
New Upper and Lower Bounds for Randomized and
Quantum Local Search ∗

Shengyu Zhang

Computer Science Department, Princeton University
35 Olden Street, Princeton, NJ 08540, USA.

szhang@cs.princeton.edu

ABSTRACT
Local Search problem, which finds a local minimum of a
black-box function on a given graph, is of both practical
and theoretical importance to combinatorial optimization,
complexity theory and many other areas in theoretical com-
puter science. In this paper, we study the problem in the
randomized and quantum query models and give new lower
and upper bound techniques in both models.

The lower bound technique works for any graph that con-
tains a product graph as a subgraph. Applying it to the
Boolean hypercube {0, 1}n and the constant dimensional
grids [n]d, two particular product graphs that recently drew
much attention, we get the following tight results:

RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6);

RLS([n]d) = Θ(nd/2), ∀d ≥ 4, QLS([n]d) = Θ(nd/3), ∀d ≥ 6.

Here RLS(G) and QLS(G) are the randomized and quan-
tum query complexities of Local Search on G, respectively.
These improve the previous results by Aaronson [2], Ambai-
nis (unpublished) and Santha and Szegedy[20].

Our new algorithms work well when the underlying graph
expands slowly. As an application to [n]2, a new quantum
algorithm using O(

√
n(log log n)1.5) queries is given. This

improves the previous best known upper bound of O(n2/3)
(Aaronson, [2]), and implies that Local Search on grids ex-
hibits different properties in low dimensions.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation

General Terms
Algorithms, Theory

∗This research was supported in part by NSF grants CCR-
0310466 and CCF-0426582.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

Keywords
local search, query complexity (decision tree complexity),
quantum algorithm, randomized algorithm, lower bound

1. INTRODUCTION
Many important combinatorial optimization problems aris-

ing in both theory and practice are NP-hard, which forces
people to resort to heuristic searches in practice. One pop-
ular approach is Local Search, by which one first defines
a neighborhood structure, then finds a solution that is lo-
cally optimal with respect to this neighborhood structure.
In the past two decades, Local Search approach has been
extensively developed and “has reinforced its position as a
standard approach in combinatorial optimization” in prac-
tice [1]. Besides the practical applications, the problem also
has many connections to the complexity theory, especially
to the complexity classes PLS 1 and TFNP 2. For example,
the 2SAT-FLIP problem is Local Search on the Boolean hy-
percube graph {0, 1}n, with the objective function being the
sum of the weights of the clauses that the truth assignment
x ∈ {0, 1}n satisfies. This problem is complete in PLS,
implying that the Boolean hypercube {0, 1}n has a central
position in the studies of Local Search. Local Search is also
related to physical systems including folding proteins and to
the quantum adiabatic algorithms [2]. We refer readers to
the papers [2, 19, 20] for more discussions and the book [3]
for a comprehensive introduction.

Precisely, Local Search on an undirected graph G = (V, E)
is defined as follows. Given a function f : V → N, find a
vertex v ∈ V such that f(v) ≤ f(w) for all neighbors w of v.
A class of generic algorithms that has been widely used in
practice is as follows: we first set out with an initial point
v ∈ V , then repeatedly search a better/best neighbor until
it reaches a local minimum. Though empirically this class
of algorithms work very well in most applications, relatively
few theoretical results are known about how good the generic
algorithms are, especially for the randomized (and quantum)
algorithms.

Among models for the theoretical studies, the query model
has drawn much attention [2, 4, 5, 16, 17, 20]. In this model,
f(v) can only be accessed by querying v, and the randomized
(and quantum) query complexity, denote by RLS(G) (and
QLS(G)) is the minimum number of queries needed by a

1Polynomial Local Search, introduced by Johnson, Pa-
padimitriou, and Yannakakis [14].
2The family of total function problems, introduced by
Megiddo and Papadimitriou [18].

634

randomized (and quantum) algorithm that finds a local min-
imum on G with high probability. Previous upper bounds
on a general N-vertex graph G are RLS(G) = O(

√
Nδ) by

Aldous [4] and QLS(G) = O(N1/3δ1/6) by Aaronson [2],
where δ is the maximum degree of G. Both algorithms ac-
tually fall into the category of generic algorithms mentioned
above, with the initial point picked as a best one over a cer-
tain number of random samples. Immediately, two questions
can be asked:

1. On what graphs are these simple algorithms optimal?

2. For other graphs, what better algorithms can we have?

Clearly the first one is a lower bound question and the sec-
ond one is an upper bound question.

Previously for lower bounds, Aaronson [2] showed the fol-
lowing results on two special classes of graphs: the Boolean
hypercube {0, 1}n and the constant dimensional grid [n]d:

RLS({0, 1}n) = Ω(2
n
2 /n2), QLS({0, 1}n) = Ω(2

n
4 /n),

RLS([n]d) = Ω(n
d
2 −1

log n
), QLS([n]d) = Ω(n

d
4 − 1

2√
log n

).

It has also been shown that QLS([n]2) = Ω(n1/4) by San-
tha and Szegedy in [20], besides their main result that the
deterministic and the quantum query complexities of Local
Search on any graph are polynomially related. However,

3. What are the final values of QLS and RLS on {0, 1}n

and [n]d?

remains an open problem, explicitly asked in an earlier ver-
sion of [2] and also (partially) in [20].

In this paper, we answer questions 1 and 2 for large classes
of graphs by giving both new lower and upper bound tech-
niques for randomized and quantum query algorithms. As
a consequence, we completely solve the question 3, except
for a few small d’s where our new bounds also significantly
improve the old ones.

