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a b s t r a c t

In this paper we provide new bounds on classical and quantum distributional
communication complexity in the two-party, one-way model of communication.
In the classical one-way model, our bound extends the well known upper bound

of Kremer, Nisan and Ron [I. Kremer, N. Nisan, D. Ron, On randomized one-round
communication complexity, in: Proceedings of The 27th ACM Symposium on Theory of
Computing, STOC, 1995, pp. 596–605] to include non-product distributions. Let ε ∈
(0, 1/2) be a constant. We show that for a boolean function f : X × Y → {0, 1} and a
non-product distribution µ onX× Y,

D1,µε (f ) = O((I(X : Y )+ 1) · VC(f )),

where D1,µε (f ) represents the one-way distributional communication complexity of f with
error at most ε under µ; VC(f ) represents the Vapnik–Chervonenkis dimension of f and
I(X : Y ) represents the mutual information, under µ, between the random inputs of the
two parties. For a non-boolean function f : X × Y → {1, . . . , k} (k ≥ 2 an integer), we
show a similar upper bound on D1,µε (f ) in terms of k, I(X : Y ) and the pseudo-dimension of

f ′ def= f
k , a generalization of the VC-dimension for non-boolean functions.
In the quantum one-way model we provide a lower bound on the distributional

communication complexity, under product distributions, of a function f , in terms of the
well studied complexity measure of f referred to as the rectangle bound or the corruption
bound of f . We show for a non-boolean total function f : X × Y → Z and a product
distribution µ onX× Y,

Q1,µ
ε3/8

(f ) = Ω(rec1,µε (f )),

where Q1,µ
ε3/8

(f ) represents the quantum one-way distributional communication complex-

ity of f with error at most ε3/8 under µ and rec1,µε (f ) represents the one-way rectan-
gle bound of f with error at most ε under µ. Similarly for a non-boolean partial function
f : X× Y→ Z ∪ {∗} and a product distribution µ onX× Y, we show,

Q1,µ
ε6/(2·154)

(f ) = Ω(rec1,µε (f )).
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1. Introduction

Communication complexity studies theminimumamount of communication that two ormore parties need to compute a
given function or a relation of their inputs. Since its inception in the seminal paper by Yao [22], communication complexity
has been an important and widely studied research area. This is the case both because of the interesting and intriguing
mathematics involved in its study, and also because of the fundamental connections it bears with many other areas in
theoretical computer science, such as data structures, streaming algorithms, circuit lower bounds, decision tree complexity,
VLSI designs, etc.
Different models of communication have been proposed and studied. In the basic and standard two-party interactive

model, two parties Alice and Bob, each receive an input say x ∈ X and y ∈ Y, respectively. They interact with each other
possibly communicating several messages in order to jointly compute, say a given function f (x, y) of their inputs. If only one
message is allowed, say fromAlice toBob, andBob outputs f (x, y)without any further interactionwithAlice, then themodel
is called one-way. Though seemingly simple, this model has numerous nontrivial questions as well as applications to other
areas such as lower bounds for streaming algorithms, see for example [15]. Other models such as the Simultaneous message
passing (SMP) model, and multi-party models are also studied. We refer readers to the textbook [11] for a comprehensive
introduction to the field of classical communication complexity. In 1993, Yao [23] introduced quantum communication com-
plexity and since then it has also become a very active and vibrant area of research. In the quantum communicationmodels,
the parties are allowed to use quantum computers to process their inputs and to use quantum channels to send messages.
In this paper we are primarily concerned with the one-way model and we assume that the single message is always,

say from Alice to Bob. Let us first briefly discuss a few classical models. In the deterministic one-way model, the parties
act in a deterministic fashion, and compute f correctly on all input pairs (x, y). The minimum communication required for
accomplishing this is called the deterministic complexity of f and is denoted byD1(f ). Allowing the parties to use randomness
and to err on their inputs with a small non-zero probability, often results in considerable savings in communication. The
communication of the best public-coin one-way protocol that has error at most ε on all inputs, is referred to as the one-way
public-coin randomized communication complexity of f and is denoted by R1,pubε (f ). Similarly we can define the one-way
private-coin randomized communication complexity of f , denoted by R1ε(f ) and in the quantummodel, the one-way quantum
communication complexity of f , denoted by Q1ε(f ). Please refer to Section 2.2 for explicit definitions. When the subscript is
omitted, ε is assumed to be 1/3.
Sometimes the requirement on communication protocols is less stringent and it is only required that the average error,

under a given distribution µ on the inputs, is small. The communication of the best one-way classical protocol that has
average error at most ε under µ, is referred to as the one-way distributional communication complexity of f and is denoted
byD1,µε (f ). We can define the one-way distributional quantum communication complexityQ1,µε (f ) in a similar way. A useful
connection between the public-coin randomized and distributional communication complexities via the Yao’s Principle [21]
states that for a given ε ∈ (0, 1/2),R1,pubε (f ) = maxµ D1,µε (f ). A distributionµ, that achieves themaximum inYao’s Principle,
that is for which R1,pubε (f ) = D1,µε (f ), is referred to as a hard distribution for f . This principle also holds inmany othermodels
and allows for a good handle on the public-coin randomized complexity in scenarios where the distributional complexity is
much easier to understand. Often, the distributional complexity when the inputs of Alice and Bob are drawn independently
from a product distribution, is easier to understand. Nonetheless, often as is the case with several important functions such
as Set Disjointness (DISJ) and Inner Product (IP), themaximum in Yao’s Principle, in the one-waymodel, occurs for a product
distribution, and hence it paves the way for understanding the public-coin randomized complexity.
A fundamental question about one-way quantum communication complexity is its relation to the corresponding

randomized version for a total function. To bemore specific, what is the largest gap betweenR1,pub(f ) andQ1,pub(f ) for a total
function f ? Though some researchers conjecture that they are actually equal to each other up to amultiplicative constant, no
subexponential upper bound of R1,pub(f ) is known in terms of Q1,pub(f ). To decrease the gap, one may need to prove strong
quantum lower bounds and strong classical upper bounds. For instance, if we can find a bound B(f ) such that Q1,pub(f ) =
1/poly(B(f )) andR1,pub(f ) = poly(B(f )), thenwe getR1,pub(f ) = poly(Q1,pub(f )). In this paper,we try to prove both classical
upper bounds and quantum lower bounds. Detailed discussions of our results with comparison to previous ones follows.
Let us now discuss our first main result which is in the classical one-way model. We ask the reader to refer to Section 2

for the definitions of various quantities involved in the discussion below.

1.1. Classical upper bound

For a boolean function f : X × Y → {0, 1}, its Vapnik–Chervonenkis (VC) dimension, denoted by VC(f ), is an important
complexity measure, widely studied specially in the context of computational learning theory. Kremer, Nisan and Ron [12,
Thm. 3.2] found a beautiful connection between the distributional complexity of f under product distributions onX × Y,
and VC(f ), as follows.

Theorem 1 ([12]). Let f : X × Y → {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a constant. Let µ be a product
distribution onX× Y. There is a universal constant κ such that,

D1,µε (f ) ≤ κ ·
1
ε
log
1
ε
· VC(f ). (1)



R. Jain, S. Zhang / Theoretical Computer Science 410 (2009) 2463–2477 2465

Note that such a relation cannot hold for non-product distributions µ since otherwise it would translate, via the Yao’s
Principle, into R1,pubε (f ) = O(VC(f )), for all boolean f . This is not true as is exhibited by several functions for example the
Greater Than (GTn) function, inwhichAlice andBob need to determinewhich of their n-bit inputs is bigger. For this function,
R1,pubε (GTn) = Θ(n) butVC(GTn) = 1. Nonetheless for these functions, any hard distributionµ, is highly correlated between
X and Y. Therefore it is conceivable that such a relationship, as in Eq. (1), could still hold, possibly after taking into account
the amount of correlation in a given non-product distribution. This question, although probably never explicitly asked in
any previous work, appears to be quite fundamental. We answer it in the positive by the following.

Theorem 2. Let f : X× Y→ {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a constant. Let µ be a distribution (possibly
non-product) onX× Y. Let XY be joint random variables distributed according to µ. There is a universal constant κ such that,

D1,µε (f ) ≤ κ ·
1
ε
log
1
ε
·

(
1
ε
· I(X : Y )+ 1

)
· VC(f ).

