

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 948–977

TIGHT BOUNDS FOR RANDOMIZED
AND QUANTUM LOCAL SEARCH∗

SHENGYU ZHANG†

Abstract. The problem Local Search, which finds a local minimum of a black-box function
on a given graph, is of both practical and theoretical importance to combinatorial optimization,
complexity theory, and many other areas in theoretical computer science. In this paper, we study
the problem in both the randomized and the quantum query models and give new lower and upper
bound techniques in both models. The lower bound technique works for any graph that contains
a product graph as a subgraph. Applying it to the Boolean hypercube {0, 1}n and the constant-
dimensional grids [n]d, two particular product graphs that recently drew much attention, we get the
following tight results: RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6), RLS([n]d) =
Θ(nd/2) for d ≥ 4, QLS([n]d) = Θ(nd/3) for d ≥ 6. Here RLS(G) and QLS(G) are the randomized
and quantum query complexities of Local Search on G, respectively. These improve the previous
results by Aaronson [in Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of
Computing, 2004, pp. 465–474], Ambainis (unpublished), and Santha and Szegedy [in Proceedings
of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, 2004, pp. 494–501]. Our
new algorithms work well when the underlying graph expands slowly. As an application to [n]2, a
new quantum algorithm using O(

√
n(log log n)1.5) queries is given. This improves the previously

best known upper bound of O(n2/3) (see Aaronson [in Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, 2004, pp. 465–474]), and implies that Local Search on grids
exhibits different properties in low dimensions.

Key words. optimization, local search, quantum algorithm, quantum query complexity, ran-
domized algorithm, randomized decision tree complexity

AMS subject classifications. 68Q17, 68W20, 68Q10, 68Q25

DOI. 10.1137/06066775X

1. Introduction. Many important combinatorial optimization problems arising
in both theory and practice are NP-hard, which forces one to resort to heuristic
searches in practice. One popular approach is the local search, by which one first
defines a neighborhood structure and then finds a solution that is locally optimal with
respect to this neighborhood structure. In the past two decades, the local search
approach has been extensively developed and “has reinforced its position as a stan-
dard approach in combinatorial optimization” in practice [1]. We use Local Search
to denote the problem of finding a locally optimal point. Besides the practical ap-
plications, the problem also has many connections to complexity theory, especially
to the complexity classes PLS1 and TFNP.2 For example, the 2SAT-FLIP problem
is Local Search on the Boolean hypercube graph {0, 1}n, with the objective function
being the sum of the weights of the clauses that the truth assignment x ∈ {0, 1}n sat-
isfies. This problem is complete in PLS, implying that the Boolean hypercube {0, 1}n

has a central position in the study of Local Search. Local Search is also related to

∗Received by the editors August 21, 2006; accepted for publication (in revised form) June 2,
2009; published electronically September 2, 2009. This research was mainly done when the author
was at Princeton University supported in part by NSF grants CCR-0310466 and CCF-0426582.
A preliminary version of this paper appeared in Proceedings of the Thirty-Eighth Annual ACM
Symposium on Theory of Computing, 2006, pp. 634–643.

http://www.siam.org/journals/sicomp/39-3/66775.html
†Department of Computer Science and Engineering, The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong (syzhang@cse.cuhk.edu.hk).
1Polynomial Local Search, introduced by Johnson, Papadimitriou, and Yannakakis [14].
2The family of total function problems, introduced by Megiddo and Papadimitriou [18].

948

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 949

physical systems including folding proteins and to quantum adiabatic algorithms [2].
We refer readers to the papers [2, 19, 20] for more discussions and the book [3] for a
comprehensive introduction.

Precisely, Local Search on an undirected graph G = (V, E) is defined as follows.
Given a function f : V → N, find a vertex v ∈ V such that f(v) ≤ f(w) for all
neighbors w of v. A class of generic algorithms that has been widely used in practice
is as follows: We first set out with an initial point v ∈ V , then repeatedly search a
better/best neighbor until it reaches a local minimum. Though empirically this class
of algorithms works very well in most applications, relatively few theoretical results
are known about how good the generic algorithms are, especially for the randomized
(and quantum) algorithms.

Among models for theoretical studies, the query model has drawn much attention
[2, 4, 5, 16, 17, 20]. In this model, f is given by an oracle, which answers the query of
the form “f(v) =?” We care only about the number of queries made; all other compu-
tations are free. If we are allowed to toss coins to decide the next query and also allow
a small constant error probability, then we have a randomized query algorithm. If we
are allowed the use of quantum mechanics to query all the positions (and get corre-
sponding answers) in superposition, then we have a quantum query algorithm. (More
precise definitions of the query models and complexities are given in section 2.) The
deterministic, randomized, and quantum query complexities are the minimum num-
bers of queries needed to compute the function by a deterministic, randomized, and
quantum query algorithm, respectively. We use RLS(G) and QLS(G) to denote the
randomized and quantum query complexities of Local Search on graph G, respectively.

Previous upper bounds on a general N -vertex graph G are RLS(G) = O(
√

Nδ)
by Aldous [4] and QLS(G) = O(N1/3δ1/6) by Aaronson [2], where δ is the maximum
degree of G. Both algorithms actually fall into the category of generic algorithms
mentioned above, with the initial point picked as a best one over a certain number of
random samples. Immediately, two questions can be asked:

1. On what graphs are these simple algorithms optimal?
2. For other graphs, what better algorithms can we have?

Clearly the first is a lower bound question, and the second is an upper bound
question.

Previously for lower bounds, Aaronson [2] showed the following results on two
special classes of graphs, the Boolean hypercube {0, 1}n and the constant-dimensional
grid [n]d:

RLS({0, 1}n) = Ω(2n/2/n2), QLS({0, 1}n) = Ω(2n/4/n);(1)

RLS([n]d) = Ω(nd/2−1/ log n), QLS([n]d) = Ω(nd/4−1/2/
√

log n).(2)

It has also been shown that QLS([n]2) = Ω(n1/4) by Santha and Szegedy in [20],
besides their main result that the deterministic and the quantum query complexities
of Local Search on any graph are polynomially related. However, the question

3. What are the true values of QLS and RLS on {0, 1}n and [n]d?
remains an open problem, explicitly stated in an earlier version of [2] and also (par-
tially) in [20].

In this paper, we answer questions 1 and 2 for large classes of graphs by giving
both new lower and upper bound techniques for randomized and quantum query
algorithms. As a consequence, we completely solve question 3, except for a few low-
dimensional grids [n]d, in which cases our new bounds also significantly improve the
old ones.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

950 SHENGYU ZHANG

1.1. Lower bounds.
Main ideas. Our proof of the quantum lower bounds uses the quantum adver-

sary method, which was originally proposed by Ambainis [7] and later generalized in
different ways [6, 8, 15, 24]. Recently Špalek and Szegedy made the picture clear by
showing that all these generalizations are equivalent in power [21]. On the other hand,
in proving lower bounds for a particular problem, some of the methods might be easier
to apply than the others. In our case, the technique in [24], which generalizes the one
in [6], turns out to work very well. Our proofs for the randomized lower bounds will
use the relational adversary method, which was proposed by Aaronson [2] inspired by
the quantum adversary method.

Both the quantum adversary method and the relational adversary method are
parameterized by input sets and weight functions on input pairs. Previous proofs
[2, 20] define the input sets and weight functions by using random walks on graphs.
It turns out that the probability that a random path passes a vertex v within T
steps, which we will refer to as the passing probability, plays an important role in
the resulting lower bounds: The smaller the passing probability is, the better the
lower bound is. Unfortunately in previously constructed random walks [2, 20], the
passing probability is not small enough to obtain tight lower bounds for Local Search
on {0, 1}n and [n]d.

Observe that both graphs {0, 1}n and [n]d can be naturally decomposed as the
product of two smaller graphs: {0, 1}n = {0, 1}m⊗{0, 1}n−m and [n]d = [n]m⊗[n]d−m.
Here for two graphs G1 = (V1, E1) and G2 = (V2, E2), their product G1 × G2 is the
graph G = (V, E), where V = V1 × V2 and

E = {(v1 ⊗ v2, v
′
1 ⊗ v2) : (v1, v

′
1) ∈ E1, v2 ∈ V2}(3)

∪ {(v1 ⊗ v2, v1 ⊗ v′2) : (v2, v
′
2) ∈ E2, v1 ∈ V1}.

A key idea in our proof that yields better lower bounds is a different construction
of random walk product graphs G1 × G2. Specifically, we first fix a long and self-
avoiding path P = (v0, · · · , vL) in G2, then design a random walk in G1 × G2 as
follows. The particle starts at (u, v0), where u is a vertex in G1 and v0 is the first
vertex on P in G2. It first goes to (u′, v0), where u′ is a random neighbor of u, and it
then goes to (u′, v1). That is, one step of the random walk in G1 × G2 is formed by
one step of the random walk in G1 followed by one step of the walk along the path P
in G2. The particle repeats this process of alternatively performing the walks in G1

and G2.
Since the walk in G2 is one-way, one can view it as a “clock” to record the number

of steps taken by the random walk in G1. A big advantage of adding this clock is
that the passing probability in G1 × G2, the probability that the random path in
G1 × G2 passes a vertex (u, vt) within T steps, is now the hitting probability of the
random walk in G1, the probability that a random walk (in G1) hits u in exactly t
steps. Naturally, the hitting probability is much smaller than the passing probability,
therefore eventually yielding better lower bounds for us. Another advantage of the
clock is that since the walk in G2 is self-avoiding, the resulting random path in G1×G2

is self-avoiding as well, which makes part of the analysis easier.
Results. We first describe a lower bound for general product graphs. Given a

graph G = (V, E), a random walk is a mapping W : V → 2V , where W (u) ⊆
{u}∪{v : (u, v) ∈ E}. At each step the random walk W goes from the current vertex
u to a uniformly random vertex in W (u). The walk W is regular if |W (u)| does not
depend on u. Denote by p(u, v, t) the probability that the random walk starting at

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 951

u is at v after exactly t steps. Let pt = maxu,v p(u, v, t). The following theorem is a
special case of the general one (Theorem 3.3) in section 3.

Theorem 1.1. Suppose G contains the product graph G1 × G2 as a subgraph,
and L is the length of the longest self-avoiding path in G2. Let T = 	L/2
. Then for
any regular random walk on G1, we have

(4) RLS(G) = Ω

(
T∑T

t=1 pt

)
, QLS(G) = Ω

(
T∑T

t=1

√
pt

)
.

When applying the theorem to {0, 1}n and [n]d, we need to decompose the graph
carefully. Take {0, 1}n = {0, 1}m × {0, 1}n−m for instance. On one hand, we hope
{0, 1}m is large since the hitting probability in a larger graph is smaller. On the other
hand, we also hope that {0, 1}n−m is large so that it contains a path which is long
enough to serve as the clock. A tradeoff thus exists, and an optimization over m
is needed. For [n]d, unfortunately, the optimal m is not an integer in general, and
section 4.2.2 shows how to get around this difficulty.

It is also worth noting that to apply Theorem 1.1, we need to know not only the
mixing time of the random walk in G1, but also its behavior before mixing (because
the summations in (4) are over the entire t = 1, . . . , T). So the applications are not
simply using standard upper bounds on the mixing times, but involving heavy analysis
(Lemma 4.1 and Proposition 4.2) on the entire mixing processes.

The results for {0, 1}n and [n]d improve previous ones and show tight bounds on
both RLS and QLS except for a few cases in the low-dimensional grids.

Theorem 1.2.

(5) RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6).

Theorem 1.3.

(6) RLS([n]d) = Θ(nd/2) if d ≥ 4, QLS([n]d) = Θ(nd/3) if d ≥ 6.

The bounds for the low-dimensional cases are summarized by the following table, where
the second and third rows are for RLS([n]d) and QLS([n]d), respectively.

d 2 3 4 5

R Ω(n
2
3), O(n) Ω(n

3
2 / log

1
2 n), O(n

3
2) - -

Q Ω(n
2
5), O(n

2
3) Ω(n

3
4), O(n) Ω(n

6
5), O(n

4
3) Ω(n

5
3 / log

1
3 n), O(n

5
3)

Note that the upper bounds are the ones given in [2, 4]. We include them here
for comparison to the lower bounds. See the next section for a better upper bound
for [n]2.