Our lower bound technique works for any graph that con-
tains a product graph as a subgraph. For two graphs G1 =
(V1, E1) and G2 = (V2, E2), their product G1 × G2 is the
graph G = (V, E) where V = V1 × V2 and

E = {((v1, v2), (v′
1, v2)) : (v1, v

′
1) ∈ E1, v2 ∈ V2}S{((v1, v2), (v1, v

′
2)) : (v2, v

′
2) ∈ E2, v1 ∈ V1}.

We will also use the notion of random walk on graphs to state
the theorem. Given a graph G = (V, E), a random walk is a
mapping W : V → 2V where W (u) ⊆ {u}∪{v : (u, v) ∈ E}.
Intuitively, at each step the random walk W goes from the
current vertex u to a uniformly random vertex in W (u). The
walk W is regular if |W (u)| = c for each u ∈ V . Denote by
p(u, v, t) the probability that the random walk starting at
u is at v after exactly t steps. Let pt = maxu,v p(u, v, t).
The following theorem is a special case of the general one
(Theorem 9) in Section 3.

Theorem 1. Suppose G contains the product graph G1 ×
G2 as a subgraph, and L is the length of the longest self-
avoiding path in G2. Let T =
L/2�, then for any regular
random walk W on G1, we have

RLS(G) = Ω

TPT

t=1 pt

!
, QLS(G) = Ω

TPT

t=1
√

pt

!
.

The proof uses the quantum adversary method, which was
originally proposed by Ambainis [7] and later generalized in

different ways [6, 8, 15, 23]. Recently Spalek and Szegedy
made the picture clear by showing that all these generaliza-
tions are equivalent in power [21]. On the other hand, in
proving a particular problem, some of the methods might
be easier to apply than the others. In our case, the tech-
nique in [23], which generalizes the one in [6] slightly in the
form though, turns out to work very well. Our proofs for
the randomized lower bounds will use the relational adver-
sary method, which was proposed by Aaronson [2] inspired
by the quantum adversary method.

Both the quantum adversary method and the relational
adversary method are parameterized by input sets and weight
functions of input pairs. While previous works [2, 20] also
use random walks on graphs, a key innovation that distin-
guishes our work from the previous ones and yields better
lower bounds is that we decompose the graph into two parts,
the tensor product of which is the original graph. We per-
form the random walk only in one part, and perform a simple
one-way walk in a self-avoiding path in the other part, which
serves as a “clock” to record the number of steps taken by
the random walk in the first part. The tensor product of
these two walks is a random path in the original graph. A
big advantage of adding a clock is that the “passing proba-
bility”, the probability that the random path passes a vertex
v within some number of steps, is now the “hitting proba-
bility”, the probability that the random walk in the first
graph hits v after exactly some number of steps, because
the time elapses one-way and never comes back. The fact
that the hitting probability is much smaller than the passing
probability enables us to achieve the better lower bounds.
Another advantage of the clock is that since the walk in
the second part is self-avoiding, the resulting random path
in the original graph is self-avoiding too, which makes the
analysis much easier.

Applying it to the two graphs {0, 1}n and [n]d, we improve
previous results and show tight bounds on both RLS and
QLS (except for a few cases in the low dimensional cubes).

Theorem 2.

RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6).

Theorem 3.

RLS([n]d) =

8><
>:

Θ(nd/2) if d ≥ 4,

Ω((n3/ log n)1/2) if d = 3,

Ω(n2/3) if d = 2.

QLS([n]d) =

8><
>:

Θ(nd/3) if d ≥ 6,

Ω((n5/ log n)1/3) if d = 5,

Ω(n6/5), Ω(n3/4), Ω(n2/5) if d = 4, 3, 2.

It is worth to note that to apply Theorem 1, we need not only
know the mixing time of the random walk in G1, but also
know its behavior before mixing. So the applications are not
simply using standard upper bounds on the mixing times,
but involving heavy analysis on the whole mixing processes.

When proving Theorem 3 by Theorem 1, one difficulty
arises: to decompose the grid [n]d into two parts [n]m and
[n]d−m, we implicitly require that m is an integer. This lets
us get lower bounds weaker than Theorem 3, especially for
low dimension cases. We get around this problem by cutting
one of the m dimensions into many blocks, and use differ-
ent block to distinguish different time windows. Between

635

adjacent blocks are pairwise disjoint path segments, which
thus thread all the blocks into a very long one. Using this
technique, we can apply Theorem 1 for any read-number
dimension m ≤ d − 1.

In the second part of the paper, we consider upper bounds
for Local Search. While the generic algorithms [2, 4] are
simple and proven to be optimal for many graphs such as the
ones mentioned above, they are far from optimal for some
other graphs. For example, it is not hard to see an O(log N)
deterministic algorithm for the line graph G. Therefore, a
natural question is to characterize those graphs on which
Local Search is easy. It turns out that the expansion speed
plays a key role. For a graph G = (V, E), the distance |u−v|
between two vertices u and v is the length of the shortest
path connecting them. (Here the length of a path is the
number of edges on the path.) Let c(k) = maxv∈V |{u :
|u − v| ≤ k}|. Apparently, the smaller c(k) is, the more
slowly the graph expands. (Actually c(k) is an upper bound
of the standard definition of the expanding speed.) As a
special case of Theorem 12 in Section 5, the following upper
bounds in terms of c(k) hold.

Theorem 4. If c(k) = O(kα) for some constant α ≥ 1,
then

RLS(G) =

(
O
`
dα−1 log log d

´
if α > 1

O(log d log log d) if α = 1
,

QLS(G) =

(
O
“
d

α−1
2 (log log d)1.5

”
if α > 1

O(log d log log d) if α = 1
.

where d is the diameter of the graph G.