In particular, for constant ε,

D1,µε (f ) = O ((I(X : Y )+ 1) · VC(f )) .

Above I(X : Y ) represents the mutual information between correlated random variables X and Y , distributed according to µ.

Let us discuss below a few aspects of this result and its relationshipwithwhat is previously known. Note that in combination
with Yao’s Principle, Theorem 2 gives us the following (where the mutual information is now considered under a hard
distribution for f ).

R1,pub(f ) = O ((I(X : Y )+ 1) · VC(f )) . (2)

1. It is easily observed using Sauer’s Lemma (Lemma 2, Section 2.) that the deterministic complexity of f has

D1(f ) = O(VC(f ) · log |Y|). (3)

This is because Alice can simply send the name of fx in O(VC(f ) · log |Y|) bits since |F | ≤ |Y|VC(f ). Now our result (2)
is on one hand stronger than (3) in the sense I(X : Y ) ≤ log |Y| always, and I(X : Y ) could be much smaller than
log |Y| depending on µ. An example of such a case is the Inner Product (IPn) function in which Alice and Bob need to
determine the inner product (mod 2) of their n-bit input strings. For IPn, a hard distribution is the uniform distribution
which is product, and hence I(X : Y ) = 0, whereas log |Y| = n. However on the other hand (2) is also weaker than (3)
in the sense it only upper bounds the public-coin randomized complexity, whereas (2) upper bounds the deterministic
complexity of f .

2. Aaronson [1] shows that for a total or partial boolean function f ,

R1(f ) = O(Q1(f ) · log |Y|). (4)

Again (2) is stronger than (4) in the sense that I(X : Y ) could be much smaller than log |Y| depending on µ. Also it
is known that, Q1(f ) = Ω(VC(f )) always, following from Nayak [16], and Q1(f ) could be much larger than VC(f ). An
example is the Greater Than (GTn) function for which Q1(GTn) = Ω(n), whereas VC(GTn) = O(1). On the other hand
(2) only holds for total boolean functions whereas (4) also holds for partial boolean functions.

3. As mentioned before, for all total boolean functions f , R1,pub(f ) = Ω(VC(f )), and R1,pub(f ) could be much larger than
VC(f ) (as in function GTn). Now Eq. (2) says that in the latter case, the mutual information I(X : Y ) under any hard
distribution µmust be large. That is, a hard distribution µmust be highly correlated.

4. It is known that for total boolean functions f , for which a hard distribution is the product, there is no separation between
the one-way public-coin randomized and quantum communication complexities. Now our theorem gives a smooth
extension of this fact to the functions whose hard distributions are not product ones. Note that formost, if not all, specific
functions of interest such as EQ, IP, DISJ, etc., the mutual information of a hard distribution is very easy to calculate.

A generalization of the VC-dimension for non-boolean functions, is referred to as the pseudo-dimension (Definition 2,
Section 2). For a non-boolean function f : X × Y → {1, . . . , k} (k ≥ 2 an integer), we show a similar upper bound on
D1,µε (f ) in terms of k, I(X : Y ) and the pseudo-dimension of f ′ def= f

k .

Theorem 3. Let k ≥ 2 be an integer. Let f : X × Y → {1, . . . , k} and ε ∈ (0, 1/6) be a constant. Let f ′ : X × Y → [0, 1]
be such that f ′(x, y) = f (x, y)/k. Let µ be a distribution (possibly non-product) on X × Y, and XY be joint random variables
distributed according to µ. Then there is a universal constant κ such that,

D1,µ3ε (f ) ≤ κ ·
k4

ε5
·

(
log
1
ε
+ d log2

dk
ε

)
· (I(X : Y )+ log k)

where d def
= P ε2

576k2
(f ′) is the ε2

576k2
-pseudo-dimension of f ′.

Let us now discuss our other main result which we show in the quantum one-way model.
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1.2. Quantum lower bound

For a function f : X × Y → Z, a measure of its complexity that is often very useful in understanding its classical
randomized communication complexity, is the rectangle bound (denoted by rec(f )), also often known as the corruption
bound. The rectangle bound rec(f ) is actually defined first via a distributional version recµ(f ). It is a well studied measure
and recµ(f ) is well known to form a lower bound on Dµ(f ) both in the one-way and two-waymodels. In fact, in a celebrated
result, Razborov [19] provided optimal lower bound on the randomized communication complexity of the Set Disjointness
function, by arguing a lower bound on its rectangle bound.
It is natural to ask if this measure also forms a lower bound on the quantum communication complexity. We answer

this question in the positive for this question in the one-way model. We show that, for a total or partial function, the
quantum distributional one-way communication complexity under a given product distribution µ is lower bounded by
the corresponding one-way rectangle bound. Our precise result is as follows:
Theorem 4. Let f : X×Y→ Z be a total function and let ε ∈ (0, 1/2) be a constant. Letµ be a product distribution onX×Y
and let rec1,µε (f ) > 2 · log(1/ε). Then,

Q1,µ
ε3/8

(f ) ≥
1
2
· (1− 2ε) · (S(ε/2)− S(ε/4)) · (brec1,µε (f )c − 1) = Ω(rec1,µε (f )), (5)

where for p ∈ (0, 1), S(p) is the binary entropy function S(p) def
= −p log p− (1− p) log(1− p).

If f : X× Y→ Z ∪ {∗} is a partial function then,

Q1,µ
ε6/(2·154)

(f ) ≥
1
2
· (1− 2ε) ·

ε2

300
· (brec1,µε (f )c − 1) = Ω(rec1,µε (f )).

Let us make a few important remarks here related to this result.
1. Recently, Jain, Klauck and Nayak [9] showed that for any relation f ⊆ X × Y × Z, the rectangle bound of f tightly
characterizes the randomized one-way classical communication complexity of f .
Theorem 5 ([9]). Let f ⊆ X× Y × Z be a relation and let ε ∈ (0, 1/2). Then,

R1,pubε (f ) = Θ(rec1ε(f )).
While showing Theorem 5, Jain, Klauck and Nayak [9] have shown that for all relations f : X × Y → Z and for all
distributions µ (product and non-product) on X × Y; D1,µε (f ) = Ω(rec1,µ4ε (f )). However in the quantum setting we
are making a similar statement only for (total or partial) functions f and only for product distributions µ onX × Y. In
fact it does NOT hold if we let µ to be non-product. It can be shown that there is a total function f and a non-product
distribution µ such that Q1,µε (f ) is exponentially smaller than rec1,µε (f ). This fact is implicit in the work of Gavinsky et
al. [5]. We make an explicit statement of this in Appendix and skip its proof for brevity.

2. Let ε ∈ (0, 1/4). Jain, Klauck and Nayak [9] have shown that for all relations g ⊆ X× Y × Z,

R1,[]2ε (g) = O(rec
1,[]
ε (g)).

Here the superscript [] represents maximization over all product distributions. From Theorem 4 for a (total or partial)
function f we get,

Q1,[]
ε6/(2·154)

(f ) = Ω(rec1,[]ε (f )).

Since R1,[]ε (f ) ≥ Q1,[]ε (f ), combining everything we get,
Theorem 6. Let ε ∈ (0, 1/4). Let f : X× Y→ Z ∪ {∗} be a (possibly partial and non-boolean) function. Then

R1,[]
ε6/(2·154)

(f ) ≥ Q1,[]
ε6/(2·154)

(f ) = Ω(R1,[]2ε (f )).

It was known earlier that for total boolean functions,Q1,[](f ) is tightly bounded by R1,[](f ). We extend such a relationship
here to apply for non-boolean (partial) functions as well. We remark that the earlier proofs for total boolean functions
used theVC-dimension result, Theorem1, of Kremer, Nisan andRon [12].Weget the same result herewithout requiring it.

We finally present an application of our result Theorem 4 in the context of studying security of extractors against quantum
adversaries. An extractor is a function that is used to extract almost uniform randomness from a source of imperfect
randomness. Extractors are well studied objects and have found several uses in many cryptographic applications and also
in complexity theory. Recently, security of various extractors has been increasingly studied in the presence of quantum
adversaries; since such secure extractors are then useful in several applications such as privacy amplification in quantum
key distribution and key-expansion in quantum bounded storage models [10,13,14]. In particular, König and Terhal [14]
have shown that any boolean extractor that can extract a uniform bit from sources of min-entropy k is also secure against
quantum adversaries with their memory bounded by a function of k.
We get a similar statement for boolean extractors, as a corollary of our result Theorem 4. We obtain this corollary by

observing a key connection between the minimummin-entropy that an extractor function f needs to extract a uniform bit
and its rectangle bound. The precise statement of our result, its relationship with the result of [14], and a detailed discussion
is deferred to Section 5.



