are o(1).

2. By Lemma 3, we know that the intersection of the cover sets of c vertices is of size d
with probability at most Nc+d+epg = N−Ω(1) = o(1).

3. A random graph contains a K3,2 with probability at most N5p6 = N−Ω(1) = o(1).

Lemma 5. Suppose there is a distribution µ on 1-inputs with Prx←µ,y←µ[f(x, y) = 0] =
Ω(1) satisfied. If there is a submatrix A s.t. µ(A) = 1 − o(1), and A as a function has
Q1,pub(A) = q, then ‖D2 − D2

1‖1 = 2Ω(−q). In particular, ‖D2 − D2
1‖1 = Ω(1) for the

following two special cases

1. there is a subset S ⊆ X s.t. |S| = O(1) and µ(S) = 1− o(1),
2. there is a submatrix A s.t. each column is monochromatic except for at most O(1)

entries, and µ(A) = 1− o(1).

Proof. The only possibly nontrivial statement is the last sentence, which we need to show
that Q1,pub(f) = O(1). But this is easy because, for example, by first flipping 0’s and 1’s
in some columns we can assume that each column has at most a constant number of 1’s.
Then the function becomes the OR of a constant number of functions each of which is
essentially an Equality function with some relabeling of rows and columns.

Now we are ready to prove the theorem.

Proof. (of Theorem 9) We take the graphs with all good properties in Lemma 4. It is
enough to show that any distribution µ on the edge set E with the following condition
satisfied

Prx←µ, y←µ[f(x, y) = 0] = Ω(1), (20)
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has that ‖D2−D2
1‖1 = Ω(1). Assuming that it is not true, i.e. ‖D2−D2

1‖1 = o(1), we will
first show that this assumption forces µ to put most mass on just one star-shape cluster
of vertices, then show that in this case, it is also unavoidable to have ‖D2 −D2

1‖1 = Ω(1)
finally.
For two vertices x and x′, we say x covers x′, denoted by x ∼ x′, if they share a common
neighbor y. Otherwise we write x � x′. For a vertex itself, we assume x ∼ x as long as x
has a non-zero degree. Define the set Cover(x) = {x′ : x ∼ x′}. By definition,

‖D2 −D2
1‖1 =

∑
x,x′

∣∣∣∣∣∑
y

µ(y)µ(x|y)µ(x′|y)− µ(x)µ(x′)

∣∣∣∣∣ (21)

=
∑

x,x′: x∼x′

∣∣∣∣∣∑
y

µ(y)µ(x|y)µ(x′|y)− µ(x)µ(x′)

∣∣∣∣∣+
∑

x,x′: x�x′
µ(x)µ(x′) (22)

Thus ∑
x

µ(x)Prx′←µ[x � x′] =
∑

x,x′: x�x′
µ(x)µ(x′) ≤ ‖D2 −D2

1‖1 = o(1) (23)

This means that an average x covers most other vertices x′ (weighted under µ). In par-
ticular, there exists one x0 s.t. Prx′←µ[x′ � x0] = o(1). Suppose its neighbor set is
N(x0) = {y1, ..., yt}, and define clusters Si = N(yi) − {x0}, and put S = ∪iSi. Also
note that Cover(x0) is nothing but S ∪ {x0}, thus µ(S ∪ {x0}) = 1 − o(1). Note that by
Lemma 5, we can assume that µ(x0) = 1 − Ω(1) (otherwise the desired conclusion has
already been proved). Denote by µ¬x0 the distribution µ(x) conditioned on x 6= x0.

Claim 1 At least one of the following two statements is true:

1. There are two disjoint subsets G1 and G2 of S s.t. µ¬x0(Gb) = Ω(1) for both b = 1, 2,
and any two vertices x1 ∈ G1 and x2 ∈ G2 belong to two different clusters.