As a special case, on the line graph we get α = 1 and hence
RLS = O(log n log log n), which helps to explain why Local
Search on the line graph is easy. Also, it immediately gives
a new upper bound for QLS([n]2) as follows. Together with
Theorem 3, this implies that Local Search on grids exhibits
different properties in low dimensions.

Theorem 5. QLS([n]2) = O(
√

n(log log n)1.5)

Other related results. After the preliminary version of this
paper appeared, Verhoeven independently showed an upper
bound in terms of the genus of the graph [22], giving an
O(

√
n log log n) quantum algorithm for [n]2. There is also

an unpublished result on QLS({0, 1}n): it is mentioned in
[2] that Ambainis showed QLS({0, 1}n) = Ω(2n/3/nO(1)). 3

2. PRELIMINARIES AND NOTATIONS
We use [M] to denote the set {1, 2, ..., M}. For an n-bit bi-

nary string x = x0...xn−1 ∈ {0, 1}n, let x(i) = x0...xi−1(1 −
xi)xi+1...xn−1 be the string obtained by flipping the coor-
dinate i.

For graphs G1 = (V1, E1) and G2 = (V2, E2), we say that
G1 is a subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2. Apparently,
any local optimum in G2 is also a local optimum in G1 (but

3Another unpublished result was mentioned in [20] that Ver-
hoeven showed RLS([n]2) = Ω(n1−δ) for any constant δ > 0.
But according to an author of [20], the proof was never writ-
ten up and this question should be considered now to be still
open.

not the other way around in general), therefore any lower
bound for G1 is also a lower bound for G2.

We will use v1 ⊗ v2 to range over the set V1 × V2. There
are various ways to define a product graph G1 ×G2 = (V1 ×
V2, E) by different choices of E. Three possibilities are

1. E = {(v1 ⊗v2, v
′
1⊗v2) : (v1, v

′
1) ∈ E1, v2 ∈ V2}∪{(v1 ⊗

v2, v1 ⊗ v′
2) : (v2, v

′
2) ∈ E2, v1 ∈ V1};

2. E′ = {(v1⊗v2, v
′
1⊗v′

2) : (v1, v
′
1) ∈ E1∪IV1 and (v2, v

′
2) ∈

E2 ∪ IV2} − IV1×V2 , where IV = {(v, v) : v ∈ V };
3. E′′ = {(v1⊗v2, v

′
1⊗v′

2) : (v1, v
′
1) ∈ E1∪IV1 or (v2, v

′
2) ∈

E2 ∪ IV2} − IV1×V2 .

It is clear that E ⊆ E′ ⊆ E′′, and our lower bound theorem
will use the first definition E, making the theorem as general
as possible.

A path X in a graph G = (V, E) is a sequence (v1, ..., vl)
of vertices such that for any pair (vi, vi+1) of vertices, either
vi = vi+1 or (vi, vi+1) ∈ E. We use set(X) to denote the
set of distinct vertices on path X. A path is self-avoiding if
v1, ..., vl are all distinct. The length of a path (v1, ..., vl) is
l − 1. For two vertices u, v ∈ V , the distance |u − v|G is the
length of a shortest path from u to v. The subscript G may
be omitted if no confusion is caused.

The (k, l)-hypercube Gk,l = (V, E) where V = [k]l and
whose edge set is E = {(u, v) : ∃i ∈ {0, ..., l − 1}, s.t. |ui −
vi| = 1, and uj = vj , ∀j �= i}. Sometimes we abuse the
notation by using [k]l to denote Gk,l. Note that both the
Boolean hypercube and the constant dimension grid are spe-
cial hypercubes.4

In an N-vertex graph G = (V, E), a Hamilton path is
a path X = (v1, ..., vN) such that (vi, vi+1) ∈ E for any
i ∈ [N −1] and set(X) = V . It is easy to check by induction
that every hypercube [k]l has a Hamilton path. Actually, for
l = 1, [k] has a Hamilton path (1, ..., k). Now suppose [k]l

has a Hamilton path P , then a Hamilton path for [k]l+1 can
be constructed as follows. First fix the last coordinate to be
1 and go through P , then change the last coordinate to be 2
and go through P in the reverse order, and then change the
last coordinate to be 3 and go through P , and so on. For
each (k, l), let HamPathk,l = (v1, ..., vN) be the Hamilton
path constructed as above (where N = kl), and we define
the successor function Hk,l(vi) = vi+1 for i ∈ [N − 1].

We use R2(f) and Q2(f) to denote the double-sided er-
ror random and quantum query complexities of function f .
For more details on deterministic, randomized and quantum
query models and the corresponding query complexities, we
refer to [10] as an excellent survey.

2.1 One quantum adversary method and the
relational adversary method

The quantum adversary method is one of the two powerful
tools to prove lower bounds on quantum query complexity;
see [13] for an comprehensive survey of the research area
of quantum lower bounds. In this paper, we will use the
quantum adversary method proposed in [23]. The definition
and theorem given here are a little more general than the
original ones, but the proof remains unchanged.

Definition 1. Let F : IN → [M] be an N-variate func-
tion. Let R ⊆ IN × IN be a relation such that F (x) �= F (y)
4Here we identify the Boolean hypercube {0, 1}n and G2,n

since they are isomorphic.

636

for any (x, y) ∈ R. A weight scheme consists of three weight
functions w(x, y) > 0, u(x, y, i) > 0 and v(x, y, i) > 0 sat-
isfying u(x, y, i)v(x, y, i) ≥ w2(x, y) for all (x, y) ∈ R and
i ∈ [N] with xi �= yi. We further put

wx =
X

y′:(x,y′)∈R

w(x, y′), wy =
X

x′:(x′,y)∈R

w(x′, y),

ux,i =
X

y′:(x,y′)∈R,

xi �=y′
i

u(x, y′, i), vy,i =
X

x′:(x′,y)∈R,

x′
i �=yi

v(x′, y, i).