R. Jain, S. Zhang / Theoretical Computer Science 410 (2009) 2463–2477 2467

1.3. Organization

In the following Section 2 we discuss various information theoretic preliminaries and the model of one-way
communication. In Section 3 we present the upper bounds in the classical setting and in Section 4 we present the lower
bounds in the quantum setting. The application concerning extractors is discussed in Section 5. We finally conclude with
some open questions in Section 6.

2. Preliminaries

2.1. Information theory

In this section we present some information theoretic notation, definitions and facts that we use in the rest of the paper.
For an introduction to classical and quantum information theory, we refer the reader to the texts by Cover and Thomas [4]
and Nielsen and Chuang [17] respectively. Most of the facts stated in this section without proofs may be found in these
books.
All logarithms in this paper are taken with base 2, unless otherwise specified. For an integer t ≥ 1, [t] represents the set

{1, . . . , t}. For squarematrices P,Q , byQ ≥ P wemean thatQ−P is positive semi-definite. For amatrixA, ‖A‖1
def
= Tr(

√
AĎA)

denotes its `1 norm. For p ∈ (0, 1), let S(p)
def
= −p log p− (1− p) log(1− p), denote the binary entropy function. We have

the following fact.
Fact 1. For δ ∈ [0, 1/2], S( 12 + δ) ≤ 1− 2δ

2 and S(δ) ≤ 2
√
δ.

A quantum state, usually represented by letters ρ, σ etc., is a positive semi-definite trace one operator in a given Hilbert
space. Specializing from the quantum case, we view a discrete probability distribution P as a positive semi-definite trace
one diagonal matrix indexed by its (finite) sample space. For a distribution P with support on setX, and x ∈ X, P(x) denotes
the (x, x) diagonal entry of P , and P(E) def

=
∑
x∈E P(x) denotes the probability of the event E ⊆ X. A distribution P onX×Y

is said to be product acrossX andY, if it can be written as P = PX⊗PY , where PX, PY are distributions onX,Y respectively
and⊗ is the tensor operation. Often for product distributions we do not mention the sets across which it is product if it is
clear from the context.
Let X be a classical random variable (or simply random variable) taking values inX. For a random variable X , we also let X

represent its probability distribution. The entropy of X denoted S(X) is defined to be S(X) def
= −TrX log X . Since X is classical

an equivalent definition would be S(X) def
= −

∑
x∈X Pr[X = x] log Pr[X = x] . Let X, Y be a correlated random variables

taking values inX,Y respectively. XY are said to be independent if their joint distribution is product. Themutual information
between them, denoted I(X : Y ) is defined to be I(X : Y ) def

= S(X) + S(Y ) − S(XY ) and conditional entropy denoted S(X |Y )
is defined to be S(X |Y ) def

= S(XY )− S(Y ). It is easily seen that S(X |Y ) = Ey←Y [S(X |(Y = y)].
We have the following facts.

Fact 2. For all random variables X, Y ; I(X : Y ) ≥ 0; in other words S(X)+ S(Y ) ≥ S(XY ). If X, Y are independent then we have
I(X : Y ) = 0; in other words S(XY ) = S(X)+ S(Y ).
The definitions and facts stated in the above paragraph for classical random variables also hold mutatis mutandis for

quantum states as well. For example for a quantum state ρ, its entropy is defined as S(ρ) def
= −Trρ log ρ. For brevity, we

avoid making all the corresponding statements explicitly. As is the case with classical random variables, for a quantum
system say Q , we also often let Q represent its quantum state. We have the following fact.
Fact 3. Any quantum state ρ in m-qubits has S(ρ) ≤ m. Also let XQ be a joint classical-quantum system with X being a classical
random variable, then I(X : Q ) ≤ min{S(X), S(Q )}.

For a system XYM , let us define I(X : M|Y ) def
= S(X |Y )+ S(M|Y )− S(XM|Y ). If Y is a classical system then it is easily seen

that I(X : M|Y ) = Ey←Y [I(X : M|(Y = y))].
For random variables X1, . . . , Xn and a correlated (possibly quantum) system M , we have the following chain rule of

mutual information, which will be crucially used in our proofs.

I(X1 . . . Xn : M) =
n∑
i=1

I(Xi : M|X1 . . . Xi−1). (6)

By convention, conditioning on X1 . . . Xi−1 for i = 1 means conditioning on the true event. The following is an important
information theoretic fact known as Fano’s inequality, which relates the probability of disagreement for correlated random
variables to their mutual information.
Lemma 1 (Fano’s Inequality). Let X be a random variable taking values in X. Let Y be a correlated random variable and let
Pe

def
= Pr(X 6= Y ). Then,
S(Pe)+ Pe log(|X| − 1) ≥ S(X |Y ).

The VC-dimension of a boolean function f is an important combinatorial concept and has close connections with the
one-way communication complexity of f .
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Definition 1 (Vapnik–Chervonenkis (VC) Dimension). A set S ⊆ Y is said to be shattered by a set G of boolean functions from
Y to {0, 1}, if ∀R ⊆ S, ∃gR ∈ G such that ∀s ∈ S, (s ∈ R)⇔ (gR(s) = 1). The largest value d for which there is a set S of size
d that is shattered by G is the Vapnik–Chervonenkis dimension of G and is denoted by VC(G).
Let f : X×Y→ {0, 1} be a boolean function. For all x ∈ X let fx : Y→ {0, 1} be defined as fx(y)

def
= f (x, y),∀y ∈ Y. Let

F
def
= {fx : x ∈ X}. Then the Vapnik–Chervonenkis dimension of f , denoted by VC(f ), is defined to be VC(F ).

Let f and F be as defined in the above definition. We call a function f trivial iff |F | = 1, in other words iff the value of
the function, for all x, is determined only by y. We call f non-trivial iff it is not trivial. Note that a boolean f is non-trivial if
and only if VC(f ) ≥ 1. Throughout this paper we assume all our functions to be non-trivial. Following is a useful fact, with
several applications, relating the VC-dimension of f to the size of F . It is usually attributed to Sauer [20], however it has
been independently discovered by several different people as well.

Lemma 2 (Sauer’s Lemma [20]). Let f : X× Y→ {0, 1} be a boolean function. Let d def
= VC(f ). Let m def

= |Y|, then

|F | ≤
d∑
i=0

(
m
i

)
≤ md.

The following result from Blumer, Ehrenfeucht, Haussler, and Warmuth [2] is one of the most fundamental results from
computational learning theory and in fact an important application of Sauer’s Lemma.

Lemma 3. Let H be class of boolean functions over a finite domain Y with VC-dimension d, let π be an arbitrary probability
distribution overY, and let 0 < ε, δ < 1. Let L be any algorithm that takes as input a set S ∈ Ym of m examples labeled according
to an unknown function h ∈ H, and outputs a hypothesis function h′ ∈ H that is consistent with h on the sample S. If L receives a
random sample of size m ≥ m0(d, ε, δ) distributed according to πm, where

m0(d, ε, δ) = c0

(
1
ε
log
1
δ
+
d
ε
log
1
ε

)
for some constant c0 > 0, then with probability at least 1− δ over the random samples, Prπ [h′(y) 6= h(y)] ≤ ε.

A similar learning result also holds for non-boolean functions. For this let us first define the following generalization of
the VC-dimension, known as the pseudo-dimension.

Definition 2 (Pseudo-Dimension). A set S ⊆ Y is said to be γ -shattered by a set G of functions from Y to Z ⊆ R, if there
exists a vectorw = (w1, . . . , wk) ∈ Zk of dimension k = |S| for which the following holds. For all R ⊆ S, ∃gR ∈ G such that
∀s ∈ S, (s ∈ R)⇒ (gR(s) > wi + γ ) and (s /∈ R)⇒ (gR(s) < wi − γ ). The largest value d for which there is a set S of size d
that is γ -shattered by G is the γ -pseudo-dimension of G and is denoted by Pγ (G).