2. There is a single cluster Si with µ¬x0(Si) = 1− o(1).

Proof. It is not hard to verify that the first property in Lemma 4 actually guarantees that
any cluster Si intersects at most one other cluster. We say two clusters form an overlapping
pair (of clusters) if they overlap. A block is either an overlapping pair or an isolated cluster
(i.e. one that does not overlap with any other cluster). Find a block B with the largest
mass under µ¬x0 . Three cases are discussed in order.
If µ¬x0(B) = o(1), then all blocks have o(1) mass (under µ¬x0). Since all blocks collectively
contain µ¬x0(S) ≥ µ(S) = µ(S∪{x0})−µ(x0) = 1−o(1)−(1−Ω(1)) = Ω(1), we can easily
partition S into two disjoint groups G1 ]G2 where Gb = ∪i∈TbSi (b = 1, 2, T1 ] T2 = [t])
s.t. µ¬x0(G1) = µ¬x0(S)/2− o(1) = Ω(1) and µ¬x0(G2) = µ¬x0(S)/2 + o(1) = Ω(1).
If µ¬x0(B) ∈ [Ω(1), 1−Ω(1)], then let G1 = B and G2 contain the rest blocks.
Finally, for the case µ¬x0(B) = 1− o(1), if B is a single cluster, then the second statement
of the claim is satisfied. If B is an overlapping pair, say (S1, S2), then either it holds
that one of them has µ¬x0(Sb) = 1 − o(1), in which case the second statement holds, or
µ¬x0(S1 − S2) = Ω(1) and so is µ¬x0(S2 − S1), in which case putting G1 = S1 − S2 and
G2 = S2 − S1 makes the first statement to hold.

We continue the proof of Theorem 9. If the second statement of the above claim is true, it
means that there is a single yi ∈ N(x0) s.t. µ(N(yi)) = 1−o(1). (Note that N(yi) includes
a cluster and x0 itself.) By the third property of Lemma 4, each vertex y other than yi
only connects to at most two vertices in N(yi) (to avoid a (3, 2)-complete bipartite graph).
Thus the submatrix on N(yi)×Y has 1− o(1) µ-mass but has all 1’s in column yi and at
most two 1’s in all other columns. By Lemma 5, we see that ‖D2 −D2

1‖1 = Ω(1).
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Therefore, we can assume that the first statement of the claim is the case, so

Ex←µ¬x0

[
Prx′←µ[x′ � x]

]
≥
∑
b=1,2

µ¬x0(Gb)Ex←µ¬x0

[
Prx′←µ[x′ � x]

∣∣ x ∈ Gb] (24)

On the other hand, we have

Ex←µ¬x0

[
Prx′←µ[x′ � x]

]
=

∑
x 6=x0 µ(x)Prx′←µ[x′ � x]

1− µ(x0)
=

o(1)

Ω(1)
= o(1), (25)

Since both µ¬x0(Gb) = Ω(1), we have Ex←µ¬x0

[
Prx′←µ[x′ � x]

∣∣ x ∈ Gb] = o(1) for both
b = 1, 2. Therefore, we can find two points xb ∈ Gb both with Prx′←µ[x′ � xb] = o(1). This
means that for both b = 1, 2, most of mass of µ is put on Cover(xb). Combined with the
same fact for x0, we see that actually µ(∩i=0,1,2Cover(xi)) = 1− o(1). But note that both
x1 and x2 are covered by x0 since they are chosen from S, and they are not in the same
cluster as guaranteed by the first statement of the above claim. Consequently, x0, x1, x2
do not share a common neighbor.
Now define set T = {x0, x1, x2}. As long as |T | is constant, we can assume by Lemma 5
that µ(T ) = 1 − Ω(1). Then similar to Eq (25), it follows that Ex←µ[Prx′←µ[x′ � x]|x /∈
T ] = o(1). Thus there exists another point x in S − T s.t. Prx′←µ[x′ � x] = o(1). Add
this point to T and continue this process until |T | = c. Each point x ∈ T has the property
that µ(Cover(x)) = 1 − o(1), and consequently µ(∩x∈TCover(x)) = 1 − o(1) by noting
that |T | = c is a constant. Also recall that the vertices in T do not share a common
neighbor since actually even x0, x1, x2 do not. By the second property of Lemma 4, the
intersection of their cover sets has only constant size, and thus using Lemma 5 we get
‖D2 −D2

1‖1 = Ω(1). This completes the proof.