Theorem 6. [Zhang, [23]] For any F, R and any weight
scheme w, u, v as in Definition 1, we have

Q2(F) = Ω
„

min
(x,y)∈R,i∈[N]: xi �=yi

r
wxwy

ux,ivy,i

«

Inspired by the quantum adversary method, Aaronson [2]
gives a nice technique for proving lower bounds on random-
ized query complexities. We restate it using a language sim-
ilar to that in Theorem 6.

Theorem 7. [Aaronson, [2]] Let F : IN → [M] be an N-
variate function. Let R ⊆ IN × IN be a relation such that
F (x) �= F (y) for any (x, y) ∈ R. For any weight function
w : R → R

+, we have

R2(F) = Ω
„

min
(x,y)∈R,i∈[N]: xi �=yi

max
j

wx

wx,i
,

wy

wy,i

ff«

where

wx,i =
X

y′:(x,y′)∈R,

xi �=y′
i

w(x, y′), wy,i =
X

x′:(x′,y)∈R,

x′
i �=yi

w(x′, y).

Note that we can think of Theorem 7 as having a weight
scheme as in Theorem 6 too, but requiring that u(x, y, i) =
v(x, y, i) = w(x, y). This simple observation is used in the
proofs of the lower bound theorems.

3. LOWER BOUNDS FOR LOCAL SEARCH
ON GENERAL PRODUCT GRAPHS

In this section we prove a theorem which is stronger than
Theorem 1 due to a relaxation on the conditions of the ran-
dom walk. Suppose we are given a graph G = (V, E), a
starting vertex v0 and an assignment W : V × N → 2V s.t.
for each u ∈ V and t ∈ N, it holds that W (u, t) ⊆ {u} ∪ {v :
(u, v) ∈ E} and that |W (u, t)| = ct for some function c of t.
Intuitively, W gives the candidates that the walk goes to for
the next step, and the random walk (G, v0, W) on graph G
proceeds as follows. It starts at v0, and at step t ∈ N, it goes
from the current vertex vt−1 to a uniformly random vertex
in W (vt−1, t). We say a path (v0, v1, ..., vT) is generated by
the random walk if vt ∈ W (vt−1, t) for all t ∈ [T]. Denote
by p(u, t1, v, t2) the probability that the random walk is at
v after step t2 under the condition that the walk is at u af-
ter step t1. Let pt = maxu,v,t1,t2: t2−t1=t p(u, t1, v, t2). For
(u, u′) ∈ E, let q(u, u′, t1, v, t2) be the probability that the
walk is at v after step t2, under the conditions that 1) the
walk is at u after step t1, and 2) the walk does not go to u′

at step t1 + 1. The following lemma on the relation of the
two probabilities is obvious.

Lemma 8. If |W (u, t1 + 1)| > 1, then q(u, u′, t1, v, t2) ≤
2p(u, t1, v, t2).

Proof. Easy by considering the two cases of the step
t1 + 1 (going to u′ or not).

Theorem 9. Suppose G contains Gw ×Gc as a subgraph,
and L is the length of the longest self-avoiding path in Gc.
Let T =
L/2�, then for any random walk (Gw, vw

0 , W) on
Gw, we have

RLS(G) = Ω

TPT

t=1 pt

!
, QLS(G) = Ω

TPT

t=1
√

pt

!
.

Proof. Without loss of generality, we assume G = Gw ×
Gc, as Local Search on a subgraph is no harder than Local
Search on the original graph. We shall construct a ran-
dom walk on G by the random walk (Gw, vw

0 , W) on Gw

and a simple one-way walk on Gc. Starting from some
fixed vertex in G, the walk is proceeded by one step of
walk in Gw followed by two steps of walk in Gc. (We per-
form two steps of walk in Gc mainly for some technical rea-
sons, and this is also where the factor of 2 in the definition
T =
L/2� comes from.) Precisely, fix a self-avoiding path
(zc

0,0, z
c
1,0, z

c
1,1, z

c
2,1, z

c
2,2, ..., z

c
T,T−1, z

c
T,T) of length 2T in Gc.

Let the set P contain all the paths X = (xw
0 ⊗ zc

0,0, x
w
1 ⊗

zc
0,0, x

w
1 ⊗zc

1,0, x
w
1 ⊗zc

1,1, ..., x
w
T ⊗zc

T−1,T−1, x
w
T ⊗zc

T,T−1, x
w
T ⊗

zc
T,T) in G such that xw

0 = vw
0 and (xw

0 , xw
1 , ..., xw

T) is a
path generated by the random walk (Gw, vw

0 , W). Define
a problem PathP : given a path X ∈ P , find the end point
xw

T ⊗ zc
T,T . To access X, we can ask whether v ∈ set(X) for

any vertex v ∈ V , and an oracle O will give us the Yes/No
answer.5 The following claim says that the PathP problem
is not much harder than Local Search problem.

Claim 1. R2(PathP) ≤ 2RLS(G),Q2(PathP) ≤ 2QLS(G).