Let f : X×Y→ Z be a function. For all x ∈ X let fx : Y→ Z be defined as fx(y)
def
= f (x, y),∀y ∈ Y. LetF def

= {fx : x ∈ X}.
Then the γ -pseudo-dimension of f , denoted by Pγ (f ), is defined to be Pγ (F ).

The following result of Bartlett, Long andWilliamson [3] is similar to the learning lemma of Blumer et al. [2] and concerns
non-boolean functions.

Theorem 7. LetG be a class of functions over a finite domainY into the range [0, 1]. Letπ be an arbitrary probability distribution
over Y and let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let d def

= Pε2/576(G). Then there exists a deterministic learning algorithm L which has
the following property. Given as input a set S ∈ Ym of m examples chosen according to πm and labeled according to an unknown
function g ∈ G, L outputs a hypothesis g ′ ∈ G such that if m ≥ m0(d, ε, δ) where

m0(d, ε, δ) = c0

(
1
ε4
log
1
δ
+
d
ε4
log2

d
ε

)
for some constant c0 > 0, then with probability at least 1− δ over the random samples,∑

y∈Y

π(y) · |h′(y)− h(y)| ≤ ε.

Following is a fundamental quantum information theoretic fact shown by Holevo [8].

Theorem 8 (The Holevo Bound [8]). Let X be classical random variable taking values inX. Let M be a quantum system and let
Y be a random variable obtained by performing a quantum measurement on M. Then,

I(X : Y ) ≤ I(X : M). (7)

The following is an interesting and useful information theoretic fact first shown by Helstrom [6].

Theorem 9 ([6]). Let XQ be a joint classical-quantum system where X is a classical boolean random variable. For a ∈ {0, 1}, let
the quantum state of Q when X = a be ρa. The optimal success probability of predicting X with a measurement on Q is given by

1
2
+
1
2
· ‖ Pr[X = 0]ρ0 − Pr[X = 1]ρ1‖1.
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2.2. One-way communication

In this article we only consider the two-party one-way model of communication. Let f ⊆ X× Y × Z be a relation. The
relations we consider are always total in the sense that for every (x, y) ∈ X × Y, there is at least one z ∈ Z, such that
(x, y, z) ∈ f . In a one-way protocolP for computing f , Alice and Bob get inputs x ∈ X and y ∈ Y respectively. Alice sends a
single message to Bob, and their intention is to determine an answer z ∈ Z such that (x, y, z) ∈ f . In the one-way protocols
we consider, the single message is always from Alice to Bob. A total function f : X × Y → Z, can be viewed as a type of
relation in which for every (x, y) there is a unique z, such that (x, y, z) ∈ f . A partial function is a special type of relations
such that for some inputs (x, y), there is a unique z, such that (x, y, z) ∈ f and for all other inputs (x, y), (x, y, z) ∈ f ,∀z ∈ Z.
We view a partial function f as a function f : X×Y→ Z∪ {∗}, such that the inputs (x, y) for which f (x, y) = ∗ are exactly
the ones for which (x, y, z) ∈ f ,∀z ∈ Z.
Let us first consider classical communicationprotocols.We letD1(f ) represent thedeterministic one-way communication

complexity, that is the communication of the best deterministic protocol computing f correctly on all inputs. For ε ∈
(0, 1/2), let µ be a probability distribution onX× Y. We let D1,µε (f ) represent the distributional one-way communication
complexity of f under µ with expected error ε, i.e., the communication of the best private-coin one-way protocol for f ,
with distributional error (average error over the coins and the inputs) at most ε under µ. It is easily noted that D1,µε (f ) is
always achieved by a deterministic one-way protocol, and will henceforth restrict ourselves to deterministic protocols in
the context of distributional communication complexity. We let R1,pubε (f ) represent the public-coin randomized one-way
communication complexity of f withworst case error ε, i.e., the communication of the best public-coin randomized one-way
protocol for f with error for each input (x, y) being at most ε. The analogous quantity for private coin randomized protocols
is denoted byR1ε(f ). The public- and private-coin randomized communication complexities are notmuch different, as shown
in Newman’s result [18] that

R1(f ) = O(R1,pub(f )+ log log |X| + log log |Y|). (8)

The following result due to Yao [21] is a very useful fact connecting worst-case and distributional communication
complexities. It is a consequence of themin–max theorem in game theory [11, Thm. 3.20, page 36].

Lemma 4 (Yao’s Principle [21]). R1,pubε (f ) = maxµ D1,µε (f ).

We define R1,[]ε (f ) def
= maxµ product D1,µε (f ). Note that R1,[]ε (f ) could be significantly smaller than R1,pubε (f ) as is exhibited

by the Greater Than (GTn) function for which R1,pub(GTn) = Ω(n), whereas R1,[]ε (f ) = O(1).
In a one-way quantum communication protocol, Alice and Bob are allowed to do quantum operations and Alice can send

a quantummessage (qubits) to Bob. Given ε ∈ (0, 1/2), the one-way quantum communication complexity Q1ε(f ) is defined
to be the communication of the best one-way quantum protocol with error at most ε on all inputs. Given a distribution µ
onX × Y, we can similarly define the quantum distributional one-way communication complexity of f , denoted Q1,µε (f ),
to be the communication of the best one-way quantum protocol P for f such that the average error of P over the inputs
drawn from the distribution µ is at most ε. We define Q1,[]ε (f ) def

= maxµ product Q1,µε (f ).

3. A new upper bound on classical one-way distributional communication complexity

In this sectionwe present the upper bounds on the distributional communication complexity,D1,µε (f ) for any distribution
µ (possibly non-product) onX× Y. We begin by restating the precise result for boolean functions.

Theorem 10. Let f : X×Y→ {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a constant. Letµ be a distribution (possibly
non-product) onX× Y. Let XY be joint random variables distributed according to µ. There is a universal constant κ such that,

D1,µε (f ) ≤ κ ·
1
ε
log
1
ε
·

(
1
ε
· I(X : Y )+ 1

)
· VC(f ).

In other words,

D1,µε (f ) = O ((I(X : Y )+ 1) · VC(f )) .

For showing this result we will crucially use the following fact shown by Harsha, Jain, McAllester and Radhakrishnan [7]
concerning communication required for generating correlations. We begin with the following definition.

Definition 3 (Correlation Protocol). Let (X, Y ) be a pair of correlated random variables taking values inX× Y. Let Alice be
given x ∈ X, sampled according to the distribution X . Alice should transmit a message to Bob, such that Alice and Bob can
together generate a value y ∈ Y distributed according to the conditional distribution Y |X=x; that is the pair (x, y) should
have joint distribution (X, Y ). Alice and Bob are allowed to use public randomness. Note that the generated value y should
be known to both Alice and Bob.

Harsha et al. [7] showed that the minimal expected number of bits that Alice needs to send (in the presence of shared
randomness), denoted T R(X : Y ), is characterized by the mutual information I(X : Y ) as follows.
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Theorem 11 ([7]). There exists a universal positive constant l such that,

I(X : Y ) ≤ T R(X : Y ) ≤ 4I(X : Y )+ l.

We will also need the following lemma.

Lemma 5. Let m ≥ 1 be an integer. Let XY be correlated random variables. Letµx be the distribution of Y |X = x. Let Y ′ represent
another random variable correlated with X such that the distribution of Y ′|(X = x) is µ⊗mx (m independent copies of µx). Then,

I(X : Y ′) ≤ m · I(X : Y ).

Proof. Consider,

I(X : Y ′) = S(Y ′)− Ex←X [S(Y ′|X = x)]
= S(Y ′)−m · Ex←X [S(Y |X = x)]
≤ m · S(Y )−m · Ex←X [S(Y |X = x)]
= m · I(X : Y ).

The first inequality above follows from Fact 2 by noting that Y ′ ism-copies of Y . �

We are now ready for the proof of Theorem 10.