1.2. Upper bounds. In the second part of the paper, we consider upper bounds
for Local Search. While the generic algorithms [2, 4] are simple and proven to be
optimal for many graphs such as the ones mentioned above, they are far from optimal
for some other graphs. For example, it is not hard to see an O(log N) deterministic
algorithm for the line graph G. Therefore, a natural question is to characterize those
graphs on which Local Search is easy. It turns out that the (vertex) expansion plays
a key role. For a graph G = (V, E), the distance l(u, v) between two vertices u and
v is the length of the shortest path connecting them. (Here the length of a path is
the number of edges on the path.) Let c(k) = maxv∈V |{u : l(u, v) ≤ k}|. Clearly,
the smaller c(k) is, the more slowly the graph expands. (Actually c(k) is an upper

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

952 SHENGYU ZHANG

bound of the standard definition of the expansion.) We say a graph is of polynomial
growth if c(k) = O(kα) for some constant α ≥ 1. As a special case of Theorem 5.1 in
section 5, the following upper bounds for the graphs of polynomial growth hold.

Theorem 1.4. If c(k) = O(kα) for some constant α ≥ 1, then

RLS(G) =

{
O
(
dα−1 log log d

)
if α > 1,

O(log d log log d) if α = 1,
(7)

QLS(G) =

{
O
(
d

α−1
2 (log log d)1.5

)
if α > 1,

O(log d log log d) if α = 1,
(8)

where d is the diameter of the graph G.
Note that by Theorem 1.3, it is tempting to conjecture that Θ(nd/3) is the cor-

rect answer for QLS([n]d) for all d’s. The following corollary of the above Theorem,
however, implies that Local Search on grids exhibits different properties in low dimen-
sions. And we now see that one explanation of the difference is that the expansion is
smaller as d decreases.

Corollary 1.5. QLS([n]2) = O(
√

n(log log n)1.5).
Other related results. Before this paper, it was mentioned in [2] that Ambainis

showed QLS({0, 1}n) = Ω(2n/3/nO(1)) (unpublished).3

There has been subsequent work: After the preliminary version of this paper
appeared, Verhoeven independently showed an upper bound in terms of the genus of
the graph [23], giving an O(

√
n log log n) quantum algorithm for [n]2. Very recently,

by applying a different random walk in the graphs, Sun and Yao [22] showed that
RLS([n]2) = Ω(n1−δ), QLS([n]2) = Ω(n1/2−δ), and QLS([n]3) = Ω(n1−δ), which
(almost) closes three of the four gaps (RLS([n]2), QLS([n]2), QLS([n]3), QLS([n]4))
left in this paper.

2. Preliminaries and notation. We use [M] to denote the set {1, 2, . . . , M}.
For an n-bit binary string x = x0 · · ·xn−1 ∈ {0, 1}n, let x(i) = x0 · · ·xi−1(1 −
xi)xi+1 · · ·xn−1 be the string obtained by flipping coordinate i.

For graphs G1 = (V1, E1) and G2 = (V2, E2), we say that G1 is a subgraph of G2

if V1 ⊆ V2 and E1 ⊆ E2. Clearly, any local optimum in G2 is also a local optimum
in G1 (but not the other way around in general); therefore any lower bound for G1 is
also a lower bound for G2.

We let the variables v1 ⊗ v2 range over the set V1 × V2. There are various ways
to define a product graph G1 × G2 = (V1 × V2, E) by different choices of E. Three
possibilities are

1. E = {(v1⊗v2, v
′
1⊗v2) : (v1, v

′
1) ∈ E1, v2 ∈ V2}∪{(v1⊗v2, v1⊗v′2) : (v2, v

′
2) ∈

E2, v1 ∈ V1};
2. E′ = {(v1 ⊗ v2, v

′
1⊗ v′2) : (v1, v

′
1) ∈ E1 ∪ IV1 and (v2, v

′
2) ∈ E2 ∪ IV2}− IV1×V2 ,

where IV = {(v, v) : v ∈ V };
3. E′′ = {(v1 ⊗ v2, v

′
1 ⊗ v′2) : (v1, v

′
1) ∈ E1 ∪ IV1 or (v2, v

′
2) ∈ E2 ∪ IV2}− IV1×V2 .

It is clear that E ⊆ E′ ⊆ E′′, and our lower bound theorem will use the first definition
E, making the theorem as general as possible.

A path X in a graph G = (V, E) is a sequence (v1, · · · , vl) of vertices such that
for any pair (vi, vi+1) of vertices, either vi = vi+1 or (vi, vi+1) ∈ E. We use set(X) to

3Another unpublished result was mentioned in [20]: Verhoeven showed RLS([n]2) = Ω(n1−δ) for
any constant δ > 0. But according to Santha (personal communication), one of the two authors of
[20], the proof was never written up, and this question should be considered to be still open.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 953

denote the set of distinct vertices on path X . A path is self-avoiding if v1, · · · , vl are
all distinct. The length of a path (v1, · · · , vl) is l − 1. For two vertices u, v ∈ V , the
distance lG(u, v) is the length of a shortest path from u to v. The subscript G may
be omitted if no confusion is caused.

The (k, l)-hypercube Gk,l = (V, E), where V = [k]l and whose edge set is E =
{(u, v) : ∃i ∈ {0, · · · , l − 1}, such that |ui − vi| = 1 and uj = vj for all j = i}.
Sometimes we abuse the notation by using [k]l to denote Gk,l. Note that both the
Boolean hypercube and the constant-dimensional grid are special hypercubes.4

In an N -vertex graph G = (V, E), a Hamilton path is a path X = (v1, · · · , vN)
such that (vi, vi+1) ∈ E for any i ∈ [N − 1] and set(X) = V . It is easy to check
by induction that every hypercube [k]l has a Hamilton path. Actually, for l = 1, [k]
has a Hamilton path (1, · · · , k). Now suppose [k]l has a Hamilton path P ; then a
Hamilton path for [k]l+1 can be constructed as follows. First fix the last coordinate
to be 1 and go through P , then change the last coordinate to be 2 and go through
P in the reverse order, and then change the last coordinate to be 3 and go through
P , and so on. For each (k, l), we let HamPathk,l = (v1, · · · , vN) be the Hamilton
path constructed as above (where N = kl), and we define the successor function
Hk,l(vi) = vi+1 for i ∈ [N − 1].

Consider a function F : In → [M], where I = {0, 1, . . . , K − 1} is the alphabet
for each variable, As mentioned in section 1, a deterministic query algorithm for F
accesses the input x ∈ In only by making queries in the form of “xi =?.” Each query
has cost 1, and all the other computations between queries are free. A randomized
query algorithm is the same except that the algorithm can toss coins to decide the
next variable xi to ask. The quantum query model, formally introduced in [9], has
a working state in the form of

∑
i,a,z αi,a,z|i, a, z〉, where i ranges over [n], a ranges

over I, and z is the content in the working space. A quantum query on the input x
corresponds to an oracle Ox, a unitary operation defined by

(9) Ox

(∑
i,a,z

αi,a,z|i, a, z〉
)

=
∑
i,a,z

αi,a,z|i, a ⊕ xi, z〉,

where a ⊕ xi is the bitwise XOR of a and xi as two �log K�-bit strings. A T -query
quantum query algorithm works as a sequence of operations

(10) U0 → Ox → U1 → Ox → · · · → UT−1 → Ox → UT .

Here Ox is as defined above, and each Ut does not depend on the input x. In both
randomized and quantum query models, we can allow a double-sided small constant
error probability. The deterministic, randomized, and quantum query complexities,
denoted by D(F), R2(F), and Q2(F), are the minimum numbers of queries we need
to make in order to compute the function by a deterministic, randomized, and quan-
tum query algorithm, respectively. For more details on the query models and the
corresponding query complexities, we refer to [10] as an excellent survey.

In the setting of Local Search on graph G = (V, E), the input f : V → [M] is given
by the oracle. Classically the oracle answers the query “f(x) =?,” and quantumly the
oracle Of maps |v, a, z〉 to |v, a ⊕ f(v), z〉. We use RLS(G) and QLS(G) to denote
the randomized and quantum query complexities of Local Search on G, respectively.

4Here we identify the Boolean hypercube {0, 1}n and G2,n since they are isomorphic.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

954 SHENGYU ZHANG

2.1. The quantum and relational adversary methods. The quantum ad-
versary method is one of the two powerful tools for proving lower bounds on quantum
query complexity; see [13] for a comprehensive survey of this research area. In this
paper, we will use the quantum adversary method proposed in [24]. The definition
and theorem given here are a little more general than the original ones, but the proof
remains unchanged.

Definition 2.1. Let F : IN → [M] be an N -variate function. Let R ⊆ IN × IN

be a relation such that F (x) = F (y) for any (x, y) ∈ R. A weight scheme consists of
three weight functions w(x, y) > 0, u(x, y, i) > 0, and v(x, y, i) > 0 satisfying

(11) u(x, y, i)v(x, y, i) ≥ w2(x, y)

for all (x, y) ∈ R and i ∈ [N] with xi = yi. We further put

w(x) =
∑

y′:(x,y′)∈R

w(x, y′), w(y) =
∑

x′:(x′,y)∈R

w(x′, y),(12)

u(x, i) =
∑

y′:(x,y′)∈R,xi �=y′
i

u(x, y′, i), v(y, i) =
∑

x′:(x′,y)∈R,x′
i �=yi

v(x′, y, i).(13)

Theorem 2.2 (see Zhang [24]). For any F, R and any weight scheme w, u, v as
in Definition 2.1, we have

(14) Q2(F) = Ω

(
min

(x,y)∈R,i∈[N]: xi �=yi

√
w(x)w(y)

u(x, i)v(y, i)

)
.

In [2], Aaronson gives a nice technique for getting a lower bound for randomized
query complexity. We restate it using language similar to that of Theorem 2.2.

Theorem 2.3 (see Aaronson [2]). Let F : IN → [M] be an N -variate function.
Let R ⊆ IN × IN be a relation such that F (x) = F (y) for any (x, y) ∈ R. For any
weight function w : R → R

+, we have

(15) R2(F) = Ω
(

min
(x,y)∈R,i∈[N],xi �=yi

max
{

w(x)
w(x, i)

,
w(y)

w(y, i)

})
,

where

(16) w(x, i) =
∑

y′:(x,y′)∈R,xi �=y′
i

w(x, y′), w(y, i) =
∑

x′:(x′,y)∈R,x′
i �=yi

w(x′, y).

Note that we can think of Theorem 2.3 as having a weight scheme, too, but
requiring that u(x, y, i) = v(x, y, i) = w(x, y). This simple observation is used in the
proof of Theorems 1.2 and 1.3.

3. Lower bounds for Local Search on product graphs. In this section
we prove a theorem which is stronger than Theorem 1.1 due to a relaxation on the
conditions of the random walk. Suppose we are given a graph G = (V, E), a starting
vertex v0, and an assignment W : V ×N → 2V such that for each u ∈ V and t ∈ N, it
holds that W (u, t) ⊆ {u} ∪ {v : (u, v) ∈ E} and that |W (u, t)| = ct for some function
c of t. (Note that W (u, t) depends on t in general, and actually we will use this
dependence when proving lower bounds for [n]d.) Intuitively, W gives the candidates
that the walk goes to for the next step, and the random walk (G, v0, W) on graph G
proceeds as follows. It starts at v0, and at step t ∈ N, it goes from the current vertex
vt−1 to a uniformly random vertex in W (vt−1, t). We say a path (v0, v1, · · · , vT) is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 955

generated by the random walk if vt ∈ W (vt−1, t) for all t ∈ [T]. Denote by p(u, t1, v, t2)
the probability that the random walk is at v after step t2 under the condition that
the walk is at u after step t1.

Definition 3.1. The time-t hitting probability is

(17) pt = max{p(u, t1, v, t2) : u, v ∈ V, t1, t2 ∈ Z, t2 − t1 = t}.

For (u, u′) ∈ E, let q(u, u′, t1, v, t2) be the probability that the walk is at v after
step t2, under the conditions that (1) the walk is at u after step t1, and (2) the walk
does not go to u′ at step t1 + 1. The following lemma on the relation of the two
probabilities is obvious.

Lemma 3.2. If |W (u, t1 + 1)| > 1, then q(u, u′, t1, v, t2) ≤ 2p(u, t1, v, t2).
Proof. By considering the two cases of the step t1 + 1 (going to u′ or not), we

have
(18)

p(u, t1, v, t2) =
1

|W (u, t1 + 1)|p(u′, t1+1, v, t2)+
(

1 − 1
|W (u, t1 + 1)|

)
q(u, u′, t1, v, t2).