4.2 On the advantage of the Trace Distance method over the partition
tree method

We observed that the partition tree method can be much better than the factorization
norm method, and have shown that the factorization norm method can be much better
than the trace distance method. To finish the circle, we now show that the trace distance
method can be much better than the partition tree method. Different than Theorem 10,
this time we can give an explicit function to show the separation.
The Coset function Coset(G) is defined as follows. For a fixed group G, Alice is given a
coset x as her input and Bob is given an element y ∈ G as his input; the question is whether
y ∈ x. Aaronson [1] studied the function for the group Z2

p (where p is a prime number)
and proved that Q1(Coset(Z2

p)) = Θ(log p); that is, Alice asymptotically needs to send the
whole input to Bob. Here we show that the partition tree method can only give a very
small constant lower bound for this function.

Proposition 1. PT(Coset(Z2
p)) = 2.

Proof. We denote Alice’s input by (a, b) and Bob’s input by (x, y). The function is to see
whether y = ax+ b. The basic reason is that the tree for any sub-function can never have
a path with 3 1-branches, thus the shortest path is of length at most 2. Actually, for any
Bob’s input (x, y), we want to argue that there is at most one Alice’s input (a, b) after two
1-branches. Indeed, suppose the two 1-branches happens at two pivoting columns (x1, y1)
and (x2, y2). Then any (a, b) has to satisfy that

ax1 + b = y1, ax2 + b = y2 (26)
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If x1 = x2, then by the above equalities it holds that y1 = y2, which means that the
two pivoting columns are exactly the same. But this is impossible in a partition tree
since repeatedly picking the same column does not give any new partition. Thus x1 6= x2,
implying that the above system of equations has one unique solution for (a, b).

Comment We can also consider the general dimension case Coset(Zdp ). Aaronson’s proof
can be easily adapted to show a lower bound of Q1(f) = Ω(d log p), and it is not hard to see
that PT(f) = Ω(d). Therefore the above separation between PT(f) and Q1(f) deteriorates
when the dimension goes higher.

4.3 Other discussions of the power comparisons

The main goal of this paper is to study the ultimate power of the known lower bound
methods for Q1(f), and in particular their tightness because of the no-separation conjecture
reason mentioned in Section 1. Though it is not our goal to thoroughly study all the six
relations between the three methods, it is good to know for more insights. This section so
far showed three of them as a circle, leaving the three other relations to discuss. First, it
turns out that PT is also weak for random graph functions.

Theorem 10. For any α = Ω(1), if p = N−α, then an N-node random graph G(N, p)
has PT(fG) = O(1) with probability 1− o(1).

Proof. Suppose there exists a partition tree of height h. Then there are 2h+1 − 1 internal
nodes which are distinct and labeled by column indexes y, and 2h+1 leaves in the tree
which are distinct and labeled by row indexes x. We can use a string s(y) to encode y,
with the length of s(y) equal to the depth of y; similarly for (h + 1)-bit strings s(x). By
the definition of partition tree, we know that there are exactly 2h edges from the nodes y
in each layer of the tree to the leaves x. For any fixed labeled x’s and y’s, this happens in

G(N, p) with probability ph2
h

(1− p)h2
h

. Thus

Pr[∃2h+1 labeled x’s and (2h+1 − 1) labeled y’s to form a partition tree] (27)

≤

(
N

2h+1

)2

(p(1− p))h2
h

≤ N2h+2

ph2
h

= (N4ph)2
h

(28)

If p ≤ N−α for some constant α, then letting h = 4/α makes the above bound no more

than N−2h = o(1). In other words, with probability 1− o(1), there is no partition tree of
depth h = 4/α = O(1).

For PT over TD, we believe that actually TD(Index) = O(logn), though we can only show
it for the symmetric distribution µ, i.e. µ(x, y) = µ(x′, y′) if |x| = |x′|.

Theorem 11. For any distribution p on {0, 1, ..., n}, let µp(x, y) = p(|x|) for all (x, y) with
xy = 1. Then the trace distance bound under µp for the Index function is only O(logn).

Proof. We assume that n is a prime and will prove that for any p over {0, ..., n}, the induced
µ has ‖D2

1 − D2‖ = 1/poly(n) and thus the TD bound under µ is Ω(logn). If n is not a
prime, we find a prime n′ ∈ [n, 2n] and apply the result on n′ by noting that any distribution
p over {0, ..., n} is also a distribution over {0, ..., n′} (with pn+1 = ... = pn′ = 0).
Let us first examine the condition of Prx←µ,y←µ[f(x, y) = 0] = Ω(1).∑

(x,y):xy=0

µ(x)µ(y) =
∑
k

pk
n− k
n

= 1−
∑
k kpk

n
(29)
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where the first inequality is because of the symmetry over columns. So by the condition,
we have

∑
k kpk = cn for some constant c < 1.