Proof of Theorem 10. Letm def
= m0(VC(f ), ε/4, ε/4) = c0 ·

(
1
ε/4 log

1
ε/4

)
· (VC(f )+ 1) as in Lemma 3. Let l be the constant

as in Theorem 11. Let c def
= 4m · I(X : Y )+ l. We exhibit a public coin protocol P with inputs drawn from µ, in which Alice

sends twomessagesM1 andM2 to Bob. The expected length ofM1 is at most c and the length ofM2 is always at mostm. The
average error (over inputs and coins) of P is at most ε/2. Let P ′ be the protocol that simulates P but aborts and outputs 0,
whenever the length ofM1 in P exceeds 2c/ε. From Markov’s inequality this happens with probability at most ε/2. Hence
the expected error ofP ′ is at most ε/2+ ε/2 = ε. Since the expected error (over coins and inputs) ofP ′ is at most ε, there
exists a deterministic protocol (by fixing coins suitably) with communication bounded by 2c/ε+m and distributional error
at most ε. This implies our result from definition of D1,µε (f ) and by setting κ appropriately.
For x ∈ X, let µx be the distribution of Y |X = x. In P , on receiving the input x ∈ X, Alice first sends a message M1 to

Bob, according to the corresponding correlation protocol as in Definition 3, and they together sample from the distribution
of µ⊗mx . Let y1, . . . , ym be the samples generated. Note that from the properties of correlation protocol both Alice and Bob
know the values of y1, . . . , ym. Alice then sends to Bob the second messageM2 which is the values of f (x, y1), . . . , f (x, ym).
Bob then considers the first x′ (according to the lexicographically increasing order) such that ∀i ∈ [m], f (x′, yi) = f (x, yi)
and outputs f (x′, y), where y is his actual input. Using Lemma 3, it is easy to verify that for every x ∈ X, the average error
(over randomness in the protocol and inputs of Bob) in this protocol P will be at most ε/2. Hence also the overall average
error of P is at most ε/2. Also from Theorem 11 and Lemma 5, we can verify that the expected length ofM1 in P will be at
most 4m · I(X : Y )+ l. �

Following similar arguments and using Theorems 7 and 11, we obtain a similar result for non-boolean functions as
follows.

Theorem 12. Let k ≥ 2 be an integer. Let f : X × Y → [k] be a non-boolean function and let ε ∈ (0, 1/6) be a constant. Let
f ′ : X× Y→ [0, 1] be such that f ′(x, y) = f (x, y)/k. Let µ be a distribution (possibly non-product) onX× Y. Let XY be joint
random variables distributed according to µ. There is a universal constant κ such that,

D1,µ3ε (f ) ≤ κ ·
k4

ε5
·

(
log
1
ε
+ d log2

dk
ε

)
· (I(X : Y )+ log k)

where d def
= P ε2

576k2
(f ′) is the ε2

576k2
-pseudo-dimension of f ′.

Proof. Let m def
= m0(d, ε/k, ε) = c0

(
k4

ε4
log 1

ε
+
dk4

ε4
log2 dk

ε

)
as in Theorem 7. Let l be the constant as in Theorem 11. Let

c def
= 4m · I(X : Y ) + l. We exhibit a public coin protocol P for f , with inputs drawn from µ, in which Alice sends two

messages M1 and M2 to Bob. The expected length of M1 is at most c and the length of M2 is always at most O(m log k). The
average error (over inputs and coins) of P is at most 2ε. Let P ′ be the protocol that simulates P but aborts and outputs
0, whenever the length of M1 in P exceeds c/ε. From Markov’s inequality this happens with probability at most ε. Hence
the expected error (over coins and inputs) of P ′ is at most 2ε + ε = 3ε. From P ′, by fixing coins suitably, we finally get a
deterministic protocol with communication bounded by c/ε + O(m log k) and distributional error at most 3ε. This implies
our result from definition of D1,µ3ε (f ) and by setting κ appropriately.
In P , Alice and Bob intend to first determine f ′(x, y) and then output kf ′(x, y). For x ∈ X, let µx be the distribution of

Y |X = x. On receiving the input x ∈ X, Alice first sends a message M1 to Bob, according to the corresponding correlation
protocol as in Definition 3, and they together sample from the distribution ofµ⊗mx . Let y1, . . . , ym be the samples generated.
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Alice then sends to Bob the second message M2 which is the values of f ′(x, y1), . . . , f ′(x, ym) . Bob then considers x′ as
obtained from the learning algorithm L (as in Theorem 7) and then outputs kf ′(x′, y), where y is his actual input. Therefore
from Theorem 7, with probability 1− ε over the samples y1, . . . , ym,∑

y∈Y

π(y) · |f ′(x′, y)− f ′(x, y)| ≤ ε/k. (9)

Note that, (f ′(x′, y) 6= f ′(x, y)) ⇒ |f ′(x′, y) − f ′(x, y)| ≥ 1/k. Hence for samples y1, . . . , ym, for which (9) holds, using
Markov’s inequality, we have Pry←µx [f

′(x′, y) 6= f ′(x, y)] ≤ ε. Therefore, for any fixed x, the error of P is at most 2ε and
hence also the overall error of P is at most 2ε.
From Theorem 11 and Lemma 5, we can verify that the expected length of M1 in P will be at most 4m · I(X : Y ) + l.

The length ofM2 is at most O(m log k), since using a prefix free encoding1 each f ′(x, yi) can be specified in O(log k) bits. This
completes the proof. �

4. A new lower bound on quantum one-way distributional communication complexity

In this section we present our lower bound on the quantum one-way distributional communication complexity of a
function f , in terms of the one-way rectangle bound of f . We begin with a few definitions leading to the definition of the
one-way rectangle bound.
Definition 4 (Rectangle). A one-way rectangle R is a set S×Y, where S ⊆ X. For a distributionµ overX×Y, letµR represent
the distribution arising from µ conditioned on the event R and let µ(R) represent the probability (under µ) of the event R.
Definition 5 (One-way ε-Monochromatic). Let f ⊆ X × Y × Z be a relation. We call a distribution λ onX × Y, one-way
ε-monochromatic for f if there is a function g : Y→ Z such that PrXY∼λ[(X, Y , g(Y )) ∈ f ] ≥ 1− ε.
Note that in the case that f : X × Y → {0, 1} is a total boolean function, and λ = λX ⊗ λY is a product distribution, the
requirement for λ to be one-way ε-monochromatic becomes

EY∼λY [max{ PrX∼µX

[f (X, Y ) = 0], Pr
X∼µX

[f (X, Y ) = 1]}] ≥ 1− ε.

Definition 6 (Rectangle Bound). Let f ⊆ X×Y×Z be a relation. For distributionµ onX×Y, the one-way rectangle bound
is defined as:

rec1,µε (f ) def
= min

{
log2

1
µ(R)

: R is one-way rectangle and µR is one-way ε-monochromatic
}
.

The one-way rectangle bound for f is defined as:

rec1ε(f )
def
= max

µ
rec1,µε (f ).

We also define,

rec1,[]ε (f ) def
= max

µ:product
rec1,µε (f ).

We restate our precise result here followed by its proof.
Theorem 13. Let f : X × Y → Z be a total function and let ε ∈ (0, 1/2) be a constant. Let µ be a product distribution on
X× Y and let rec1,µε (f ) > 2(log(1/ε)). Then,

Q1,µ
ε3/8

(f ) ≥
1
2
· (1− 2ε) · (S(ε/2)− S(ε/4)) · (brec1,µε (f )c − 1).

If f : X× Y→ Z ∪ {∗} is a partial function then,

Q1,µ
ε6/(2·154)

(f ) ≥
1
2
· (1− 2ε) ·

ε2

300
· (brec1,µε (f )c − 1).

We begin with the following information theoretic fact.
Lemma 6. Let 0 ≤ d < c ≤ 1/2. Let Z be a binary random variable with min{Pr(Z = 0), Pr(Z = 1)} ≥ c. Let M be a
correlated quantum system. Let Z ′ be a classical boolean random variable obtained by performing a measurement on M such that,
Pr(Z 6= Z ′) ≤ d, then

I(Z : M) ≥ I(Z : Z ′) ≥ S(c)− S(d).
Proof. The first inequality follows from the Holevo bound, Theorem 8. For the second inequality we note that S(Z) ≥ S(c)
(since the binary entropy function is monotonically increasing in (0, 1/2]) and from Fano’s inequality, Lemma 1, we have
S(Z |Z ′) ≤ S(d). Therefore,

I(Z : Z ′) = S(Z)− S(Z |Z ′) ≥ S(c)− S(d). �

1 Prefix free encoding is needed to avoid ambiguity of messages and to know when a particular message has terminated.
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We are now ready for the proof of Theorem 13.