Thus

(19) q(u, u′, t1, v, t2) ≤ p(u, t1, v, t2)/
(

1 − 1
|W (u, t1 + 1)|

)
≤ 2p(u, t1, v, t2).

Theorem 3.3. Suppose G contains G1 × G2 (for two arbitrary graphs G1 and
G2) as a subgraph, and L is the length of the longest self-avoiding path in G2. Let
T = 	L/2
. Then for any random walk (G1, v0, W) on G1, we have

(20) RLS(G) = Ω

(
T∑T

t=1 pt

)
, QLS(G) = Ω

(
T∑T

t=1

√
pt

)
,

where pt is as defined in Definition 3.1 for the walk (G1, v0, W).
Proof. Without loss of generality, we assume G = G1 × G2, as Local Search on

a subgraph is no harder than Local Search on the original graph. Throughout the
proof, we will use x, y to denote vertices in G1, and z for vertices in G2.

We shall construct a random walk on G from the random walk (G1, v0, W) on
G1 and a simple one-way walk on G2. Starting from some fixed vertex in G, the
walk proceeds by one step of walk in G1 followed by two steps of walk in G2. (We
perform two steps of walk in G2 for technical reasons, and this is where the fac-
tor of 2 in definition T = 	L/2
 comes from.) Precisely, fix a self-avoiding path
(z0,0, z1,0, z1,1, z2,1, z2,2, · · · , zT,T−1, zT,T) of length 2T in G2. Let the set P contain
all the paths X in G in the form

(21)
X = (x0⊗z0,0, x1⊗z0,0, x1⊗z1,0, x1⊗z1,1, · · · , xT ⊗zT−1,T−1, xT ⊗zT,T−1, xT ⊗zT,T),

where x0 = v0 and (x0, x1, · · · , xT) is a path generated by the random walk (G1, v0, W).
Define a problem PathP : Given a path X ∈ P , find the end point xT ⊗zT,T . The path
X is accessed by an oracle, which takes a vertex v in G as input and outputs 1 or 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

956 SHENGYU ZHANG

depending on whether v ∈ set(X).5 The following claim says that the PathP problem
is not much harder than the problem Local Search in terms of query complexities.

Claim 1. R2(PathP) ≤ 2RLS(G), Q2(PathP) ≤ 4QLS(G).
Proof. Suppose we have a Q-query randomized or quantum algorithm A for Local

Search; we shall give a 2Q corresponding algorithm B for PathP . For any path X ∈ P ,
we define a function fX essentially in the same way as Aaronson did in [2]: For each
vertex v ∈ G, let

(22) fX(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lG(v, x0 ⊗ z0,0) + 3T if v /∈ set(X),
3(T − k) if v = xk ⊗ zk,k,

3(T − k) − 1 if v = xk+1 ⊗ zk,k = xk ⊗ zk,k,

3(T − k) − 2 if v = xk+1 ⊗ zk+1,k.

It is easy to verify that the only local minimum is xT ⊗ zT,T .
Given an oracle O and an input X of the Path problem, B simulates A to find

the local minimum of fX , which is also the end point of X . Whenever A needs to
make a query on v to get fX(v), B asks O whether v ∈ set(X). If v /∈ set(X),
then fX(v) = lG(v, x0 ⊗ z0,0) + 3T ; otherwise, v = x ⊗ zk+1,k or v = x ⊗ zk,k for
some x ∈ V and k. Note that k is known for any given vertex v (since the path
in G2 is self-avoiding and fixed). So if v = x ⊗ zk+1,k, then x = xk+1 and thus
fX(v) = 3(T − k) − 2. Now consider the case that v = x ⊗ zk,k. If k = 0, then let
fX(v) = 3T if v = x0 ⊗ z0,0 and fX(v) = 3T − 1 otherwise. If k ≥ 1, then B asks O
whether x⊗ zk,k−1 ∈ set(X). If yes, then v = xk ⊗ zk,k and thus fX(v) = 3(T − k); if
no, then v = xk+1⊗zk,k = xk⊗zk,k and thus fX(v) = 3(T −k)−1. Therefore, at most
2 queries on O can simulate one query on fX , so we have a 2Q algorithm for PathP

in the randomized model. The extra factor of 2 in the quantum case comes from the
standard cancellation process of the quantum queries. This proves the claim.

(Continuation of the proof of Theorem 3.3.) By Claim 1, it is sufficient to prove
lower bounds for PathP . We define a relation RP as follows:

(23) RP = {(X, Y) : X ∈ P, Y ∈ P, X and Y have different end points}.
For any pair (X, Y) ∈ RP , where

X = (x0⊗z0,0, x1⊗z0,0, x1⊗z1,0, x1⊗z1,1, · · · , xT ⊗zT−1,T−1, xT ⊗zT,T−1, xT ⊗zT,T)

and

Y = (y0⊗z0,0, y1⊗z0,0, y1⊗z1,0, y1⊗z1,1, · · · , yT ⊗zT−1,T−1, yT ⊗zT,T−1, yT ⊗zT,T),

we write X ∧ Y = k if x0 = y0, · · · , xk−1 = yk−1 but xk = yk. Intuitively, X ∧ Y = k
if k is the place where the paths X and Y diverge for the first time. Note that if
X ∧Y = k, then xk, yk ∈ W (xk−1, k) and thus |W (xk−1, k)| ≥ 2. By Lemma 3.2, this
implies that q(xk−1, xk, k − 1, v, j) ≤ 2pj−k+1.

5Note that it is actually an oracle for the function g : {0, 1}n → {0, 1}, with g(x) = 1 if and only
if x ∈ set(X). So, strictly speaking, an input of PathP should be specified as set(X) rather than
X, because in general, it is possible that X �= Y but set(X) = set(Y). For our problem, however,
it is easy to check that for any X, Y ∈ P , it holds that X = Y ⇔ set(X) = set(Y). Indeed, if
X �= Y , suppose the first diverging place is k; i.e., xk−1 = yk−1, but xk �= yk. Then Y will never
pass xk ⊗ zk,k−1 because the clock immediately ticks and the time always advances forward. (Or
more rigorously, the only point that is on Y and has the second component zk,k−1 is yk ⊗ zk,k−1.
Since yk �= xk, xk ⊗ zk,k−1 /∈ set(Y).)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 957

We choose the weight functions in Theorem 2.2 by letting

w(X, Y) = 1/|{Y ′ ∈ P : Y ′ ∧ X = k}|(24)
= 1/|{X ′ ∈ P : X ′ ∧ Y = k}|(25)
= 1/[(ck − 1)ck+1 · · · cT],(26)

where ct = |W (xt−1, t)| in random walk (G1, x0, W).
To calculate w(X) =

∑
Y ′:(X,Y ′)∈RP

w(X, Y ′), we group those Y ′ that diverge
from X at the same place k′:

w(X) =
T∑

k′=1

∑
Y ′:(X,Y ′)∈RP

X∧Y ′=k′

w(X, Y ′)(27)

=
T∑

k′=1

∑
Y ′:(X,Y ′)∈RP

X∧Y ′=k′

1
|{Y ′ ∈ P : Y ′ ∧ X = k′}|(28)

=
T∑

k′=1

PrY ′ [(X, Y ′) ∈ RP |Y ′ ∧ X = k′](29)

=
T∑

k′=1

PrY ′ [(y′)T = xT |Y ′ ∧ X = k′].(30)

Here equality (29) holds because all paths diverging from X for the first time at
k′ have the same probability 1/[(ck′ − 1)ck′ · · · cT]. Also note that the probability
in the last equality is nothing but 1 − q(xk′−1, xk′ , k′ − 1, xT , T), which is at least
1 − 2pT−k′+1. So we have

(31) w(X) ≥ T − 2
T∑

k′=1

pT−k′+1 = T − 2
T∑

t=1

pt.

Similarly, we have w(Y) ≥ T − 2
∑T

t=1 pt, too.
Now we describe u(X, Y, i) and v(X, Y, i), where i is a point xj+r ⊗ zj+s,j ∈

set(X)−set(Y) or yj+r ⊗zj+s,j ∈ set(Y)−set(X). Here (r, s) ∈ {(0, 0), (1, 0), (1, 1)},
and 0 ≤ j ≤ j + r ≤ T . Let
(32)
u(X, Y, xj+r ⊗ zj+s,j) = ak,j,r,sw(X, Y), u(X, Y, yj+r ⊗ zj+s,j) = bk,j,r,sw(X, Y),

(33)
v(X, Y, xj+r ⊗ zj+s,j) = bk,j,r,sw(X, Y), v(X, Y, yj+r ⊗ zj+s,j) = ak,j,r,sw(X, Y),

where ak,j,r,s and bk,j,r,s will be given later (satisfying ak,j,r,sbk,j,r,s = 1, which makes
u, v, w a weight scheme). We shall calculate u(X, i) and v(Y, i) for i = xj+r ⊗zj+s,j ∈
set(X) − set(Y); the other case i = yj+r ⊗ zj+s,j is symmetric. Note that if xj+r ⊗
zj+s,j /∈ set(Y ′) and X ∧ Y ′ = k′, then k′ ≤ j + r.

To apply Theorems 2.2 and 2.3, let us calculate the quantities u(x, i) and v(y, i)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

958 SHENGYU ZHANG

in Definition 2.1:

u(X, xj+r ⊗ zj+s,j) =
j+r∑
k′=1

∑
Y ′:(X,Y ′)∈RP ,X∧Y ′=k′

xj+r⊗zj+s,j /∈set(Y ′)

ak′,j,r,sw(X, Y ′)(34)

≤
j+r∑
k′=1

∑
Y ′:X∧Y ′=k′

ak′,j,r,sw(X, Y ′)(35)

=
j+r∑
k′=1

ak′,j,r,s.(36)

The computation for v(Y, xj+r ⊗ zj+s,j) is a little more complicated. By definition,

vY,xj+r⊗zj+s,j =
j+r∑
k′=1

∑
X′:(X′,Y)∈RP , X′∧Y =k′,

xj+r⊗zj+s,j∈set(X′)

bk′,j,r,sw(X ′, Y)(37)

≤
j+r∑
k′=1

∑
X′:X′∧Y =k′,

xj+r⊗zj+s,j∈set(X′)

bk′,j,r,sw(X ′, Y)(38)

=
j+r∑
k′=1

bk′,j,r,sPrX′ [xj+r ⊗ zj+s,j ∈ set(X ′)|X ′ ∧ Y = k′].(39)

By adding the clock, the passing probability PrX′ [xj+r ⊗ zj+s,j ∈ set(X ′)|X ′ ∧ Y =
k′] is roughly the hitting probability q(yk′−1, yk′ , k′ − 1, xj+r, j) + q(yk′−1, yk′ , k′ −
1, xj+r, j + 1) except for some boundary cases. To be more precise, define

Boundk′,j,r,s = 2pj−k′+2 · λ[s = 1 OR j < T](40)
+ 2pj−k′+1 · λ[s = 0 AND (k′ ≤ j OR r = 0)],

where the Boolean function λ[φ] = 1 if φ is true and 0 otherwise. Then we have the
following claim.

Claim 2. PrX′ [xj+r ⊗ zj+s,j ∈ set(X ′)|X ′ ∧ Y = k′] ≤ Boundk′,j,r,s.
Proof. We study the probability PrX′ [xj+r⊗zj+s,j ∈ set(X ′)|X ′∧Y = k′] case by

case. If s = 1, then r = 1, and xj+1⊗zj+1,j ∈ set(X ′) if and only if xj+1 = (x′)j+1. So
(41)
PrX′ [xj+r⊗zj+s,j ∈ set(X ′)|X ′∧Y = k′] = q(yk′−1, yk′ , k′−1, xj+1, j+1) ≤ 2pj−k′+2

by Lemma 3.2. If s = 0, then xj+r ⊗ zj,j ∈ set(X ′) if and only if “xj+r = (x′)j or
xj+r = (x′)j+1.” Also note that

(42) PrX′ [xj+r = (x′)j |X ′ ∧ Y = k′] = q(yk′−1, yk′ , k′ − 1, xj+r , j)

unless k′ = j+1 and r = 1, in which case PrX′ [xj+r = (x′)j |X ′∧Y = k′] = 0 because
xj+1 ⊗ zj,j /∈ set(Y), but (x′)j ⊗ zj,j = yj ⊗ zj,j ∈ set(Y). The other probability
(43)

PrX′ [xj+r = (x′)j+1|X ′ ∧ Y = k′] =

{
q(yk′−1, yk′ , k′ − 1, xj+r, j + 1) if j ≤ T − 1,

0 if j = T.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 959

Putting all cases together, we get the desired result. This proves the claim.
(Continuation of the proof of Theorem 3.3.) Claim 2 implies that

(44) v(Y, xj+r ⊗ zj+s,j) ≤
j+r∑
k′=1

bk′,j,r,sBoundk′,j,r,s.