In what follows we may use x to also indicate the set {i : xi = 1}.

‖D2
1 −D2‖ =

∑
x,x′

∣∣∣∣∣ ∑
i∈x∩x′

µ(i)Pr[x|i]Pr[x′|i]− µ(x)µ(x′)

∣∣∣∣∣ (30)

=
∑
x,x′

∣∣∣∣∣ ∑
i∈x∩x′

1

n

q|x|
1/n

q|x′|
1/n

−
∑
i∈x

q|x|
∑
i∈x′

q|x′|

∣∣∣∣∣ (31)

=
∑
x,x′

q|x|q|x′|
∣∣n|x ∩ x′| − |x||x′|∣∣ (32)

=
∑
kl

pkpl
kl

E|x|=k,|x′|=l
[∣∣n|x ∩ x′| − kl∣∣] (33)

where in the expectation x is uniformly at random over all strings with weight k and simi-
larly for x′. Now the expectation is at least Pr|x|=k,|x′|=l

[
n|x∩ x′| 6= kl

]
. Since we assume

that n is a prime, the event n|x ∩ x′| = kl happens only if (k, l) ∈ {(1, n), (n, 1), (n, n)}.
Thus

‖D2
1 −D2‖ ≥

∑
kl

pkpl
kl

(1−Pr|x|=k,|x′|=l[n|x ∩ x′| = kl]) (34)

≥ 1

n2
(1− (p1pn + pnp1 + p2n)) =

1

n2
(1− (p1 + pn)2 + p21) (35)

If p1 + pn = 1− o(1), then the condition
∑
k kpk ≤ cn implies pn ≤ c, and thus

p1 ≥ 1− o(1)− c and 1− (p1 + pn)2 + p21 ≥ p21 = Ω(1) (36)

If p1 + pn is less than a constant d < 1, then

1− (p1 + pn)2 + p21 ≥ 1− d2 = Ω(1) (37)

as well. Thus in any case, we have ‖D2
1 −D2‖ = Ω(1/n2) and thus the TD bound at this

distribution is O(logn).

For general distributions, we can first use symmetrization to get a symmetric distribu-
tion. Then TD(Index) = O(logn) as long as the function ‖D2 − D2

1‖ is convex over all
distributions µ; unfortunately we do not know whether the convexity is true.
Finally, for TD over FN, we do not know much about the advantage of yet.

5 Concluding remarks and open questions

The tightness results in this paper call for new lower bound methods for Q1(f). With the
light shed by comparisons in Section 4, one (vague) approach is trying to somehow combine
the advantages of the methods to get a more powerful one.
The factorization norm method appears pretty strong for lower bounding the two-way
quantum communication complexity. Can we modify it to obtain a “useful” lower bound
for Q1(f), in the sense of either showing strong lower bounds for specific questions, or
establishing connections to other measures for general functions?
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A Clarifying the picture of the partition tree method

At a high level, the method works in the following way. One first defines a random variable
X according to a distribution p over Alice’s input set X , and then corresponding to different
inputs y, Bob can perform different measurements to distinguish between two possibilities
of Alice’s random input. By Holevo’s bound and the correctness of the protocol, each

measurement provides some mutual information for X: When ε < p
def
= min{p0, p1}, an

ε-error protocol can distinguish two mixed states p0ρ0 and p1ρ1, where ρb corresponds to
some inputs x’s with f(x, y) = b. By Fano’s inequality, this distinguisher gives aH(p)−H(ε)
mutual information as the lower bound we gain at this step. This argument works perfectly
well for the RAC problem, where it always has p0 = p1 = 1/2. When we try to apply the
method to general functions, an immediate question is: What if ε ≥ p? We can first use
amplification to drop the error probability to some ε∗ with a loss of factor of Θ(log 1/ε∗),
and give up those nodes with p < ε. But it is not clear at all what ε∗ should be used
and what the resulting bound is for a general function. In this paper, we observe that the
necessity of ε < p is actually a conceptual pitfall — we can obtain mutual information of an
amount of Θ(p) for arbitrary ε < 1/2 and p. Using this observation, we give a unified lower
bound formula which is better than the old one as above. The nice form of the formula
also makes analysis of its limitation easy.
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A.1 Review of the method