Proof of Theorem 13. For total boolean functions: For simplicity of the explanation, we first present the proof assuming
f to be a total boolean function. Let r def

= brec1,µε (f )c or brec1,µε (f )c − 1 so as to make r even. Let P be the optimal one-way
quantum protocol for f with distributional error under µ at most ε3/4. (Although we have made a stronger assumption
regarding the error in the statement of the Theorem, we do not need it here and will only need it later while handling non-
boolean functions.) LetM represent them def

= Q1,µ
ε3/4

(f ) qubit quantummessage of Alice inP . Let XY be the random variables
corresponding toAlice andBob’s inputs, jointly distributed according toµ. Our intention is to define binary randomvariables
T1, . . . , Tr/2 such that they are determined by X (and hence a specific value for T1, . . . , Tr/2 would correspond to a subset of
X) and ∀i ∈ {0, . . . , r2 − 1},

I(M : Ti+1|T1 . . . Ti) ≥ (1− 2ε) · (S(ε/2)− S(ε/4)).

Therefore from Fact 3 and the chain rule of mutual information, Eq. (6), we have,

m ≥ S(M) ≥ I(M : T1 . . . Tr/2)

=

r/2−1∑
i=0

I(M : Ti+1|T1 . . . Ti)

≥ (1− 2ε) · (S(ε/2)− S(ε/4)) ·
r
2
.

This completes our proof.
We define T1, . . . , Tr/2 in an inductive fashion. The following construction of Ti+1 also works for i = 0; we will give more

details afterwards.
For i ∈ {0, . . . , r2 − 1}, assume that we have defined T1, . . . , Ti and we intend to define Ti+1. Let GOOD1 be the set of

‘‘heavy bands", i.e. those strings t ∈ {0, 1}i such that Pr(T1, . . . , Ti = t) > 2−r . Then,

Pr(T1, . . . , Ti ∈ GOOD1) ≥ 1− 2−r+i ≥ 1− 2−r/2−1.

Let εt be the error of the protocol P conditioned on T1, . . . , Ti = t . Note that E[εt ] is the same as the overall expected error
of P ; hence E[εt ] ≤ ε3/4. Now using Markov’s inequality we get a set GOOD2 ∈ {0, 1}i of ‘‘small error bands" such that
Pr(T1 . . . Ti ∈ GOOD2) ≥ 1 − ε and ∀t ∈ GOOD2, εt ≤ ε2/4. Let GOOD

def
= GOOD1 ∩ GOOD2 contains those heavy bands

with small error. Therefore (since r/2 > log(1/ε), from the hypothesis of the theorem),

Pr(T1 . . . Ti ∈ GOOD) ≥ 1− 2−r/2−1 − ε ≥ 1− 2ε. (10)

For t ∈ {0, 1}i and y ∈ Y, let

δt,y
def
= min {Pr[f (X, y) = 0|(T1 . . . Ti = t)], Pr[f (X, y) = 1|(T1 . . . Ti = t)]}

where the probabilities are over the protocol’s randomness and X , theX-part of the product distribution µ. Also let, εt,y be
the expected error of P conditioned on Y = y and T1 . . . Ti = t .
For t /∈ GOOD, we define Ti+1|(T1 . . . Ti = t) = 0. Let t ∈ GOOD from now on. Our intention is to identify for every t a

yt ∈ Y, such that εt,yt ≤ ε/4 and δt,yt ≥ ε/2. We will then let Ti+1|(T1 . . . Ti = t) to be f (X, yt)|(T1 . . . Ti = t). Lemma 6 will
now imply, I(M : Ti+1|(T1 . . . Ti = t)) ≥ S(ε/2)− S(ε/4). Therefore,

I(M : Ti+1|T1 . . . Ti) ≥
∑
t∈GOOD

Pr(T1 . . . Ti = t) · I(M : Ti+1|(T1 . . . Ti = t))

≥ (1− 2ε) · (S(ε/2)− S(ε/4)) (using Eq. (10))

and we would be done.
Now in order to identify a desired yt , we proceed as follows. Since r ≤ rec1,µε (f ); from the definition of rectangle bound

and given thatµ is a product distribution we have the following. For all S ⊆ Xwithµ(S×Y) > 2−r or in other words with
Pr[X ∈ S] > 2−r ,

Ey←Y
[
min {Pr[f (X, y) = 0|X ∈ S], Pr[f (X, y) = 1|X ∈ S]}

]
> ε. (11)

Note that since t ∈ GOOD, Pr[T1 . . . Ti = t] > 2−r . Recall that conditioning on t implies a subset ofX. Hence (11) implies
that Ey←Y [δt,y] > ε. Now using Markov’s inequality and the fact that, ∀(t, y), δt,y ≤ 1/2, we get a set GOODt ⊆ Y such that
Pr[Y ∈ GOODt ] ≥ ε and ∀y ∈ GOODt , δt,y ≥ ε/2.
Since t ∈ GOOD, we have εt ≤ ε2/4. Note that εt = Ey←Y [εt,y]. Using a Markov argument again we finally get a

yt ∈ GOODt , such that εt,yt ≤ ε/4. Note that since yt ∈ GOODt , we have δt,yt ≥ ε/2 and we are done.
Now we finish the total boolean functions part by adding a few remarks for construction of T1. The above process

works with minor adjustments which basically delete all appearances of t and T1, . . . , Ti. Let us start from the definition
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of δy = min{Pr[f (X, y) = 0], Pr[f (X, y) = 1]} and εy = the expected error condition on Y = y. Using similar argument we
can find a particular y s.t. εy ≤ ε/4 and δy ≥ ε/2, then we let T1 = f (X, y) and we have I(M : Ti+1) ≥ S(ε/2)− S(ε/4).
For total non-boolean functions: Let f : X × Y → Z be a total non-boolean function and let r be as before. We follow
the same inductive argument as before to define T1 . . . Tr/2. For i ∈ {0, . . . , r2 − 1}, assume that we have defined T1 . . . Ti. As
before we identify a set GOOD ⊆ {0, 1}i with Pr[T1 . . . Ti ∈ GOOD] ≥ 1− 2ε, such that ∀t ∈ GOOD, Pr[T1 . . . Ti = t] > 2−r
and εt ≤ ε2/8. Since r ≤ rec1,µε (f ), from the definition of rectangle bound and the fact that µ is product, we have , ∀S ⊆ X
with µ(S × Y) > 2−r ,

Ey←Y
[
max
z∈Z
{Pr[f (X, y) = z|X ∈ S]}

]
< 1− ε. (12)

For t ∈ {0, 1}i and y ∈ Y, let εt,y be as before and let,

δt,y
def
= max

z∈Z
{Pr[f (X, y) = z|(T1 . . . Ti = t)]} .

For t /∈ GOOD, let us define Ti+1|(T1 . . . Ti = t) to be 0. Let t ∈ GOOD fromnowon. Note that (12) implies Ey←Y [δt,y] < 1−ε.
Using Markov’s inequality we get a set GOODt ⊆ Y with Pr[Y ∈ GOODt ] ≥ ε/2 and ∀y ∈ GOODt , δt,y ≤ 1 − ε/2. Since
Ey←Y [εt,y] = εt ≤ ε2/8, again using a Markov argument we get a yt ∈ GOODt , such that εt,yt ≤ ε/4. Since δt,yt ≤ 1− ε/2
(and ε ∈ (0, 1/2)), observe that there would exist a set St,yt ⊆ Z such that,

min{Pr[f (X, yt) ∈ St,yt |(T1 . . . Ti = t)], Pr[f (X, yt) ∈ Z− St,yt |(T1 . . . Ti = t)]} ≥ ε/2.