The symmetric case of u(X, Y, i) and v(X, Y, i) where i is a point yj+r ⊗ zj+s,j ∈
set(Y) − set(X) can be dealt with in the same way, yielding u(X, yj+r ⊗ zj+s,j) ≤∑j+r

k′=1 bk′,j,r,sBoundk′,j,r,s and v(Y, yj+r ⊗ zj+s,j) ≤
∑j+r

k′=1 ak′,j,r,s.
By the definition of Boundk′,j,r,s, it holds for any (j, r, s) that

(45)
j+r∑
k′=1

Boundk′,j,r,s ≤ 4
T∑

t=1

pt and
j+r∑
k′=1

√
Boundk′,j,r,s ≤ 4

T∑
t=1

√
pt.

Now for the randomized lower bound, let ak′,j,r,s = bk′,j,r,s = 1; then

RLS(G) = Ω

(
min
j,r,s

max

{
T − 2

∑T
t=1 pt

j + r
,

T − 2
∑T

t=1 pt∑j+r
k′=1 Boundk′,j,r,s

})
= Ω

(
T∑T

t=1 pt

)
.

(46)

For the quantum lower bound, pick

(47) ak′,j,r,s =
√

Boundk′,j,r,s and bk′,j,r,s = 1/
√

Boundk′,j,r,s.

Then

QLS(G) = Ω

⎛
⎜⎝min

j,r,s

√√√√√
(
T − 2

∑T
t=1 pt

)(
T − 2

∑T
t=1 pt

)
(∑j+r

k′=1

√
Boundk′,j,r,s

)(∑j+r
k′=1

√
Boundk′,j,r,s

)
⎞
⎟⎠(48)

= Ω

(
T∑T

t=1

√
pt

)
.(49)

This completes the proof of Theorem 3.3.

4. Applications to the two special graphs. In this section, we will apply
Theorem 3.3 to the two special graphs. Note that in both cases, the probability pt is
not easy to upper bound. Also note that we need to pick not only the random walk,
but also the way to decompose the graph.

4.1. Lower bounds for Local Search on the Boolean hypercube. To ap-
ply Theorem 3.3 to {0, 1}n, we decompose the whole graph into the two parts {0, 1}m

and {0, 1}n−m, where m = 	(n+log2 n)/2
 in the proof of the randomized lower bound
and m = 	(2n+log2 n)/3
 in the proof of the quantum lower bound. In both the ran-
domized and quantum cases, pick the random walk ({0, 1}m, v0, W), where v0 = 0m ∈
{0, 1}m and W (x, t) = {x(i) : i ∈ {0, · · · , m − 1}} for each vertex x = x0 · · ·xm−1 ∈
{0, 1}m and each t ∈ N. (Recall that x(i) = x0 · · ·xi−1(1− xi)xi+1 · · ·xm−1.) Finally,
note that the longest self-avoiding path of the graph {0, 1}n−m is a Hamilton path
with length L = 2n−m − 1.

The following bounds on pt are rather loose for 10 < t ≤ m2 but sufficient for our
purpose.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

960 SHENGYU ZHANG

Lemma 4.1. For any t ∈ N, we have

(50) pt =

⎧⎪⎨
⎪⎩

O(m−	t/2
) if t ≤ 10,

O(m−5) if 10 < t ≤ m2,

O(2−m) if t > m2.

Once we prove the lemma, Theorem 1.2 follows immediately. Actually, for the ran-
domized lower bound, T = Θ(2n/2/n1/2) and

∑T
t=1 pt = O(1/n). Thus RLS({0, 1}n) =

Ω(
√

n2n/2). For the quantum lower bound, let T = Θ(2n/3/n1/3) and
∑T

t=1

√
pt =

O(1/
√

n). Thus QLS({0, 1}n) = Ω(2n/3n1/6). Next we prove the lemma.
Proof of Lemma 4.1. Consider that we put t balls randomly into m bins one by

one. The jth ball goes into the ijth bin. Denote by ni the total number of balls in
the ith bin. We write ni ≡ bi if bi = ni mod 2. We say that (i1, · · · , it) generates
the parity sequence (b1, · · · , bm), or simply that (i1, · · · , it) generates (b1, · · · , bm),
if ni ≡ bi for all i ∈ [m]. For b1 · · · bm ∈ {0, 1}m, denote by p(t)[b1, · · · , bm] the
probability that ni ≡ bi for all i ∈ [m]. Let p(t) = maxb1,··· ,bm p(t)[b1, · · · , bm]. Since
flipping each coordinate twice amounts to no flipping at all, it is easy to see that
p(t) = pt in Lemma 4.1, so it is enough to prove the same bounds in Lemma 4.1
for p(t).

We start with several simple observations. First, we assume that t and
∑m

i=1 bi

have the same parity, because otherwise the probability is 0 and the lemma holds
trivially. Second, by the symmetry, any permutation of b1, · · · , bm does not change
p(t)[(b1, · · · , bm)]. Third, p(t)[(b1, · · · , bm)] decreases if we replace two 1’s in b1, · · · , bm

by two 0’s. Precisely, if we have two bi’s being 1, say b1 = b2 = 1, then p(t)[(b1, · · · , bm)]
< p(t)[(0, 0, b3, · · · , bm)]. In fact, we note that

p(t)[(b1, · · · , bm)]

=
1

mt

∑
n1+···+nm=t

ni≡bi,i∈[m]

t!
n1! · · ·nm!

(51)

=
1

mt

∑
n3+···+nm≤t
ni≡bi,i=3,...,m

⎛
⎜⎝ t!

(n1 + n2)!n3! · · ·nm!

∑
n1+n2=t−n3−···−nm

ni≡bi,i=1,2

(n1 + n2)!
n1!n2!

⎞
⎟⎠ ,(52)

where, as usual, we let 0! = 1. If n3 + · · · + nm < t, then

(53)
∑

n1+n2=t−n3−···−nm
ni≡1,i=1,2

(n1 + n2)!
n1!n2!

=
∑

n1+n2=t−n3−···−nm
ni≡0,i=1,2

(n1 + n2)!
n1!n2!

.

If n3 + · · · + nm = t, then the only possible (n1, n2) is (0, 0), so

(54)
∑

n1+n2=t−n3−···−nm
ni≡1,i=1,2

(n1 + n2)!
n1!n2!

= 0,
∑

n1+n2=t−n3−···−nm
ni≡0,i=1,2

(n1 + n2)!
n1!n2!

= 1.

Thus p(t)[(1, 1, b3, · · · , bm)] < p(t)[(0, 0, b3, · · · , bm)].
By these observations, it is sufficient to prove the lemma for the case p(t)[(0, · · · , 0)]

if t is even, and for the case p(t)[(1, 0, · · · , 0)] if t is odd. Note that if t is even, then

(55) p(t)[(0, · · · , 0)] =
m∑

i=1

Pr[i1 = i]Pr[(i2, · · · , it) generates (ei)],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 961

where ei is the standard m-bit basis vector with only coordinate i being 1 and
all other coordinates being 0. By symmetry, p(t−1)[e1] = · · · = p(t−1)[em]; thus
p(t)[(0, · · · , 0)] = p(t−1)[e1] = p(t−1)[1, 0, · · · , 0]. Therefore, it is enough to show the
lemma for even t.

We now express p(t)[0, · · · , 0] in two ways. One is to prove the first case (t ≤ 10)
in the lemma, and the other is for the second case (10 < t ≤ m2) and the third case
(t > m2) in the lemma.

To avoid confusion, we write m explicitly as a subscript:
p
(t)
m [b1, · · · , bm]. We consider which bin(s) the first two balls are put into:

p(t)
m [0, · · · , 0] = Pr[i1 = i2]p(t−2)

m [0, · · · , 0] + Pr[i1 = i2]p(t−2)
m [1, 1, 0, · · · , 0](56)

=
1
m

p(t−2)
m [0, · · · , 0] +

m − 1
m

p(t−2)
m [1, 1, 0, · · · , 0].(57)

To compute p
(t−2)
m [1, 1, 0, · · · , 0], we consider how to put (t − 2) balls in m bins. By

the analysis of the third observation above, we know that

p(t−2)
m [0, · · · , 0] − p(t−2)

m [1, 1, 0, · · · , 0](58)
= Pr[n1 = n2 = 0, n3 ≡ 0, · · · , nm ≡ 0](59)
= Pr[n1 = n2 = 0]Pr[n3 ≡ 0, · · · , nm ≡ 0|n1 = n2 = 0](60)

=
(

m − 2
m

)t−2

p
(t−2)
m−2 [0, · · · , 0].(61)

Therefore,

(62) p(t)
m [0, · · · , 0] =

1
m

p(t−2)
m [0, · · · , 0] − m − 1

m

(
m − 2

m

)t−2

p
(t−2)
m−2 [0, · · · , 0].

Now using the above recursive formula and the base case p
(2)
m [0, · · · , 0] = 1/m, it is

easy (but tedious) to prove by calculations that p
(t)
m [0, · · · , 0] = ((t−1)!!/m

t
2)(1−o(1))

for even t ≤ 10. This proves the first case in the lemma.
For the remaining two cases, we shall use a generating function and a technique

inspired by Fourier analysis. Consider the generating function

(63) (x1 + · · · + xm)t =
∑

n1+···+nm=t

(
t

n1, · · · , nm

)
xn1

1 · · ·xnm
m .

If xi ∈ {−1, 1}, then (x1 + · · · + xm)t =
∑

n1+···+nm=t

(
t

n1,··· ,nm

)
(−1)|{i:xi=−1,ni≡1}|.

We sum it over all x1 · · ·xm ∈ {−1, 1}m. Note that for those (n1, · · · , nm) that have
some ni0 ≡ 1, it holds due to the cancellation that

∑
x1,··· ,xm∈{−1,1}(−1)|{i:xi=−1,ni≡1}|

= 0 . On the other hand, if all ni’s are even, then
∑

x1,··· ,xm∈{−1,1}(−1)|{i:xi=−1,ni≡1}|

= 2m. Thus we have

(64)
∑

x1,··· ,xm∈{−1,1}
(x1 + · · · + xm)t = 2m

∑
n1+···+nm=t

ni≡0,i∈[m]

(
t

n1, · · · , nm

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

962 SHENGYU ZHANG

And therefore,

p(t)[0, · · · , 0] =
1

mt

∑
n1+···+nm=t

ni≡0,i∈[m]

(
t

n1, · · · , nm

)
(65)

=
1

2mmt

∑
x1,··· ,xm∈{−1,1}

(x1 + · · · + xm)t(66)

=
1

2mmt

m∑
i=0

(
m

i

)
(m − 2i)t(67)

=
1

2m

m∑
i=0

(
m

i

)(
1 − 2i

m

)t

.(68)

Note that t is even, so p(t)[0, · · · , 0] decreases if t increases by 2, and this proves the
second case of the lemma with the help of the first case. And if t > m2/2, then

(69) p(t)[0, · · · , 0] ≤ 1
2m

(
2 +
(

1 − 2
m

)t m−1∑
i=1

(
m

i

))
< 2/2m + e−m = O(1/2m).

This proves the third case of the lemma.

4.2. Lower bounds for Local Search on the constant-dimensional grid.
In this section we shall decompose the graph [n]d into [n]m ⊗ [n]d−m and apply Theo-
rem 3.3 in section 4.2.1. This is not enough to prove Theorem 1.3 since the optimal m
turns out to be a real number instead of an integer. In section 4.2.2, we show how to
implement a real-number dimension, which enables us to achieve the results in The-
orem 1.3 except for [n]2. Finally, we use a different random walk to obtain the lower
bound of Ω(n2/5) for [n]2 in section 4.2.3, which finishes the proof of Theorem 1.3.

4.2.1. A weaker family of lower bounds. As in section 4.1, we decompose
the grid into two parts, [n]m and [n]d−m. For each vertex x = x0 · · ·xm−1 ∈ [n]m and
each i ∈ {0, · · · , m − 1}, define

x(i),− = x0 · · ·xi−1 max{xi − 1, 1}xi+1 · · ·xm−1,(70)
x(i),+ = x0 · · ·xi−1 min{xi + 1, n}xi+1 · · ·xm−1.(71)

We perform the random walk ([n]m, v0, W), where v0 = 00 · · · 0 ∈ [n]m and

(72) W (x, t) = {x((t−1) mod m),+, x((t−1) mod m),−}.