The partition tree method has its origin from Nayak’s lower bound for RAC [25], or equiv-
alently, the Index function defined as follows. Suppose x ∈ {0, 1}n, y ∈ {0, 1}dlog2 ne,
then Index(x, y) = xy, that is, the y-th bit of x. For simplicity, assume n is a power
of 2. Nayak proved that Q1

ε(Index) ≥ (1 − H(ε))n, as briefly reviewed below. Suppose
on input x, Alice sends the mixed state ρx. Consider ρ = 2−n

∑
x ρx, and let ρb1...bl =

2−n+l
∑
x:x1=b1, ..., xl=bl

ρx, then

S(ρ) = S
(1

2
ρ0+

1

2
ρ1
)
≥ I(b1, T )+

1

2
S(ρ0)+

1

2
S(ρ1) ≥ (1−H(ε))+

1

2
S(ρ0)+

1

2
S(ρ1) (38)

Here T is the output of the protocol when Bob’s input is y = 1 and Alice’s input is chosen
uniformly at random. Use this output as an ε-error distinguisher for ( 1

2
ρ0,

1
2
ρ1) and apply

Holevo’s bound to get the first inequality. The second inequality is due to Fano’s inequality.
Keep applying this argument for each ρb1...bi by using y = i at level i all the way to the
end of i = n and we will get the lower bound n(1−H(ε)).
It is not hard to observe that in the above argument, though for each fixed i, Bob uses the
same input y = i for different states ρb1...bi , this is not necessary in general. Indeed we can
define a binary partition tree T of X , where each node v = v1...vi (i is the depth of v) is as-
sociated with an input yv of Bob. Let X be a random variable according to the distribution
p over X . This tree induced a subset Xv ⊆ X for each node v in the following way: the root
corresponds to X , and suppose the set Xv is defined then the two subsets Xv0 and Xv1 for
its two children v0 and v1 is defined by Xvb = {x ∈ Xv : f(x, yv) = b}. Define a sequence of
random variables V1, ..., Vdepth(T ) by Pr[Vi+1 = b|V1...Vi] = p(XV1...Vib)/p(XV1...Vi). Then
Nayak’s argument gives a lower bound of∑

i

I(Vi+1; f̃(x, yV1...Vi)|V1...Vi). (39)

where f̃(x, y) is the output of the protocol on input (x, y). We recommend readers to read
Appendix B to see a lower bound of Ω(n) for the Greater Than (GT) function as a very
illustrative example to show the tree structure (as oppose to the line structure in the Index
function case).

For a node v = v1...vi, define p(v)
def
= p(Xv) and pv(b)

def
= p(Xvb|Xv) for b ∈ {0, 1} and

pv(min)
def
= min{pv(0), pv(1)}. Then if pv(min) ≥ ε, we have I(Vi+1; f̃(x, yv1...vi)|V1 =

v1, ..., Vi = vi) ≥ H(pv(min)) − H(ε) by Fano’s inequality. Now the question is: what if
pv(min) < ε? Two immediate approaches for this issue are: First, give up those vertex
v with pv(min) < ε and hope the gained mutual information on the rest nodes are large
enough to give a good lower bound; second, use error reduction to drop the error probability
to some ε∗ s.t. ε∗ < pv(min) by repeating the protocol Θ(log 1/ε∗) times, which causes a
Θ(log 1/ε∗) factor of loss. Combining these two approaches, one gets a lower bound of

Q1(f) = Ω

(
max
T , p, ε∗

∑
v∈T p(v)[H(pv(min))−H(ε∗)]+

log 1/ε∗

)
(40)

where the function a+ means a if a ≥ 0 and 0 otherwise.