Proof. Suppose we have an Q-query randomized or quan-
tum algorithm A for Local Search, we shall give a 2Q cor-
responding algorithm B for PathP . For any path X ∈ P ,
we define a function fX essentially in the same way as in [2,
20]: for each vertex v ∈ G, let

fX(v) =

8>>><
>>>:

|v − xw
0 ⊗ zc

0,0|G + 3T if v /∈ set(X)
3(T − k) if v = xw

k ⊗ zc
k,k

3(T − k) − 1 if v = xw
k+1 ⊗ zc

k,k �= xw
k ⊗ zc

k,k

3(T − k) − 2 if v = xw
k+1 ⊗ zc

k+1,k

It is easy to verify that the only local minimum is xw
T ⊗zc

T,T .
Given an oracle O and an input X of the Path problem,

B simulates A to find the local minimum of fX , which is also
the end point of X. Whenever A needs to make a query on
v to get fX(v), B asks O whether v ∈ set(X). If v /∈ set(X),
then fX(v) = |v−xw

0 ⊗zc
0,0|G+3T ; otherwise, v = xw⊗zc

k+1,k

or v = xw ⊗ zc
k,k for some xw ∈ V w and k. Note that k

is known for any given vertex v. So if v = xw ⊗ zc
k+1,k,

5Note that it is actually an oracle for the following function
g : V w × V c → {0, 1}, with g(x) = 1 iff x ∈ set(X). So
strictly speaking, an input of PathP should be specified as
set(X) rather than X, because in general, it is possible that
X �= Y but set(X) = set(Y). For our problem, however,
it is easy to verify that for any X, Y ∈ P , it holds that
X = Y ⇔ set(X) = set(Y). Actually, if X �= Y , suppose
the first diverging place is k, i.e. xw

k−1 = yw
k−1, but xw

k �=
yw

k . Then Y will never pass xw
k ⊗ zc

k,k−1 because the clock
immediately ticks and the time always advances forward.
(Or more rigorously, the only point that Y passes through
zc

k,k−1 is yw
k ⊗zc

k,k−1. Since yw
k �= xw

k , xw
k ⊗zc

k,k−1 /∈ set(Y).)

637

then xw = xw
k+1 and thus fX (v) = 3(T − k) − 2. Now

consider the case that v = xw ⊗ zc
k,k. If k = 0, then let

fX(v) = 3T if v = xw
0 ⊗ zc

0,0 and fX(v) = 3T − 1 otherwise.
If k ≥ 1, then B asks O whether xw ⊗ zc

k,k−1 ∈ set(X).
If yes, then v = xw

k ⊗ zc
k,k and thus fX(v) = 3(T − k);

if no, then v = xw
k+1 ⊗ zc

k,k �= xw
k ⊗ zc

k,k and thus fX(v) =
3(T −k)−1. Therefore, at most 2 queries on O can simulate
one query on fX , so we have a 2Q algorithm for PathP in
both randomized and quantum cases.

(Continue the proof of Theorem 9) By the claim, it is suffi-
cient to prove lower bounds for PathP . We define a relation
RP as follows.

RP = {(X, Y) ∈ P ×P : X and Y has different end points}
For any pair (X, Y) ∈ RP , where X = (xw

0 ⊗ zc
0,0, x

w
1 ⊗

zc
0,0, x

w
1 ⊗zc

1,0, x
w
1 ⊗zc

1,1, ..., x
w
T ⊗zc

T−1,T−1, x
w
T ⊗zc

T,T−1, x
w
T ⊗

zc
T,T) and Y = (yw

0 ⊗zc
0,0, y

w
1 ⊗zc

0,0, y
w
1 ⊗zc

1,0, y
w
1 ⊗zc

1,1, ..., y
w
T ⊗

zc
T−1,T−1, y

w
T ⊗zc

T,T−1, y
w
T ⊗zc

T,T), we write X∧Y = k if xw
0 =

yw
0 , ..., xw

k−1 = yw
k−1 but xw

k �= yw
k . Note that if X ∧ Y =

k, then xw
k , yw

k ∈ W (xw
k−1, k) and thus |W (xw

k−1, k)| ≥ 2.
By Lemma 8, this implies that q(xw

k−1, x
w
k , k − 1, vw, j) ≤

2pj−k+1.
We choose the weight functions in Theorem 6 by letting

w(X, Y) = 1/|{Y ′ ∈ P : Y ′ ∧ X = k}|
= 1/|{X ′ ∈ P : X ′ ∧ Y = k}|
= 1/[(ck − 1)ck+1...cT].

To calculate wX =
P

Y ′:(X,Y ′)∈RP
w(X, Y ′), we group those

Y ′ that diverge from X at the same place k′:

wX =
TX

k′=1

X
Y ′:(X,Y ′)∈RP

X∧Y ′=k′

w(X, Y ′)

=
TX

k′=1

X
Y ′:(X,Y ′)∈RP

X∧Y ′=k′

1
|{Y ′ ∈ P : Y ′ ∧ X = k′}|

=
TX

k′=1

PrY ′ [(X, Y ′) ∈ RP |Y ′ ∧ X = k′]

=
TX

k′=1

PrY ′ [(y′)w
T �= xw

T |Y ′ ∧ X = k′]

The third equality holds because all paths diverging from X
firstly at k′ have the same probability 1/[(ck′ − 1)ck′ ...cT].
Note that the probability in the last equality is nothing but
1−q(xw

k′−1, x
w
k′ , k′ −1, xw

T , T), which is at least 1−2pT−k′+1.
So we have

wX ≥ T − 2
TX

k′=1

pT−k′+1 = T − 2
TX

t=1

pt.