To analyze the probability pt in Theorem 3.3, we first consider the following simpler
“line walk.” Suppose a particle is initially put at point i ∈ {1, · · · , n}, and in each step
the particle moves either to max{1, i − 1} or to min{n, i + 1}, each with probability
1/2. Let p

(t)
ij denote the probability that the particle starting from point i stops at

point j after exactly t steps of the walk. For t ≥ 1, the following proposition gives a
tight estimate on maxij p

(t)
ij .

Proposition 4.2. For any t ≥ 1,

(73) max
i,j

p
(t)
ij =

{
O(1/

√
t) if t ≤ n2,

O(1/n) if t > n2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 963

i0−i

j

new path old path

Fig. 1. The proof of the reflecting rule.

Before the formal proof, let us briefly discuss the main difficulty and the idea for
getting around it. First note that since we care about the whole mixing process (i.e.,
before and after mixing), the standard eigenvalue gap does not immediately apply.
Second, if there are not the two barriers (1 and n), then p

(t)
ij is very easy to calculate:

p
(t)
ij =

(
t

t/2+(j−i)/2

)
if j − i and t have the same parity, and 0 otherwise. However,

since we now have the two barriers, it is hard to count the number of paths from i to
j after exactly t steps. Fortunately, there is a basic reflecting rule as follows.

Reflecting rule. In the line walk without barriers, the number of paths from i > 0
to j > 0 in exactly t steps touching or crossing the point 0 is equal to the number of
paths from −i to j in exactly t steps.

The proof of this rule is very easy. Suppose a random path touches the point 0
at t′ for the first time where t′ ≤ t; then do a reflection of the first t′ steps of the path
with respect to point 0. See Figure 1 for an illustration. It is not hard to see that this
gives a 1-1 correspondence between the following two sets: (1) the set of paths from
i to j after exactly t steps touching or crossing the point 0, and (2) the set of paths
from −i to j.

Now let us consider the barrier setting. Note that a path may try to cross the
two barriers in some pattern; for example, they may try to cross the left barrier (i.e.,
point 1) a times and then try to cross the right barrier (i.e., point n) b times. Imagine
that we now remove the two barriers; then the path will touch (from right) but not
cross the point 1 − a and will touch (from left) but not cross the point n + b − a. To
use the reflecting rule, we just need to further note the following simple fact:

{paths touching but not crossing point 1 − a}
= {paths touching or crossing point 1 − a}
−{paths touching or crossing point − a}.

Following this idea, we will construct a series of 1-1 correspondences to reduce the
problem step by step to the no-barrier case. The precise proof is as follows.

Proof. We consider two settings. One is the line walk on n points 0, · · · , n − 1
with the two barriers 0 and n − 1.6 Another is the same except that the barriers are
removed, and we have an infinite number of points in a line. For each t-bit binary

6Here we let the n points be 0, · · · , n − 1 instead of 1, · · · , n just to make the later calculation
cleaner.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

964 SHENGYU ZHANG

string x = x1 · · ·xt, we use P x
i and Qx

i to denote the two paths that start at i and
walk according to x in the two settings. Precisely, at step s, Qx

i goes left if xs = 0
and goes right if xs = 1 . P x

i goes in the same way except that it will stand still if the
point is currently at the left (or right) end and it still wants to go left (or right). If the
end point of P x

i is j, then we write i →P,x
t j, referring to the event that the walk P x

i

hits j after exactly t steps. Let X
(t),P
ij be the set of x ∈ {0, 1}t such that i →P,x

t j, and

put n
(t),P
ij = |X(t),P

ij |. Then by definition, p
(t)
ij = n

(t),P
ij /2t. The notations i →Q,x

t j,

X
(t),Q
ij , and n

(t),Q
ij are similarly defined, with the corresponding P changed to Q. Note

that n
(t),Q
ij =

(
t

t/2+(j−i)/2

)
if j − i and t have the same parity, and 0 otherwise. We

now want to upper bound n
(t),P
ij in terms of n

(t),Q
ij .

For a path P x
i , if at some step it is at point 0 and wants to go left, we say it

attempts to pass the left barrier. Similarly for the right barrier. We say a path is
in the {as, bs}l

s=1 category if it first attempts to pass the left barrier a1 times and
then attempts to pass the right barrier b1 times, and so on. We call each round a
stage s, which begins at the time that P x

i attempts to pass the left barrier for the
(a1 + · · ·+ as−1 + 1)th time, and ends right before the time that P x

i attempts to pass
the left barrier for the (a1 + · · ·+ as + 1)th time. We also split each stage s into two
halves, cutting at the time right before the path attempts to pass the right barrier for
the (b1 + · · · + bs−1 + 1)th time. Note that a1 may be 0, which means that the path
first attempts to pass the right barrier. Also bl may be 0, which means that the last
barrier the path attempts to pass is the left one. But all other ai, bi’s are positive.
Also note that in the case of l = 0, the path never attempts to pass either barrier.
Now for any fixed l > 0, we consider those categories with a1 > 0 and bl > 0. Other
cases can be handled similarly. Partition X

(t),P
ij as

(74) X
(t),P
ij =

⋃
l, {as,bs}l

s=1

X
(t),P
ij [{as, bs}l

s=1],

where X
(t),P
ij [{as, bs}l

s=1] contains those x ∈ {0, 1}t such that P x
i is in the cate-

gory {as, bs}l
s=1. We put n

(t),P
ij [{as, bs}l

s=1] = |X(t),P
ij [{as, bs}l

s=1]|, and then we have

n
(t),P
ij =

∑
l

∑
{as,bs}l

s=1
n

(t),P
ij [{as, bs}l

s=1].

Now consider the corresponding paths in X
(t),Q
ij . The following observation relates

P x
i and Qx

i .
Observation 1. For each x ∈ X

(t),P
ij [{as, bs}l

s=1], the following three properties
hold for any s.

1. In the first half of stage s, the path Qx
i touches (from right) but does not cross

the point αs =
∑s−1

r=1(br − ar) − as.
2. In the second half of stage s, the path Qx

i touches (from left) but does not
cross the point βs = n − 1 +

∑s
r=1(br − ar).

3. The path Qx
i ends at γ = j +

∑l
s=1(bs − as).

We let Y
(t),Q
iγ [{αs, βs}l

s=1] contain those x ∈ {0, 1}t satisfying the three prop-

erties in the above observation, and denote by m
(t),Q
iγ [{αs, βs}l

s=1] the size of the

set Y
(t),Q
iγ [{αs, βs}l

s=1]. Thus, according to the observation, X
(t),P
ij [{αs, βs}l

s=1] ⊆
Y

(t),Q
ij [{αs, βs}l

s=1], and therefore we have n
(t),P
ij [{as, bs}l

s=1] ≤ m
(t),Q
iγ [{αs, βs}l

s=1].

So it is enough to upper bound m
(t),Q
iγ [{αs, βs}l

s=1].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 965

Now for each x ∈ Y
(t),Q
iγ [{αs, βs}l

s=1], if we change property 1 in stage s = 1 by al-
lowing the path to cross the point α1 (and keep properties 2 and 3 unchanged), and let
Z

(t),Q
iγ [{αs, βs}l

s=1] be the new set satisfying the properties, then m
(t),Q
iγ [{αs, βs}l

s=1] =

|Z(t),Q
iγ [{αs, βs}l

s=1]|− |Z(t),Q
iγ [α1−1, β1, {αs, βs}l

s=2]|. In other words, the set of paths
that touch from right but do not cross α1 is the set of paths that touch or cross α1

minus the set of paths that touch or cross α1 − 1.
Now we calculate |Z(t),Q

iγ [{αs, βs}l
s=1]| by the so-called reflection rule. Suppose

the first time that Qx
i touches α1 is t1. We reflect the first t1 part of the path Qx

i

with respect to the point α1. Precisely, let y = (1 − x1) · · · (1 − xt1)xt1+1 · · ·xt; then
the paths Qx

i and Qy
2α1−i merge at time t1. And it is easy to check that there is

a 1-1 correspondence between Z
(t),Q
iγ [{αs, βs}l

s=1] and Y
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2]. Here

Y
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2] is the set of paths starting at 2α1 − i, satisfying (a) property
2 at the first stage, (b) both properties 1 and 2 at the remaining l− 1 stages, and (c)
property 3. So

|Z(t),Q
iγ [{αs, βs}l

s=1]| = |Y (t),Q
2α1−i,γ [β1, {αs, βs}l

s=2]| = m
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2](75)

= m
(t),Q
−2a1−i,γ [β1, {αs, βs}l

s=2](76)

= m
(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2],(77)

where (76) is due to the fact that α1 = −a1, and (77) holds because the number of
the paths does not change if we move all the paths right by a1. Similarly, we have

|Z(t),Q
iγ [α1 − 1, β1, {αs, βs}l

s=2]| = m
(t),Q
2α1−2−i,γ [β1, {αs, βs}l

s=2]
(78)

= m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2].(79)

Therefore,

n
(t),P
ij [{as, bs}l

s=1] ≤ m
(t),Q
iγ [{αs, βs}l

s=1](80)

= m
(t),Q
−2a1−i,γ [β1, {αs, βs}l

s=2] − m
(t),Q
−2a1−2−i,γ [β1, {αs, βs}l

s=2](81)

= m
(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2](82)

− m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2].(83)

Note that αs + a1 = b1 +
∑s−1

r=2(br − ar)− as, βs + a1 = n− 1 + b1 +
∑s

r=2(br − ar),
and γ + a1 = j + b1 +

∑s
r=2(br − ar) are all functions of (b1, a2, b2, · · · , al, bl), not of

a1 any longer. Therefore,∑
a1,b1,··· ,al,bl>0

n
(t),P
ij [{as, bs}l

s=1](84)

≤
∑

b1,··· ,al,bl>0

∑
a1>0

(m(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2](85)

− m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2])(86)

=
∑

b1,··· ,al,bl>0

(m(t),Q
−1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2](87)

+ m
(t),Q
−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2])(88)

≤
∑

b1,··· ,al,bl>0

2 max
h=1,2

{m(t),Q
−h−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]}.(89)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

966 SHENGYU ZHANG

Now using the similar methods, i.e., reflecting with respect to points (n− 1+ b1) and
(n + b1), moving the paths left by b1, and finally collapsing the telescope, we can get∑

b1,··· ,al,bl>0

m
(t),Q
−h−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2](90)

≤
∑

a2,b2,··· ,al,bl>0

2 max
k=1,2

{m(t),Q
2n+i+h−k+1,γ+a1−b1

[{αs + a1 − b1, βs + a1 − b1}l
s=2]}(91)

and thus ∑
a1,b1,··· ,al,bl>0

n
(t),P
ij [{as, bs}l

s=1](92)

≤
∑

a2,b2,··· ,al,bl>0

4 max
h=0,1,2

{m(t),Q
2n+i+h,γ+a1−b1

[{αs + a1 − b1, βs + a1 − b1}l
s=2]}.(93)

We continue this process, and finally we get∑
a1,b1,··· ,al,bl>0

n
(t),P
ij [{as, bs}l

s=1] ≤ 22l max
h=0,1,··· ,2l

n
(t),Q

2ln+i+h,γ+
∑

l
s=1(as−bs)

(94)

= 22l max
h=0,1,··· ,2l

n
(t),Q
2ln+i+h,j(95)

= 22ln
(t),Q
2ln+i,j(96)

≤ 22l

(
t

t
2 + j−i−2ln

2

)
.(97)

Thus

(98)∑
l>0

∑
a1,b1,··· ,al,bl>0

n
(t),P
ij [{as, bs}l

s=1]

(99)

≤
∑
l≥0

22(l+1)

(
t

t/2 + ln

)

(100)

= 4
(

t

t/2

)
+
∑
l≥1

22(l+1)

(
t

t/2 + ln

)

(101)

≤ 4
(

t

t/2

)
+

1
n

∑
l≥1

22(l+1)

((
t

t/2 + ln

)
+
(

t

t/2 + ln − 1

)
+ · · · +

(
t

t/2 + ln− n + 1

))

(102)

≤ 4
(

t

t/2

)
+

1
n

∑
l≥1

22(l+1)

((
t

t

)
+
(

t

t − 1

)
+ · · · +

(
t

t/2 + ln − n + 1

))

(103)

≤ 4
(

t

t/2

)
+

1
n

∑
l≥1

22(l+1)2te−
2(l−1)2n2

3t ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 967

where
(

t
t′
)

= 0 if t′ > t. Here the first two inequalities are by the monotonicity of
binomial coefficients, and the last inequality is by Chernoff’s bound. Now if t ≤ n2,

then
∑

l≥1 22(l+1)e−
2(l−1)2n2

3t ≤ ∑l≥1 22(l+1)e−
2(l−1)2

3 = O(1). Thus it holds that∑
l>0

∑
a1,b1,··· ,al,bl>0 n

(t),P
ij [{as, bs}l

s=1] ≤ O(
(

t
t/2

)
+ 2t/n) = O(2t/

√
t). For other

categories of a1 = 0 or bl = 0, the same result can be proved similarly, and the l = 0
is easy since n

(t),Q
ij = O(2t/

√
t). Putting all of these things together, we see that

p
(t)
ij = O(1/

√
t) if t ≤ n2. The other part, i.e., p

(t)
ij = O(1/n) when t > n2, can be

easily derived from this and the fact that maxij p
(t)
ij decreases as t increases. This

completes our proof.
Now we use Proposition 4.2 to prove the weaker lower bounds for grids. Note

that the random walk ([n]m, v0, W) is just a product of m line walks, i.e., cyclicly
performing the line walk in the cyclic order of dimension 0, 1, · · · , m − 1 (see (72)).
Therefore, the pt in the random walk ([n]m, v0, W) satisfies

(104) pt =

{
O(1/

√
tm) if t ≤ n2,

O(1/nm) if t > n2.