Let us now define Ti+1|(T1 . . . Ti = t) to be 1 if and only if f (X, yt) ∈ St,yt |(T1 . . . Ti = t) and 0 otherwise. Note that since
εt,yt ≤ ε/4, conditioned on T1 . . . Ti = t , there exists a measurement on M , that can predict the value of Ti+1 with success
probability at least 1− ε/4. The rest of the proof follows as before.
For partial non-boolean functions: Let f : X × Y → Z ∪ {∗} be a partial function and let r be as before. Let
i ∈ {0, . . . , r2 − 1}. We follow a similar inductive argument as in the case of total non-boolean functions, except for the
definition of Ti+1|(T1 . . . Ti = t). As before we identify a set GOOD ⊆ {0, 1}i with Pr[T1 . . . Ti ∈ GOOD] ≥ 1− 2ε, such that
∀t ∈ GOOD, Pr[T1 . . . Ti = t] > 2−r and εt ≤ ε5/(2 · 154). Since r ≤ rec1,µε (f ), from the definition of rectangle bound and
the fact that µ is product, we have the following. For all S ⊆ Xwith µ(S × Y) > 2−r ,

Ey←Y
[
max
z∈Z
{Pr[f (X, y) = (z or ∗)|X ∈ S]}

]
< 1− ε. (13)

For t ∈ {0, 1}i and y ∈ Y, let εt,y be as before and let

δt,y
def
= max

z∈Z
{Pr[f (X, y) = (z or ∗)|(T1 . . . Ti = t)]} .

Recall that conditioning on t implies a subset ofX. For t /∈ GOOD, let us define Ti+1|(T1 . . . Ti = t) to be 0. Let us assume
t ∈ GOOD fromnowon. LetGOODt ⊆ Y be such that∀y ∈ GOODt , δt,y ≤ 1−ε/2. UsingMarkov arguments as beforewe get

a yt ∈ GOODt , such that δt,yt ≤ 1−ε/2 and εt,yt ≤ (ε/15)
4 def
= ε′. Since δt,yt ≤ 1−ε/2 it implies Pr[f (X, yt) = ∗] ≤ 1−ε/2.

Observe now that can we get a set St,yt ⊆ Z such that,

min{Pr[f (X, yt) ∈ St,yt |(T1 . . . Ti = t)], Pr[f (X, yt) ∈ Z− St,yt |(T1 . . . Ti = t)]} ≥ ε/6. (14)

Let O be the output of Bob when Y = yt . All along the arguments below we condition on T1 . . . Ti = t . Note that since Bob
outputs some z ∈ Z even if f (x, y) = ∗, let us assume without loss of generality that q def

= Pr[O ∈ St,yt ] ≥ 1/2 (otherwise
similar arguments would hold by switching the roles of St,yt andZ− St,yt ). Let us define Ti+1 to be 1 if (f (X, yt) ∈ St,yt ∪{∗})
and 0 otherwise. Note that Eq. (14) implies Pr[Ti+1 = 1] ≤ 1− ε/6. Now,

q = Pr[O ∈ St,yt |(Ti+1 = 1)] · Pr[Ti+1 = 1] + Pr[O ∈ St,yt and Ti+1 = 0]
≤ Pr[O ∈ St,yt |(Ti+1 = 1)] · Pr[Ti+1 = 1] + ε

′

≤ Pr[O ∈ St,yt |(Ti+1 = 1)] · (1− ε/6)+ ε
′.

This implies,

Pr[O ∈ St,yt |(Ti+1 = 1)] ≥
q− ε′

1− ε/6
≥ (q− ε′)(1+ ε/6)
= q+ qε/6− ε′(1+ ε/6)
≥ q+ ε/12− ε(1+ 1/12)/(23 · 154) (since q ≥ 1/2 and ε ≤ 1/2)
≥ q+ 0.08ε. (15)
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Let us define O′ = 1 iff O ∈ St,yt and O
′
= 0 otherwise. Then,

I(M : Ti+1) ≥ I(O′ : Ti+1)
= S(O′)− Pr[Ti+1 = 1] · S(O′|(Ti+1 = 1))− Pr[Ti+1 = 0] · S(O′|(Ti+1 = 0))
≥ S(q)− S(q+ 0.08ε)− S(ε′)
≥ 1− S(0.5+ 0.08ε)− S(ε′)
≥ 1− (1− 2(0.08ε)2)− 2(ε/15)2

≥ ε2/300.

The second inequality above follows using Eq. (15); the fact that Pr[O′ = 1|(Ti+1 = 0)] ≤ εt,yt ≤ ε′ ≤ 0.5 (since
(O′ = 1|(Ti+1 = 0)) is an error event); and the fact that the function S(p) is monotonically decreasing in [ 12 , 1] and
monotonically increasing in [0, 12 ]. The third inequality again follows since the function S(p) is concave and monotonically
decreasing in [ 12 , 1]. The fourth inequality follows from Fact 1. The rest of the proof follows as before. �

5. Application: Security of boolean extractors against quantum adversaries

In this section we present a consequence of our lower bound result Theorem 13 to prove security of extractors against
quantum adversaries. In this section we are only concerned with boolean extractors. We begin with following definitions.

Definition 7 (Min-Entropy). Let P be a distribution on [N]. The min-entropy of P denoted S∞(P) is defined to be
− logmaxi∈[N] P(i).

Definition 8 (Strong Extractor). Let ε ∈ (0, 1/2). Let Y be uniformly distributed on Y. A strong (k, ε)-extractor is a function
h : X× Y→ {0, 1} such that for any random variable X distributed onX, independent of Y and with S∞(X) ≥ kwe have,

‖h(X, Y )Y − U ⊗ Y‖1 < 2ε,

where U is the uniform distribution on {0, 1}.
In other words, even given Y (and not X); h(X, Y ) is still close (in `1 distance) to being a uniform bit.

Let X, Y , h be as in the definition above. Let us consider a randomvariableM , taking values in some setM, correlatedwith
X and independent of Y . Let us now limit the correlation thatM has with X , in the sense that ∀m ∈M, S∞(X |M = m) ≥ k.
Since h is a strong (k, ε)-extractor, it is easy to verify that in such a case,

∀m ∈M, ‖h(X, Y )Y |(M = m)− U ⊗ Y |(M = m)‖1 < 2ε
⇒ ‖h(X, Y )YM − U ⊗ YM‖1 < 2ε.

In other words, still close (in `1 distance) to being a uniform bit.
Now let us ask what happens if the systemM is a quantum system. In that case, is it still true that givenM and Y , h(X, Y )

is close to being a uniform bit? This question has been increasingly studied in recent times specially for its applications for
example in privacy amplification in Quantum key distribution protocols and in the Quantum bounded storage models [10,
13,14].
HoweverwhenM is a quantum system, themin-entropy of X , conditioned onM , is not easily captured since conditioning

on a quantum system needs to be carefully defined. An alternate way to capture the correlation between X andM is via the
guessing probability. Let us consider the following definition.

Definition 9 (Guessing-Entropy). Let X be a classical random variable taking values in X. Let M be a correlated quantum
system with the joint classical-quantum state being ρXM =

∑
x Pr[X = x]|x〉〈x| ⊗ ρx. Then the guessing-entropy of X given

M , denoted Sg(X ← M) is defined to be:

Sg(X ← M) def
= − logmax

E

∑
x

Pr(X = x)Tr(Exρx)

where the maximum is taken over all POVMs E def
= {Ex : x ∈ X}. (Please refer to [17] for a definition of POVMs).

The guessing-entropy turns out to be a useful notion in the quantum contexts. Let h, X, Y ,M be as before, where M is a
quantum system. König and Terhal [14] have in a high level shown that if the guessing entropy Sg(X ← M), is at least k,
then givenM and Y (and not X), h(X, Y ) is still close to a uniform bit. We state their precise result here.

Theorem 14. Let ε ∈ (0, 1/2). Let h : X×Y→ {0, 1} be a strong (k, ε)-extractor. Let U be the uniform distribution on {0, 1}.
Let YXM be a classical-quantum system with YX being classical and M quantum. Let Y be uniformly distributed and independent
of XM and,

Sg(X ← M) > k+ log 1/ε.

Then,

‖h(X, Y )YM − U ⊗ YM‖1 < 6
√
ε.
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We show a similar result as follows.
Theorem 15. Let ε ∈ (0, 1/2). Let h : {0, 1}n×{0, 1}m → {0, 1} be a strong (k, ε)-extractor. Let U be the uniform distribution
on {0, 1}. Let YXM be a classical-quantum system with YX being classical and M quantum. Let X be uniformly distributed on
{0, 1}n. Let Y be uniformly distributed on {0, 1}m and independent of XM and,

I(X : M) < b(ε) · (n− k). (16)
Then,

‖h(X, Y )YM − U ⊗ YM‖1 < 1− a(ε) (17)

where a(ε) def
=

1
4 · (

1
2 − ε)

3 and b(ε) def
= ε · (S( 14 −

ε
2 )− S(

1
8 −

ε
4 )).