And similarly, we have wY ≥ T − 2
PT

t=1 pt too.
Now we define u(X, Y, i) and v(X, Y, i), where i is a point

xw
j+r ⊗ zc

j+s,j ∈ set(X) − set(Y) or yw
j+r ⊗ zc

j+s,j ∈ set(Y) −
set(X). Here (r, s) ∈ {(0, 0), (1, 0), (1, 1)}, and 0 ≤ j ≤
j + r ≤ T . Let

u(X, Y, xw
j+r ⊗ zc

j+s,j) = ak,j,r,sw(X, Y),
u(X, Y, yw

j+r ⊗ zc
j+s,j) = bk,j,r,sw(X, Y),

v(X, Y, xw
j+r ⊗ zc

j+s,j) = bk,j,r,sw(X, Y),
v(X, Y, yw

j+r ⊗ zc
j+s,j) = ak,j,r,sw(X, Y).

where ak,j,r,s and bk,j,r,s will be given later (satisfying that
ak,j,r,sbk,j,r,s = 1, which makes u, v, w really a weight scheme).
We shall calculate uX,i and vY,i for i = xw

j+r ⊗ zc
j+s,j ∈

set(X)−set(Y) ; the other case i = yw
j+r ⊗zc

j+s,j is just sym-
metric. Note that if xw

j+r⊗zc
j+s,j /∈ set(Y ′) and X∧Y ′ = k′,

then k′ ≤ j + r.

uX,xw
j+r

⊗zc
j+s,j

=
j+rX
k′=1

X
Y ′:(X,Y ′)∈RP ,X∧Y ′=k′

xw
j+r⊗zc

j+s,j /∈set(Y ′)

ak′,j,r,sw(X, Y ′)

≤
j+rX
k′=1

X
Y ′:X∧Y ′=k′

ak′,j,r,sw(X, Y ′)=
j+rX
k′=1

ak′,j,r,s

The computation for vY,xw
j+r

⊗zc
j+s,j

is a little more compli-
cated. By definition,

vY,xw
j+r

⊗zc
j+s,j

=
j+rX
k′=1

X
X′:(X′,Y)∈RP , X′∧Y =k′,

xw
j+r⊗zc

j+s,j∈set(X′)

bk′,j,r,sw(X ′, Y)

≤
j+rX
k′=1

X
X′:X′∧Y =k′,

xw
j+r⊗zc

j+s,j∈set(X′)

bk′,j,r,sw(X ′, Y)

=
j+rX
k′=1

bk′,j,r,sPrX′ [xw
j+r ⊗ zc

j+s,j ∈ set(X ′)|X ′ ∧ Y = k′]

We can see that by adding the clock, the passing probability
PrX′ [xw

j+r ⊗zc
j+s,j ∈ set(X ′)|X ′∧Y = k′] is roughly the hit-

ting probability q(yw
k′−1, y

w
k′ , k′−1, xw

j+r, j)+q(yw
k′−1, y

w
k′ , k′−

1, xw
j+r, j+1). Actually, define Boundk,j,r,s = 2pj−k+2·λ[s =

1 ∨ j < T] + 2pj−k+1 · λ[s = 0 ∧ (k ≤ j ∨ r = 0)], where the
Boolean function λ[φ] = 1 if φ is true and 0 otherwise. Then

Claim 2.

PrX′ [xw
j+r ⊗ zc

j+s,j ∈ set(X ′)|X ′ ∧ Y = k′] ≤ Boundk′,j,r,s.

Proof. We study the probability case by case. If s =
1, then r = 1 and xw

j+1 ⊗ zc
j+1,j ∈ set(X ′) if and only if

xw
j+1 = (x′)w

j+1. So the probability is just q(yw
k′−1, y

w
k′ , k′ −

1, xw
j+1, j +1), which is no more than 2pj−k′+2 by Lemma 8.

If s = 0, then xw
j+r ⊗ zc

j,j ∈ set(X ′) if and only if “xw
j+r =

(x′)w
j or xw

j+r = (x′)w
j+1”. Also note that

PrX′ [xw
j+r = (x′)w

j |X ′∧Y = k′] = q(yw
k′−1, y

w
k′ , k′−1, xw

j+r, j)

unless k′ = j + 1 and r = 1, in which case PrX′ [xw
j+r =

(x′)w
j |X ′ ∧ Y = k′] = 0 because xw

j+1 ⊗ zc
j,j /∈ set(Y) but

(x′)w
j ⊗ zc

j,j = yw
j ⊗ zc

j,j ∈ set(Y). The other probability
PrX′ [xw

j+r = (x′)w
j+1|X ′ ∧ Y = k′] is just q(yw

k′−1, y
w
k′ , k′ −

1, xw
j+r, j + 1) if j ≤ T − 1 and it is 0 if j = T . Putting all

cases together, we get the desired result.

(Continue the proof of Theorem 9) The claim implies that
vY,xw

j+r
⊗zc

j+s,j
≤ Pj+r

k′=1 bk′,j,r,sBoundk′,j,r,s. The symmet-
ric case of u(X, Y, i) and v(X, Y, i) where i is a point yw

j+r ⊗
zc

j+s,j ∈ set(Y) − set(X) can be dealt with in the same
way, yielding uX,yw

j+r⊗zc
j+s,j

≤ Pj+r
k′=1 bk′,j,r,sBoundk′,j,r,s

and vY,yw
j+r

⊗zc
j+s,j

≤Pj+r
k′=1 ak′,j,r,s.

638

By the definition of Boundk′,j,r,s, it holds that for any
(j, r, s), we have

Pj+r
k′=1 Boundk′,j,r,s ≤ 4

PT
t=1 pt, and simi-

larly
Pj+r

k′=1

p
Boundk′,j,r,s ≤ 4

PT
t=1

√
pt. Now for the ran-

domized lower bound, ak′,j,r,s = bk′,j,r,s = 1. We get

RLS(G)

= Ω

min
j,r,s

max

(
T − 2

PT
t=1 pt

j + r
,

T − 2
PT

t=1 ptPj+r
k′=1 Boundk′,j,r,s

)!

= Ω

TPT

t=1 pt

!
.

For the quantum lower bound, pick ak′,j,r,s =
p

Boundk′,j,r,s,
and bk′,j,r,s = 1/

p
Boundk′,j,r,s. Then

QLS(G) = Ω

0
BB@min

j,r,s

vuuuut
“
T − 2

PT
t=1 pt

”2

“Pj+r
k′=1

p
Boundk′,j,r,s

”2

1
CCA

= Ω

TPT

t=1
√

pt

!