Now for the randomized lower bounds, when d > 4 we pick m = �d/2� > 2 and we get
(105)

RLS([n]d) = Ω
(

nd−m

O(1) + nd−m/nm

)
= Ω(n�d/2�) =

{
Ω(n

d
2) if d is odd,

Ω(n
d
2− 1

2) if d is even.

For d = 4, 3, 2, we let m = 2, 2, 1, respectively, and get RLS([n]4) = Ω(n2/(log n +
1)) = Ω(n2/ log n), RLS([n]3) = Ω(n/(log n + 1/n)) = Ω(n/ log n), and RLS([n]2) =
Ω(n/(

√
n + 1)) = Ω(

√
n).

For the quantum lower bounds, if d > 6, we let m be the integer closest to 2d/3,
thus m > 4. We get

(106) QLS([n]d) = Ω
(

nd−m

O(1) + nd−m/nm/2

)
=

⎧⎪⎨
⎪⎩

Ω(N
1
3) if d = 3d′,

Ω(N
1
3− 1

3d) if d = 3d′ + 1,

Ω(N
1
3− 1

6d) if d = 3d′ + 2.

For d = 6, we let m = 4 and we have QLS([n]6) = Ω(n2/ logn). For d = 5, 4, 3, we
let m = d − 2, and then QLS([n]d) = Ω(n2/(n2−(d−2)/2 + n2−(d−2)/2)) = Ω(nd/2−1),
which is Ω(n5/2), Ω(n2), Ω(n3/2), respectively. For d = 2, let m = 1 and QLS([n]2) =
Ω(n

n3/4) = Ω(n1/4).

4.2.2. Getting around the integer constraint for dimension. One weak-
ness of the above proof is the integer constraint of the dimension m. We now show
a way to get around the problem, allowing m to be any real number between 0 and
d − 1. The idea is to partition the grid into many blocks, with different blocks rep-
resenting different time slots, and the blocks are threaded into one very long block
by many paths that are pairwise disjoint. Roughly speaking, we view [n]d as the
product of d line graphs [n]. For each of the first d − 1 line graphs, we cut it into
n1−r parts evenly, each of size nr. (Here r = m/(d − 1)). Then [n]d−1 is partitioned
into n(d−1)(1−r) smaller grids, all isomorphic to [nr]d−1. Putting the last dimension
back, we have n(d−1)(1−r) blocks, all isomorphic to [nr]d−1 × [n]. Now the random
walk will begin in the first block, and within each block, there is just one step of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

968 SHENGYU ZHANG

1

block 1 block 2 block

dimension 1

n’−

 ...

block−changing segmentboundary point

dimension 0

n’−

n’

α+1
α

α
α+1

1 ... α α+1 2α ... n’− α+1 n’

β

Fig. 2. Illustration for changing a block in the 2-dimensional grid.

random walk in [nr]d−1 followed by two steps of one-way walk in the last dimension
space [n]. When the clock [n] is exhausted, the walk will move to the next block
via a particular block-changing path. All block-changing paths are carefully designed
to be disjoint, and they “thread” all the blocks to form an [nr]d−1 × [L] grid, where
L = (n− 2nr)n(1−r)(d−1). (L is not n ·n(1−r)(d−1) because we need 2nr points for the
block-changing paths.) Figure 2 is an illustration for the case of d = 2.

We now describe the partition and the walk precisely. For x = x0 · · ·xd−1

in [n]d, let x(k)=l = x0 · · ·xk−1lxk+1 · · ·xd−1, and x(k)=(k)+i = x0 · · ·xk−1(xk +
i)xk+1 · · ·xd−1, where i satisfies xk + i ∈ [n]. Recall that x(i),− = x(i)=max{xi−1,1}

and x(i),+ = x(i)=min{xi+1,n}.
For any fixed constant r ∈ (0, 1), let α = 	nr
, β = 	n1−r
, and n′ = αβ. Note

that n′ ≥ (nr − 1)(n1−r − 1) = n − o(n). We now consider the slightly smaller grid
[n′]d. Let V1 be the set [n′]d−1 = {x0 · · ·xd−2 : xi ∈ [n′]}. We cut V1 into βd−1

parts {x0 · · ·xd−2 : (ki − 1)α < xi ≤ kiα}k0···kd−2∈[β]d−1, each of which is a small
grid isomorphic to [α]d−1. We then refer to the set {x0 · · ·xd−2xd−1 : (ki − 1)α <
xi ≤ ki α, i = 0, . . . , d − 2, α < xd−1 ≤ n′ − α} as the “block (k0, · · · , kd−2).”
Note that (k0, · · · , kd−2) also can be viewed as a point in grid [β]d−1, and there is a
Hamilton path HamPathβ,d−1 in [β]d−1, as defined in section 2. We call the block
(k′

0, · · · , k′
d−2) the next block of the block (k0, · · · , kd−2) if (k′

0, · · · , k′
d−2), viewed as

the point in [β]d−1, is the next point of (k0, · · · , kd−2) in HamPathβ,d−1. Note that
by our definition of HamPathβ,d−1, we know that ∃i ∈ {0, · · · , d − 2} such that
k′

i ∈ {ki + 1, ki − 1} and for all other j = i, k′
j = kj . That is, adjacent blocks have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 969

only one different coordinate, and the difference is 1. We call the block (k0, · · · , kd−2)
the last block if (k0, · · · , kd−2) is the last point in HamPathβ,d−1.

Now we define the random walk by describing how a particle may go from start
to end. The path set is just all the possible paths the particle goes along. Intuitively,
within one block, the last dimension d− 1 serves as the clock space. So as before, we
perform one step of line walk (in the circularly next dimension), followed by two steps
of walk in the clock space. If the clock is exhausted, we say we reach a boundary point
at the current block, and we move to the next block via a path segment called a block-
changing segment. In what follows, we specify how the particle may move during
the whole random walk process, including going through block-changing segments.
We always use x0 · · ·xd−1 to denote the current position of the particle, and assume
xi = (ki−1)α+yi; i.e., x is in the block (k0, · · · , kd−2) with the offsets (y0, · · · , yd−1).
Thus the instruction x0 = x0 + 1, for example, means that the particle moves from
x0 · · ·xd−1 to (x0 + 1)x1 · · ·xd−1.

1. Initially x0 = · · · = xd−2 = 0, xd−1 = α + 1, k0 = · · · = kd−2 = 1.
2. for t = 1 to (n′ − 2α)βd−1,

let t′ = 	 t−1
n′−2α
, i = (t − 1) mod (d − 1)

do either xi = max{xi−1, (ki−1)α+1} or xi = min{xi+1, kiα} randomly
if t = k(n′ − 2α) for some positive integer k,

do xd−1 = xd−1 + (−1)t′ twice
else (the particle is now at a boundary point)

if the particle is not in the last block
(suppose the current block changes to the next block by increasing kj by

b ∈ {−1, 1})
do xd−1 = xd−1 + (−1)t′ for (α + 1 − yj) times
do xj = xj + b for 2(α + 1 − yj) − 1 times
do xd−1 = xd−1 + (−1)t′+1 for (α + 1 − yj) times
kj = kj + b

else
The particle stops and the random walk ends.

It is easy to verify that every boundary point has one unique block-changing
segment, and different block-changing segments do not intersect. Also note that we
do not let the clock tick when we are moving from one block to another. Thus the
block-changing segments thread all the blocks to form an [α]d−1 × [L] grid, where
L = (n′ − 2α)βd−1. Actually, for our lower bound purpose, we can think of the
random walk as performed in the product graph [α]d−1 × [L]. We will make this
clearer below.

What we care about is, as before, the probability that the random walk starting
from a point x = x0 · · ·xd−1 passes another point x′ = x′

0 · · ·x′
d−1. Note that for any

point x (including those on the block-changing segments), there is only one time t
when the walk may hit x, and this t is determined by x itself. Similarly we use t′ to
denote the time when the path passes x′. Denote the probability that the random
walk starting from x passes x′ by Pr[x → x′]. As before suppose xi = (ki − 1)α + yi

and x′
i = (k′

i − 1)α + y′
i for i ∈ {0, · · · , d − 2}.

We first consider the case that one of the two points, say x′, is on a block-changing
segment. Since different block-changing segments never intersect, a path passes x′ if
and only if the path passes the boundary point x′′ at the beginning of the block-
changing segment that x′ is in. Also note that the time when the path passes x′′ is
also t′ because the time does not elapse on the block-changing segment. So we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

970 SHENGYU ZHANG

that Pr[x → x′] = Pr[x → x′′], and it is enough to consider the case that both x and
x′ are not in block-changing segments.

Now suppose both x and x′ are not in block-changing segments. In general, x and
x′ may be not in the same block , so going from x to x′ needs to change blocks. Recall
that to change from the block (k0, · · · , kd−2) to the next one, only one ki changes by
increasing or decreasing by 1. Suppose that to go to x′ from x, we change blocks for c
times, by changing ki1 , ki2 , · · · , kic in turn. Let nj = |{s ∈ [c] : is = j}|. Note that to
get to x′ from x after t′ − t steps, the coordinate j needs to be x′

j after t′ − t steps for
each coordinate j ∈ {0, · · · , d−2}. It is not hard to see that if a block-changing needs
to change kj by increasing b ∈ {−1, 1}, then among all the offsets yi’s, only the yj

gets changed, and the change is a reflection within the block. That is, suppose xj is
(kj −1)α+yj before the block-changing; then xj changes to (kj +b−1)α+(α+1−yj)
after the block-changing. So if c = 1, then Pr[x → x′] is equal to the probability that
a random walk in [α]d−1 starting from y0 · · · yd−2 hits y′′

0 · · · y′′
d−2 after exactly t′ − t

steps, where y′′
j = y′

j if j = i1 and y′′
i1 = α + 1 − y′

i1 . For general c, Pr[x → x′] is
equal to the probability that a random walk in [α]d−1 starting from y0 · · · yd−2 hits
y′′
0 · · · y′′

d−2 after exactly t′ − t steps, where y′′
j = y′

j if nj is even and y′′
j = α + 1 − y′

j

if nj is odd. Note that this probability has nothing to do with the block-changing;
it is just the same as if we had a clock space [(n′ − 2α)βd−1] to record the random
walk on [α]d−1. Thus we can use Proposition 4.2 to upper bound this probability and
just think of the graph as [nr]d−1 × [L] and use Theorem 3.3, with G1 = [nr]d−1 and
G2 = [L].

Now we have T = 	L/2
 and pt = O(1/
√

td−1) for t ≤ n2r and pt = O(1/nr(d−1))
for t > n2r. So for randomized lower bounds, if d ≥ 4, then we let r = d/(2d − 2)
and get
(107)

RLS([n]d) = Ω

⎛
⎝n1+(1−r)(d−1)/

⎛
⎝nd/(d−1)∑

t=1

1√
td−1

+
n1+(1−r)(d−1)

nr(d−1)

⎞
⎠
⎞
⎠ = Ω

(
nd/2
)

.