Before proving Theorem 15, we will make a few points comparing it with Theorem 14.
1. Let’s observe that ifM is a classical system, then

Sg(X ← M) = − log Em←M [2−S∞(X |M=m)]
≤ Em←M [S∞(X |M = m) · loge 2]
≤ Em←M [S∞(X |M = m)]
≤ S(X |M).

The first inequality follows from the convexity of the exponential function. The last inequality follows easily from
definitions. This implies,

I(X : M) = S(X)− S(X |M) ≤ S(X)− Sg(X ← M). (18)
So if M is classical, then the implication of Theorem 15 appears stronger than the implication in Theorem 14 (although
being weak in terms of the dependence on ε.) We cannot show the inequality (18) when M is a quantum system but
conjecture it to be true. If the conjecture is true, Theorem 15 would have stronger implication than Theorem 14 in the
quantum case as well.

2. The proof of Theorem 14 in [14] crucially uses some properties of the so called pretty good measurements (PGMs). Our
result follows here without using PGMs and via completely different arguments.

3. Often in applications concerning the Quantum bounded storage model, an upper bound on the number of qubits of M
is available. This implies the same upper bound on I(X : M). If this bound is sufficiently small such that it suffices the
assumption of Theorem 15, then h could be used to extract a private bit successfully, in the presence of a quantum
adversary.

4. Since Theorem 15 concerns mutual information between the systems X andM , X is required to be uniformly distributed
in the statement of it. However since Theorem 14 concerns the guessing entropy of X given M , the requirement that X
needs to be uniformly distributed does not figure in and just its guessing entropy givenM is required to be large.

Let us return to the proof of Theorem 15.We begin with the following key observation. It essentially states that a boolean
function which can extract a bit from sources of low min-entropy has high one-way rectangle bound under the uniform
distribution.

Lemma 7. Let ε ∈ (0, 1/2). Let h : {0, 1}n × {0, 1}m → {0, 1} be a strong (k, ε)-extractor. Let µ def
= Un ⊗ Um, where Un,Um

are uniform distributions on {0, 1}n and {0, 1}m respectively. Then

rec1,µ1/2−ε(h) > n− k.

Proof. Let R def
= S × {0, 1}m be any one-way rectangle where S ⊆ {0, 1}n with µ(R) ≥ 2−n+k which essentially means that

|S| ≥ 2k. Let X be uniformly distributed on S. This implies that S∞(X) ≥ k. Let Y be uniformly distributed on {0, 1}m and
independent of X . Since h is a strong extractor, from Definition 8 we have (where U is the uniform distribution on {0, 1}):

‖h(X, Y )Y − U ⊗ Y‖1 < 2ε
⇔ Ey←Y [‖h(X, y)− U‖1] < 2ε. (19)

Let g : {0, 1}m → {0, 1} be any function. Then,

Pr[h(X, Y ) = g(Y )] =
1
2
· ‖h(X, Y )− g(Y )‖1

=
1
2
· Ey←Y [‖h(X, y)− g(y)‖1]

≤
1
2
· Ey←Y [‖h(X, y)− U‖1 + ‖U − g(y)‖1]

=
1
2
+
1
2
· Ey←Y [‖h(X, y)− U‖1] (since ∀y, ‖U − g(y)‖1 = 1)

<
1
2
+ ε (from Eq. (19)).
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Now from Definition 5, above implies that µR (uniform distribution on R) is not 1/2 − ε monochromatic. Hence from the
definition of the rectangle bound (Definition 6) we have rec1,µ1/2−ε(h) > n− k. �

We will also need the following information theoretic fact.
Lemma 8. Let RQ be a joint classical-quantum system where R is a classical boolean random variable. Let U be the uniform
distribution on {0, 1}. There is a measurement that can be done on Q to guess value of R with probability

1
2
+
1
2
· ‖RQ − U ⊗ Q‖1.

Proof. For a ∈ {0, 1}, let the quantum state of Q when R = a be ρa. Let us note that
‖RQ − U ⊗ Q‖1 = ‖ Pr[R = 0]ρ0 − Pr[R = 1]ρ1‖1.

Now Helstrom’s Theorem (Theorem 9) immediately helps us conclude the desired. �

We are now ready for the proof of Theorem 15.
Proof of Theorem 15. We prove our result in the contrapositive manner. Let,

‖h(X, Y )MY − U ⊗MY‖1 > 1− a(ε).
Note that this is equivalent to:

Ey←Y [‖h(X, y)M − U ⊗M‖1] > 1− a(ε). (20)
Let us consider a one-way communication protocol P for h where the inputs X and Y of Alice and Bob respectively are

drawn independently from the uniform distributions on {0, 1}n and {0, 1}m respectively. Let µ be the distribution of XY .
Now let M be sent as the message of Alice in P . Note that Lemma 8 implies that for a given input y, Bob will be able to
output the correct answer with probability 12 +

1
2 · ‖h(X, y)M − U ⊗M‖1. Hence we get that the distributional error of P

will be at most

Ey→Y
[
1−

1
2
−
1
2
· ‖h(X, y)M − U ⊗M‖1

]
=
1
2
−
1
2
· Ey→Y

[
1
2
· ‖h(X, y)M − U ⊗M‖1

]
<
1
2
−
1
2
(1− a(ε)) (from Eq. (20))

=
a(ε)
2
=
1
8
·

(
1
2
− ε

)3
.

Let ε′ def= 1/2− ε. Therefore P has distributional error< ε′3/8. Arguing as in the proof of Theorem 13 we get that,

I(X : M) ≥
1
2
· (1− 2ε′)(S(ε′/2)− S(ε′/4)) · rec1,µ

ε′
(h)

= ε ·

(
S
(
1
4
−
ε

2

)
− S

(
1
8
−
ε

4

))
· rec1,µ1/2−ε(h)

= b(ε) · rec1,µ1/2−ε(h)

> b(ε) · (n− k).

The last inequality follows from Lemma 7 since h is a strong (k, ε)-extractor. �

6. Conclusion

The main goal of this work is to show bounds for general total functions instead of specific ones, with the motivation of
approaching the conjecture of R1,pub(f ) = O(Q1,pub(f )) mentioned in Section 1. In the wake of our quantum lower bound
result, it is natural to askwhether in the two-waymodel also, there is a similar relationship between quantum distributional
communication complexity of a function f , under product distributions, and the corresponding rectangle bound.
Further explorations along this approach are expected. For example, concerning the classical upper bound, a natural

question to ask is whether the bound could be tightened, especially in terms of its dependence on the mutual information
I(X : Y ) between the inputs, under a given non-product distribution. Is it actually true that D1,µε (f ) = O(I(X : Y )+ VC(f ))?
Also, can we say more on the quantum lower bound result for non-product distributions?
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Appendix

Let n ≥ 1 be a sufficiently large integer. Let the Noisy Partial Matching (NPMn) function be as follows.

Input:
Alice: A string x ∈ {0, 1}n.
Bob: A stringw ∈ {0, 1}n and a MatchingM on [2n] comprising of n disjoint edges.

Output:
For a matchingM and a string x, letMx represent the n bit string corresponding to the n edges ofM
obtained as follows. For an edge e def

= (i, j) inM the bit included inMx is xi⊕ xj, where xi, xj represent
the i, j-th bit of x.

Output bit b ∈ {0, 1} if and only if the Hamming distance between strings (Mx) ⊕ bn and w
is at most n/3. If there is no such bit b then output 0.

Now let the non-product distribution µ on inputs of Alice and Bob be as follows. Let Alice be given x drawn uniformly
from {0, 1}n. Let Bob be givenmatchingM drawn uniformly from the set of all matchings on [2n]. With probability 1/2, Bob
is given w uniformly from the set of all strings with Hamming distance at most n/3 from Mx and with probability 1/2, he
is givenw uniformly from the set of all strings with Hamming distance at most n/3 from (Mx)⊕ 1n. Note that in µ there is
correlation between the inputs of Alice and Bob and hence µ is non-product. Now we have the following.

Theorem 16 ([5], Implicit). Let n ≥ 1 be a sufficiently large integer and let ε ∈ (0, 1/2). LetNPMn andµ be as described above.
Then, rec1,µε (NPMn) = Ω(

√
n) whereas Q1,µε (NPMn) = O(log n).
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