This completes the proof of Theorem 9.

4. APPLICATIONS TO THE TWO SPECIAL
GRAPHS

In this section, we will apply Theorem 9 to the two special
graphs. Note that in both cases, the probability pt is not
easy to upper bound.

4.1 Lower bounds for Local Search on the
Boolean Hypercube

To apply Theorem 9 to {0, 1}n, we decompose the whole
graph into the two parts {0, 1}m and {0, 1}n−m. Pick the
random walk ({0, 1}m, vw

0 , W), where vw
0 = 0m ∈ {0, 1}m

and W (x, t) = {x(i) : i ∈ {0, ..., m − 1}} for each vertex
x = x0...xm−1 ∈ {0, 1}m and each t ∈ N. Finally, note that
the longest self-avoiding path of the graph {0, 1}n−m is a
Hamilton path with length L = 2n−m − 1.

The following bounds on pt are rather loose for 10 < t ≤
m2 but sufficient for our purpose.

Lemma 10. For any t ∈ N, we have

pt =

8><
>:

O(m−	t/2
) if t ≤ 10
O(m−5) if 10 < t ≤ m2

O(2−m) if t > m2

The proof of the lemma uses the generating function (z1 +
... + zm)t and some techniques in a Fourier analysis flavor.
We leave the details in the full version [24].

Proof. Omitted. See the full version [24].

Now it is easy to prove Theorem 2 using this lemma. For
the randomized lower bound, let m =
(n+log2 n)/2�, then
T = Θ(2n/2/n1/2) and

PT
t=1 pt = O(1/n). Thus we have

RLS({0, 1}n) = Ω(
√

n2n/2). For the quantum lower bound,
let m =
(2n + log2 n)/3�, then T = Θ(2n/3/n1/3) andPT

t=1
√

pt = O(1/
√

n). Thus QLS({0, 1}n) = Ω(2n/3n1/6).

4.2 Lower bounds for Local Search on the con-
stant dimensional grid

In this section we shall first prove a lower bound weaker
than Theorem 3 in Section 4.2.1, and then improve it to
Theorem 3 in Section 4.2.2.

4.2.1 A weaker family of lower bounds
As in Section 4.1, we decompose the grid into two parts,

[n]m and [n]d−m. For each vertex x = x0...xm−1 ∈ [n]m and
each i ∈ {0, ..., m − 1}, define

x(i),− = x0...xi−1 max{xi − 1, 1}xi+1...xm−1,

x(i),+ = x0...xi−1 min{xi + 1, n}xi+1...xm−1.

We perform the random walk ([n]m, vw
0 , W) where vw

0 =
00...0 ∈ [n]m, W (x, t) = {x((t−1) mod m),+, x((t−1) mod m),−}.
To analyze the probability pt in Theorem 9, we first consider
the following simpler “line walk”. Suppose a particle is ini-
tially put at point i ∈ {1, ..., n}, and in each step the particle
moves either to max{1, i − 1} or to min{n, i + 1}, each with
probability 1/2. Let p

(t)
ij denote the probability that the

particle starting from point i is at point j after exact t steps
of the walk. For t ≥ 1, the following proposition gives a very
good (actually tight) estimate on maxij p

(t)
ij .

Proposition 11. For any t ≥ 1,

max
i,j

p
(t)
ij =

(
O(1/

√
t) if t ≤ n2

O(1/n) if t > n2

If there are not the two barriers (1 and n) then p
(t)
ij is

very easy to calculate: p
(t)
ij =

`
t

t/2+(j−i)/2

´
if j − i and t

have the same parity, and 0 otherwise. However, since we
now have the two barriers, it is hard to count the number
of paths from i to j after exactly t steps. Here inspired by
the so-called reflecting rule, we will construct a series of 1-1
correspondences to reduce the problem step by step to the
no-barrier case. For more details please see the full version
of the paper [24].

Proof. Omitted. See the full version [24].

Now we use Proposition 11 to prove the weaker lower
bounds for grids. Since the random walk ([n]m, vw

0 , W) is
just a product of m line walks, it is not hard to see that the
pt in the random walk ([n]m, vw

0 , W) is equal to O(1/
√

tm)
if t ≤ n2, and O(1/nm) if t > n2. Now for the randomized
lower bounds, when d > 4 we pick m = �d/2� > 2 and
we get RLS([n]d) = Ω

“
nd−m

O(1)+nd−m/nm

”
= Ω(n�d/2�), which

is Ω(n
d
2) if d is odd, and Ω(n

d
2 − 1

2) if d is even. For d =
4, 3, 2, we let m = 2, 2, 1 respectively, and get RLS([n]4) =
Ω(n2/(log n+1)) = Ω(n2/ log n), RLS([n]3) = Ω(n/(log n+
1/n)) = Ω(n/ log n), and RLS([n]2) = Ω(n/(

√
n + 1)) =

Ω(
√

n).
For the quantum lower bounds, if d > 6, we let m be the

integer closest to 2d/3, thus m > 4. We get QLS([n]d) =
Ω
“

nd−m

O(1)+nd−m/nm/2

”
, which is Ω(N

1
3) if d = 3d′, Ω(N

1
3 − 1

3d)

if d = 3d′ + 1, and Ω(N
1
3 − 1

6d) if d = 3d′ + 2. For d = 6,
let m = 4 and we have QLS([n]6) = Ω(n2/ log n). For d =
5, 4, 3, let m = d − 2 then QLS([n]d) = Ω(n2/(n2−(d−2)/2 +
n2−(d−2)/2)) = Ω(nd/2−1), which is Ω(n5/2), Ω(n2), Ω(n3/2),
respectively. For d = 2, let m = 1 and QLS([n]2) =
Ω(n

n3/4) = Ω(n1/4).