If d = 3, we let r = 3/4 − log log n/(4 logn) and get RLS([n]3) = Ω((n3/ logn)1/2).
For d = 2, we let r = 2/3 and get RLS([n]2) = Ω(n2/3).

For the quantum lower bounds, if d ≥ 6, then we let r = 2d/(3d − 3) and get
(108)

QLS([n]d) = Ω

⎛
⎝n1+(1−r)(d−1)/

⎛
⎝nd/(d−1)∑

t=1

1
t(d−1)/4

+
n1+(1−r)(d−1)

nr(d−1)/2

⎞
⎠
⎞
⎠ = Ω(nd/3).

If d = 5, then let r = 5/6− log log n/(6 logn) and QLS([n]5) = Ω((n5/ log n)1/3). For
2 ≤ d ≤ 4, we let r = d/(d +1); then QLS([n]d) = Ω(nd/2−d/(d+1)), which is Ω(n1/3),
Ω(n3/4), Ω(n6/5) for d = 2, 3, 4, respectively.

4.2.3. Further improvement on 2-dimensional grid [n]2. Some other ran-
dom walks may be used to further improve the lower bound on low-dimensional grid
cases. Here is one way to improve QLS([n]2) from Ω(n1/3) to Ω(n2/5). We cut the
graph [n]2 into n2/5 smaller grids, each of size n4/5 ×n4/5. Without loss of generality,
assume both n1/5 and n4/5 are integers and further assume n1/5 = 3 mod 4; other-
wise we can consider a slightly smaller grid by the simple trick as at the beginning of
section 4.2.2. We shall use a random walk similar to Aaronson’s in [2] in each block
and change blocks after each step. Thus different blocks record different times.

For any time t ∈ [n1/5(n1/5 − 1)], suppose t = 2rn1/5 + t′, where r ∈ {0, 1, · · · ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 971

x

y
t=1

t=2 t=3

t=4 t=2n 11/5

t=2n +11/5

t=2n 1/5

1/5t=2n +2

each length: a random number from {1,2,...,n }4/5

Fig. 3. A different random walk in the 2-dimensional grid.

(n1/5 − 3)/2} and t′ ∈ {1, 2, · · · , 2n1/5}. Let

(109) u =

{
0 if t′ ≡ 0, 1 (mod 4),
n4/5 if t′ ≡ 2, 3 (mod 4).

Let block(t) be the small grid

(110)

{
{((�t′/2� − 1)n4/5 + x′, 2rn4/5 + u + y′) : x′, y′ ∈ [n4/5]} if r is even,

{((n1/5 − �t′/2�)n4/5 + x′, 2rn4/5 + u + y′) : x′, y′ ∈ [n4/5]} if r is odd.

In either case, the (x′, y′) is called the offset of the corresponding element in the block.
Now define the random walk as follows and as depicted in Figure 3.

Initially (x, y) = (1, 1)
for t = 1, 2, . . . , n1/5(n1/5 − 1) (suppose the current point is (x, y) with offset

(x′, y′))
if t′ is odd,

pick a random x′′ ∈ [n4/5], move horizontally to the point in block(t) with
the offset (x′′, y′)

else
if t′ = 2n1/5, then c = 1 else c = 0
pick a random y′′ ∈ [n4/5], move vertically to the point in block(t + c) with

the offset (x′, y′′).
We then follow the same track as in the proof of Theorem 3.3. To get a reduction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

972 SHENGYU ZHANG

from Local Search on [n]2 to the PathP problem, we define the function

(111) fX(v) =

{
l[n]2(v, (1, 1)) if v /∈ set(X),
−2n4/5(t − 1) − (−1)rx′

v + (−1)	t
′/2
y′

v if v ∈ set(X) ∩ block(t).

Intuitively, the function value decreases along the path as before. But the decrement
is not always by 1: each block has its fixed value setting. If, for example, the path
passes through the block toward the right and down (as in the first block), then the
value −x′ − y′ is used within the block. In this way, we do not need to know the
length of the path segment from top to v to calculate each fX(v).

What we care about is still, as in equality (39), the probability that the path
X ′ passes another point x on X , under the condition that X ′ ∧ Y = k′. It is not
hard to see that this probability is Θ(1) in general if x is in block(k′), and Θ(1/n4/5)
otherwise (i.e., when x is in block(t) for some t > k′). Thus by L = Θ(n2/5) we have

(112) QLS([n]2) = Ω
(
n2/5/

(
1 + n2/5/

√
n4/5
))

= Ω(n2/5).

This completes the proof of Theorem 1.3.
Note that this random walk suffers from the fact that the “passing probability”

is now n4/5 times the “hitting probability.” So for general d, we can get RLS([n]d) =
Ω(nd/(d+1)) and QLS([n]d) = Ω(nd/(2d+1)), which only gives better results for QLS
on the 2-dimensional grid.

5. New algorithms for Local Search on general graphs. In [4, 2], a ran-
domized and a quantum algorithm for Local Search on general graphs are given as
follows. Pick k random samplings over all the vertices, and find a vertex v in them
with the minimum f -value.7 Then roughly speaking, v is the N/k-minimum vertex
over all the N vertices in G. Now we follow a decreasing path as follows. Find a
neighbor of v with the minimum f -value, and continue this minimum-value-neighbor
search process until getting to a local minimum. Since v is the N/k-minimum vertex,
any decreasing path from it has length no more than N/k. Thus we need k + δN/k
queries in the randomized case and

√
k +

√
δN/k queries in the quantum case, where

δ is the maximum degree of the graph G. Optimizing k achieves the performance of
the algorithms mentioned in section 1. We can see that the algorithms actually fall
into the generic algorithm category (see section 1), with the initial point picked as
the best one over some random samples.

In this section, we give new randomized and quantum algorithms, which work
better than this simple “random samples + steepest descent” method when the graph
expands slowly. Here the idea is that after finding the minimum vertex v of the k
sampled points, we know that v is (roughly) the N/k-minimum vertex. Therefore,
there must be a local optimum within the smaller range {u : lG(u, v) ≤ N/k}. So
instead of following the decreasing path of v, we do the local search within this smaller
range recursively.

While this idea sounds simple and effective, there is one caveat here: A local
minimum u in the smaller range may be not a local minimum in the original larger
graph G, because u may have more neighbors in G. To deal with this difficulty, we will
actually solve a stronger version of the local search problem: On the graph G, given

7For the minimum f -value finding procedure, the randomized algorithm in [4] just queries all
these vertices and finds the minimum, while the quantum algorithm in [2] uses the algorithm by Dürr
and Høyer [11] based on Grover search [12] to get a quadratic speedup.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 973

a function f : V → N and a vertex v, find a local optimum u such that f(u) ≤ f(v).
Note that such u must exist; any decreasing path from v leads to a valid u. Also note
that this problem is harder than the original local search problem; any algorithm for
this new problem is also an algorithm for the original one. A key property of this new
problem is that it allows a recursion: Given a small range Ssmall (⊆ Slarge ⊆ V) and
a vertex v in it, suppose that any vertex w on the boundary8 of Ssmall is worse than
v (i.e., f(w) > f(v)); then any local optimum u in Ssmall satisfying f(u) ≤ f(v) is
also a local optimum in a larger range Slarge.

Now we describe the algorithm precisely, with some notation as follows. For
G = (V, E), a given function f : V → N, a vertex v ∈ V , and a set S ⊆ V , let
n(v, S) = |{u ∈ S : f(u) < f(v)}|. The boundary B(S) of the set S ⊆ V is defined
by B(S) = {u ∈ S : ∃v ∈ V − S such that (u, v) ∈ E}. In particular, B(V) = ∅.
A decreasing path from a vertex v ∈ V is a sequence of vertices v0, v1, · · · , vk such
that v0 = v, vk is a local minimum, and f(vi+1) = minv:(vi,v)∈E f(v) < f(vi) for
i = 0, . . . , k − 1. We write f(u) ≤ f(S) if f(u) ≤ f(v) for all v ∈ S. In particular, it
always holds that f(u) ≤ f(∅). Suppose d = maxu,v∈V l(u, v) is the diameter of the
graph, and δ = maxv∈V |{u : (u, v) ∈ E}| is the maximum degree of the graph. In
the following algorithm, the asymptotical numbers at the end of some command lines
are the numbers of randomized or quantum queries needed for the step. For those
commands without any number, no query is needed.

1. m0 = d, U0 = V (G);
2. i = 0;
3. while (|mi| > 10) do

(a) Randomly pick (with replacement) � 8|Ui|
mi

log 1
ε1
� vertices from Ui, where

ε1 = 1/(10 log2 d).
(b) Search the sampled vertices for one vi with the minimal f value.

• Randomized algorithm: query all the sampled vertices and get vi.
— O

(
8|Ui|
mi

log 1
ε1

)
• Quantum algorithm: use Dürr and Høyer’s algorithm [11] with the

error probability at most ε2 = 1/(10 log2 d).

— O
(√

8|Ui|
mi

log 1
ε1

log 1
ε2

)
(c) if i = 0, then ui+1 = vi;

else if f(ui) ≤ f(vi), then ui+1 = ui;
else ui+1 = vi;

(d) for j = 1, 2, . . .
i. Randomly pick mij ∈ Mi = {m : mi/8 ≤ m ≤ mi/2, |W (m)| ≤

10|Ui|/mi}, where W (m) = {w ∈ Ui : l(w, ui+1) = m}. Let Wij =
W (mij).

ii. Test whether f(ui+1) ≤ f(Wij).
• Randomized algorithm: query all vertices in Wij . — O(|Wij |)
• Quantum algorithm: use Dürr and Høyer’s algorithm [11] on

Wij with the error probability at most ε3 = 1/(200 log2 d).

— O
(√|Wij | log 1

ε3

)
iii. If the answer is Yes, jump out of this for loop and go to step 3(e).

(e) Ji = j, mi+1 = mij , Wi = Wij , Ui+1 = {u ∈ Ui : l(u, ui+1) ≤ mi+1};
(f) i = i + 1;

8The boundary is the set of those vertices in Ssmall that have neighbors in Slarge − Ssmall.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

974 SHENGYU ZHANG

4. I = i;
5. Follow a decreasing path of uI to find a local minimum.

• Randomized algorithm: in each step, query all the neighbors. — O(δ)
• Quantum algorithm: in each step, use Dürr and Høyer’s algorithm with

the error probability at most 1/100. — O(
√

δ)
Define c(k) = maxv∈V |{u : l(u, v) ≤ k}|. Clearly, the expansion of a graph is

upper bounded by c(k). The following theorem says that the algorithm is efficient if
c(k) is small.

Theorem 5.1. The algorithm outputs a local minimum with probability at least
1/2. The randomized algorithm uses O

(∑	log2 d
−1
i=0

c(mi)
mi

log log d
)

queries in expecta-

tion, and the quantum algorithm uses O
(∑	log2 d
−1

i=0

√
c(mi)

mi
(log log d)1.5

)
queries in

expectation.
In the case that c(k) = O(kα) (α may be a function of n) for some α ≥ 1 and

k = 1, . . . , d, the expected number of queries that the randomized algorithm uses is
O
(

dα−1−1
1−21−α log log d

)
if α > 1 and O(log d log log d) if α = 1. The expected number

of queries that the quantum algorithm uses is O
(

d
α−1

2 −1

1−2
1−α

2
(log log d)1.5

)
if α > 1 and

O(log d log log d) if α = 1.
We make several comments before proving the theorem:

1. limα→1
dα−1−1
1−21−α = limα→1

d
α−1

2 −1

1−2
1−α

2
= log2 d.

2. If α − 1 ≥ ε for some constant ε > 0, then dα−1−1
1−21−α = Θ(dα−1) and d

α−1
2 −1

1−2
1−α

2
=

Θ(d(α−1)/2).
If further the bound c(k) = O(kα) is tight in the sense that N = c(d) = Θ(dα),
then RLS(G) = O

(
N
d log log d

)
and QLS(G) = O

(√
N
d (log log d)1.5

)
.

3. For a 2-dimensional grid, d = Θ(n) and α = 2. Thus Corollary 1.5 follows
immediately.

Proof. We shall prove the theorem for the quantum algorithm. The analysis of
the randomized algorithm is almost the same (and actually simpler). We say Wi is
good if f(ui+1) ≤ f(Wi). We shall first prove the following claim; the theorem then
follows easily.