A.2 An improved bound

As we have seen, a key issue is pv(min) versus ε. In general, suppose we have (p0ρ0, p1ρ1)
where ρb’s are two mixed states; let p = min{p0, p1}. If our distinguisher has error probabil-
ity greater than p, can it give any useful information about b? The old argument by Fano’s
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inequality does not seem to apply now and it is attempting to give up those nodes. How-
ever, this turns out to be a conceptual pitfall, as shown by the following key observation
that even if the error ε is a constant and the current partition has small min probability
p, we can still gain mutual information of Ω(p).

Proposition 2. Let ρ =
∑
T=0,1 pT ρT and denote p = min{p0, p1}. Suppose we have an

measurement on ρ to output T ′ with property Pr[T 6= T ′] ≤ ε. Then regardless of the
relation of p and ε, it holds that

S(ρ)− (p1S(ρ1) + p0S(ρ0)) ≥ 2(1−H(ε))p. (41)

Proof. Without loss of generality, assume that p = p1 ≤ 1/2. The key is to allocate a small
part of ρ0 and to let the distinguisher only deal with ρ1 and this small part of ρ0.

S(ρ) = S(p1ρ1 + p0ρ0) (42)

= S(p1ρ1 + p1ρ0 + (1− 2p1)ρ0) (43)

≥ 2p1S

(
1

2
ρ1 +

1

2
ρ0

)
+ (1− 2p1)S(ρ0)) (44)

// We give up distinguishing p1(ρ0 + ρ1) and (1− 2p1)ρ0

≥ 2p1

(
1

2
S(ρ1) +

1

2
S(ρ0) + 1−H(ε)

)
+ (1− 2p1)S(ρ0) (45)

= p1S(ρ1) + p0S(ρ0) + 2p1(1−H(ε)) (46)

When p1 = 1/2, the bound coincides with the usual 1 − H(ε) one as in Nayak’s original
proof for the Index function. Using the above observation, we get the following lower bound.

Theorem 12.
Q1
ε(f) ≥ 2(1−H(ε)) max

T , p

∑
v∈T

p(v)pv(min) (47)

and in particular,

Q1(f) ≥ Ω

(
max
T , p

∑
v∈T

p(v)pv(min)

)
(48)

Note that this is always better than the previous one in Eq. (40). Actually, no matter what
ε∗ is picked in Eq. (40), for those v whose pv(min) ≤ ε∗, the new bound has a gain of
Ω(pv(min)) but the old bound has nothing. For those v whose pv(min) > ε∗, we have

H(pv(min))−H(ε∗)

log 1/ε∗
<
H(pv(min))

log 1/ε∗
= O(

pv(min) log(1/pv(min))

log 1/ε∗
) < O(pv(min)). (49)

Thus the gain in the new bound is also better. Actually the old bound amounts to first
fixing a threshold ε∗ but the new bound can adaptively gain Ω(pv(min)), which is much

larger than H(pv(min))−H(ε∗)
log 1/ε∗ if pv(min) >> ε∗.

Therefore this form can serve as a unified form of PT, and we will show a full characteri-
zation of its power.

B The partition tree method on Greater Than function

In this section we will illustrate the partition tree method using the Greater Than function
for an example. Recall that GT (x, y) = 1 iff x ≥ y. Let the distribution p over X be
the uniform one. Bob first uses input 10...0 to distinguish between ( 1

2
ρ0,

1
2
ρ1) where ρb1 =
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∑
x:x1=b1

ρx. Then for ρb1 , Bob uses input b110...0 as his input to distinguish ( 1
2
ρb10,

1
2
ρb11)

where ρb1b2 =
∑
x:x1=b1,x2=b2

ρx. Note that different than Nayak’s proof for the Index
function, now for different b1, Bob’s inputs b110...0 are different. Continue this process, at
step i, Bob uses input b1...bi−110...0 as his input to distinguish ( 1

2
ρb1...bi−10,

1
2
ρb1...bi−11)

where ρb1...bi =
∑
x:x1=b1,...,xi=bi

ρx. Note that the two states to be distinguished are
always of half-half probabilities because p is uniform. Similarly as in the Index function
case, for each level i, each node of depth i gives a (1 − H(ε)) mutual information, thus
finally after n steps the total amount of mutual information gained as our lower bound is
n(1 − H(ε)). As in the Index function case, the partition tree for GT is also a complete
binary tree of depth n. The difference is that in GT function, for each level i, the nodes of
depth i use different y’s as Bob’s input to extract the mutual information.
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