Claim 3. For each i = 0, 1, . . . , I − 1, the following three statements hold.
1. n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ mi/8 ≤ mi+1 with probability 1 − ε1 − ε2.
2. If n(ui+1, Ui) ≤ mi/8, then Wi is good with probability 1 − ε3Ji, and E[Ji] ≤

2.9

3. If W0, · · · , Wi are all good, then f(ui+1) ≤ f(B(Ui+1)), and ui+1 /∈ B(Ui+1).
Proof. 1. In steps 3(a)–3(c), denote by S the set of the � 8|Ui|

mi
log 1

ε1
� sampled

vertices in step 3(a). Let a = minu∈S f(u); then |{v ∈ Ui : f(v) < a}| ≤ mi/8 with
probability at least 1 − ε1. The vi found in step 3(b) achieves the minimum in the
definition of a with probability at least 1 − ε2. Putting the two things together, we
have n(vi, Ui) ≤ mi/8 with probability at least 1 − ε1 − ε2. Since f(ui+1) ≤ f(vi)
(by step 3(c)), Ui+1 ⊆ Ui (by step 3(e)), and mi+1 ≥ mi/8 (by step 3(d)i), we have
n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ n(vi, Ui) ≤ mi/8 ≤ mi+1 with probability at least
1 − ε1 − ε2.

9Since Ji is a random variable, the meaning of “Wi is good with probability 1− ε3Ji” is that for
each fixed j = 1, 2, . . . , we have that Wi is good with probability 1 − ε3j under the condition that
Ji = j. Similar language is also used in the latter part of the proof. Finally we will upper bound
the probability of these random variables being large, and in the case that they are small, the error
probability is small. This implies that the total error probability is small.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 975

2. We say an mij is good if the corresponding Wij is good, i.e., f(ui+1) ≤ f(Wij).
Note that for any mij ∈ [mi], we have Wij ⊆ Ui and also Wij ∩Wij′ = ∅ if mij = mij′ .
Therefore, if n(ui+1, Ui) ≤ mi/8, then at most mi/8 distinct mij ’s in [mi] are not
good. Also note that the number of distinct mij ’s such that |W (mij)| > 10|Ui|/mi

is less than mi/10. Therefore, |Mi| ≥ (3
8 − 1

10)mi > mi/4. So if n(ui+1, Ui) ≤ mi/8,
a random mij in Mi is good with probability at least 1/2, and thus E[Ji] ≤ 2. Also
the probability that all the Dürr–Høyer searches in step 3(d)ii are correct is at least
1 − Jiε3.

3. We shall first prove B(Ui+1) ⊆ B(Ui) ∪ Wi. In fact, any s ∈ B(Ui+1) satisfies
that s ∈ Ui+1 and that ∃t ∈ V − Ui+1 such that l(s, t) = 1. Recall that Ui+1 ⊆ Ui,
so if t ∈ V − Ui, then s ∈ B(Ui) by definition. Otherwise t ∈ Ui − Ui+1, and thus
t ∈ Ui and l(t, ui+1) > mi+1 by the definition of Ui+1. Noting that l(s, ui+1) ≤ mi+1

since s ∈ Ui+1, and that l(s, t) = 1, we have l(s, ui+1) = mi+1, which means s ∈ Wi.
Thus for all s ∈ B(Ui+1), either s ∈ B(Ui) or s ∈ Wi holds, which implies B(Ui+1) ⊆
B(Ui) ∪ Wi.

Applying the result recursively, we have B(Ui+1) ⊆ B(U0) ∪ W0 ∪ · · · ∪ Wi =
W0 ∪ · · · ∪ Wi. Since we have f(ui+1) ≤ f(ui) ≤ · · · ≤ f(u1) (by step 3(c)) and
f(uk+1) ≤ f(Wk) (for k = 0, . . . , i) by the assumption that all Wk’s are good, we
know that f(ui+1) ≤ f(W0 ∪ · · · ∪ Wi), which implies f(ui+1) ≤ f(B(Ui+1)).

For the other goal, ui+1 /∈ B(Ui+1), it is sufficient to prove ui+1 /∈ B(Ui) and
ui+1 /∈ Wi. The latter is easy to see by the definition of Wi. For the former, we
can actually prove uk+1 /∈ B(Uk) for all k = 0, . . . , i by induction on k. The base
case of k = 0 is trivial because B(U0) = ∅. Now suppose uk /∈ B(Uk−1). There
are two cases of uk+1 by step 3(c). If f(uk) ≤ f(vk), then uk+1 = uk /∈ B(Uk−1)
by induction. Again by the definition of Wk−1 we know that uk /∈ Wk−1 and thus
uk+1 = uk /∈ B(Uk). The other case is f(uk) > f(vk); then uk+1 = vk, and therefore
f(uk+1) = f(vk) < f(uk) ≤ f(B(Uk)) (by the first part in step 3), which implies that
uk+1 /∈ B(Uk).

(Continue the proof of Theorem 5.1.) Now by Claim 3, we know that with prob-
ability at least 1 − I(ε1 + ε2) −

∑I−1
i=0 Jiε3, we will have

(113) n(uI , UI) ≤ mI , f(uI) ≤ f(B(UI)), uI /∈ B(UI).

Note that the correctness of the algorithm follows from these three items. Actually,
by the last two items, we know that any decreasing path from uI is contained in UI .
Otherwise suppose (u0

I , u
1
I , · · · , uT

I) is a decreasing path from uI (so u0
I = uI) and the

first vertex out of UI is ut
I ; then ut−1

I ∈ B(UI). Since u0
I /∈ B(UI), we have t − 1 > 0

and thus f(ut−1
I) < f(uI), contradicting f(uI) ≤ f(B(UI)). Now together with the

first item, we know that any decreasing path from uI is no more than mI long. Thus
step 5 will find a local minimum by following a decreasing path.

The error probability of the algorithm is I(ε1 + ε2) + Jε3 + 10/100, where J =∑I−1
i=0 Ji. The last summand comes from the error of step 5; note that the decreasing

path is of length at most 10. Since E[J] ≤ 2I, we know by Markov inequality that
J < 20I with probability at least 9/10. Since ε1 = ε2 = 1/(10 log2 d) and ε3 =
1/(200 log2 d), and noting that I ≤ log2 d because m0 = d and mi+1 ≤ �mi/2�, the
total error probability is less than 1/2.

We now consider the number of queries used in the ith iteration. Note from
steps 1 and 3(e) that |Ui| ≤ c(mi) for i = 0, 1, . . . , I − 1. So step 3(b) uses

(114) O

(√
8|Ui|
mi

log log d log log d

)
= O

(√
c(mi)
mi

(log log d)1.5

)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

976 SHENGYU ZHANG

queries. Also note from step 3(d)i that |Wij | ≤ 10|Ui|/mi; therefore, step 3(d) uses
O(
∑Ji

j=1

√
c(mi)/mi log log d) queries, which is O(

√
c(mi)/mi log log d) in expecta-

tion. Finally, step 5 uses O(
√

δ) queries. Note that δ = c(1) = O(c(mI)/mI), where
mI is a constant integer in the range [6, 10]. Altogether, the total expected number
of queries used is

(115) O

⎛
⎝
⎛
⎝log2 d−1∑

i=0

√
c(mi)/mi

⎞
⎠ (log log d)1.5

⎞
⎠ .

If c(k) = O(kα) for some α ≥ 1 and k = 1, . . . , d, then

log2 d−1∑
i=0

√
c(mi)
mi

=
log2 d−1∑

i=0

m
(α−1)/2
i =

log2 d−1∑
i=0

(d/2i)(α−1)/2 =
dβ − 1
1 − 2−β

,(116)

where β = (α− 1)/2. Finally the cost of step 5 is O(
√

δ) since the length of the path
is at most 10. This completes the proof for the quantum algorithm, except that in the
case of α = 1 we have only a quantum upper bound of O(log d(log log d)1.5). But note
that the randomized algorithm uses O(log d log log d) queries (because of the savings
in error probability controls). So when α = 1, the quantum algorithm uses just the
randomized one.

6. Open problems and future directions. An immediate open question is
to close the remaining gaps for the low-dimensional grids. As mentioned in section 1,
three of the four gaps were almost closed by Sun and Yao recently [22]; the only
remaining one is QLS([n]4).

A probably more important question is the characterization of the deterministic,
randomized, and quantum query complexities of Local Search on graph G. Are the
query complexities determined by some simple characteristic of the graph G? If yes,
is it the expansion?

Acknowledgments. The author thanks Scott Aaronson, Xiaoming Sun, and
Andy Yao for many valuable discussions. Thanks also to Alexander Razborov and
Nicholas Pippenger for carefully reading the manuscript and giving many detailed
suggestions, and to Sean Hallgren, Martin Roetteler, and Pranab Sen for listening to
a presentation of the work and offering useful comments. The author is also indebted
to Yves Verhoeven and Dirk Winkler for each pointing out an error in a preliminary
version of the paper.

REFERENCES

[1] K. Aardal, S. Hoesel, J.K. Lenstra, and L. Stougie, A decade of combinatorial optimiza-
tion, CWI Tracts, 122 (1997), pp. 5–14.

[2] S. Aaronson, Lower bounds for local search by quantum arguments, in Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing, 2004, pp. 465–474.

[3] E. Aarts and J. Lenstra, Local Search in Combinatorial Optimization, John Wiley & Sons,
New York, 1997.

[4] D. Aldous, Minimization algorithms and random walk on the d-cube, Ann. Probab., 11 (1983),
pp. 403–413.

[5] I. Althofer and K. Koschnich, On the deterministic complexity of searching local maxima,
Discrete Appl. Math., 43 (1993), pp. 111–113.

[6] A. Ambainis, Polynomial degree vs. quantum query complexity, in Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 230–239.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TIGHT BOUNDS FOR RANDOMIZED/QUANTUM LOCAL SEARCH 977

[7] A. Ambainis, Quantum lower bounds by quantum arguments, J. Comput. System Sci., 64
(2002), pp. 750–767.

[8] H. Barnum, M. Saks, and M. Szegedy, Quantum query complexity and semidefinite program-
ming, in Proceedings of the 18th Annual IEEE Conference on Computational Complexity,
2003, pp. 179–193.

[9] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower bounds by
polynomials, J. ACM, 48 (2001), pp. 778–797.

[10] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A survey,
Theoret. Comput. Sci., 288 (2002), pp. 21–43.

[11] C. Dürr and P. Høyer, A Quantum Algorithm for Finding the Minimum, 1996; available
from http://www.arxiv.org/abs/quant-ph/9607014.

[12] L. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1996, pp. 212–219.

[13] P. Høyer and R. Špalek, Lower bounds on quantum query complexity, Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS, 87 (2005), pp. 78–103.

[14] D. Johnson, C. Papadimitriou, and M. Yannakakis, How easy is local search?, J. Comput.
System Sci., 37 (1988), pp. 79–100.

[15] S. Laplante and F. Magniez, Lower bounds for randomized and quantum query complexity
using Kolmogorov arguments, in Proceedings of the 19th Annual IEEE Conference on
Computational Complexity, 2004, pp. 294–304.

[16] D. Llewellyn and C. Tovey, Dividing and conquering the square, Discrete Appl. Math., 43
(1993), pp. 131–153.

[17] D. Llewellyn, C. Tovey, and M. Trick, Local optimization on graphs, Discrete Appl. Math.,
23 (1989), pp. 157–178; Erratum, 46 (1993), pp. 93–94.

[18] N. Megiddo and C. Papadimitriou, On total functions, existence theorems, and computa-
tional complexity, Theoret. Comput. Sci., 81 (1991), pp. 317–324.

[19] J. B. Orlin, A. P. Punnen, and A. S. Schulz, Approximate local search in combinatorial
optimization, SIAM J. Comput., 33 (2004), pp. 1201–1214.

[20] M. Santha and M. Szegedy, Quantum and classical query complexities of local search are
polynomially related, in Proceedings of the Thirty-Sixth Annual ACM Symposium on The-
ory of Computing, 2004, pp. 494–501.

[21] R. Špalek and M. Szegedy, All quantum adversary methods are equivalent, Theory Comput.,
2 (2006), pp. 1–18.

[22] X. Sun and A. Yao, On the quantum query complexity of local search in two and three dimen-
sions, in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, 2006, pp. 429–438.

[23] Y. Verhoeven, Enhanced algorithms for local search, Inform. Process. Lett., 97 (2006),
pp. 171–176.

[24] S. Zhang, On the power of Ambainis lower bounds, Theoret. Comput. Sci., 339 (2005), pp. 241–
256.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