639

4.2.2 Improvement
One weakness of the above proof is the integer constraint

of the dimension m. We now show a way to get around the
problem, allowing m to be any real number between 0 and
d − 1. The idea is to partition the grid into many blocks,
with different blocks representing different time slots, and
the blocks are threaded into one very long block by many
paths that are pairwise disjoint. Roughly speaking, we view
[n]d as the product of d line graph [n]. For each of the first
d−1 line graphs, we cut it into n1−r parts evenly, each of size
nr. (Here r = m/(d − 1)). Then [n]d−1 is partitioned into
n(d−1)(1−r) smaller grids, all isomorphic to [nr]d−1. Putting
the last dimension back, we have n(d−1)(1−r) blocks, all iso-
morphic to [nr]d−1 × [n]. Now the random walk will be-
gin in the first block, and within each block, it is just one
step of random walk in [nr]d−1 followed by two steps of
one-way walk in the last dimension space [n]. When the
walk runs out of the clock [n], the walk will move to the
next block via a particular block-changing path. All block-
changing paths are carefully designed to be disjoint, and
they “thread” all the blocks to form a [nr]d−1 × [L] grid,
where L = (n − 2nr)n(1−r)(d−1). (L is not n · n(1−r)(d−1)

because we need 2nr points for the block-changing paths.)
We now describe the partition and the walk precisely. For

x = x0...xd−1 in [n]d, let x(k)=l = x0...xk−1lxk+1...xd−1,
and x(k)=(k)+i = x0...xk−1(xk + i)xk+1...xd−1, where i sat-
isfies xk + i ∈ [n]. Recall that x(i),− = x(i)=max{xi−1,1} and
x(i),+ = x(i)=min{xi+1,n}.

1

block 1 block 2 block

dimension 1

n’−

 ...

block−changing segmentboundary point

dimension 0

n’−

n’

α+1
α

α
α+1

1 ... α α+1 2α ... n’− α+1 n’

β

Figure 1: Illustration for changing a block in 2 di-
mensional grid

For any fixed constant r ∈ (0, 1), let α =
nr�, β =

n1−r� and n′ = αβ. Note that n′ ≥ (nr − 1)(n1−r −
1) = n − o(n). We now consider the slightly smaller grid
[n′]d. Let V1 be the set [n′]d−1 = {x0...xd−2 : xi ∈ [n′]}.
We cut V1 into βd−1 parts {x0...xd−2 : (ki − 1)α < xi ≤
kiα}k0...kd−2∈[β]d−1, each of which is a small grid isomor-
phic to [α]d−1. We then refer to the set {x0...xd−2xd−1 :

(ki − 1)α < xi ≤ kiα, i = 0, ..., d − 2, α < xd−1 ≤ n′ − α}
as the “block (k0, ..., kd−2)”. Note that (k0, ..., kd−2) can be
also viewed as a point in grid [β]d−1, and there is a Hamil-
ton path HamPathβ,d−1 in [β]d−1, as defined in Section
2. We call the block (k′

0, ..., k
′
d−2) the next block of the

block (k0, ..., kd−2) if (k′
0, ..., k

′
d−2), viewed as the point in

[β]d−1, is the next point of (k0, ..., kd−2) in HamPathβ,d−1.
Note that by our definition of HamPathβ,d−1, we know that
∃i ∈ {0, ..., d − 2} s.t. k′

i ∈ {ki + 1, ki − 1} and for all other
j �= i, k′

j = kj . That is, adjacent blocks have only one coor-
dinate to be different, and this difference is 1. We call the
the block (k0, ..., kd−2) the last block if (k0, ..., kd−2) is the
last point in HamPathβ,d−1.

Now we define the random walk by describing how a par-
ticle may go from start to end. The path set is just all the
possible paths the particle goes along. Intuitively, within
one block, the last dimension d−1 serves as the clock space.
So as before, we perform one step of line walk (in the di-
mension which is the circularly next dimension of the last
one that the walk just goes in), followed by two steps of
walk in the clock space. If we run out of clock, we say we
reach a boundary point at the current block, and we move
to the next block via a path segment called block-changing
segment. In what follows, we specify how the particle may
move during the whole random walk process, including going
through block-changing segments. We always use x0...xd−1

to denote the current position of the particle, and assume
xi = (ki − 1)α + yi, i.e. x is in the block (k0, ..., kd−2) with
the offsets (y0, ..., yd−1). Thus the instruction x0 = x0 + 1,
for example, means that the particle moves from x0...xd−1

to (x0 + 1)x1...xd−1.

1. x0 = ... = xd−2 = 0, xd−1 = α+1, k0 = ... = kd−2 = 1.

2. for t = 1 to (n′ − 2α)βd−1,

Let t′ =
 t−1
n′−2α

�, i = (t − 1) mod (d − 1)

do either xi = max{xi − 1, (ki − 1)α + 1} or xi =
min{xi + 1, kiα} randomly

if t �= k(n′ − 2α) for some positive integer k,

do xd−1 = xd−1 + (−1)t′
twice

else (the particle is now at a boundary point)

if the particle is not in the last block

(Suppose the current block changes to the next
block by increasing kj by b ∈ {−1, 1})

do xd−1 = xd−1 +(−1)t′
for (α +1 − yj) times

do xj = xj + b for 2(α + 1 − yj) − 1 times

do xd−1 = xd−1 + (−1)t′+1 for (α + 1 − yj)
times

kj = kj + b

else

The particle stops and the random walk ends

It is easy to verify that every boundary point has one unique
block-changing segment, and different block-changing seg-
ments do not intersect. Thus the block-changing segments
thread all the blocks to form a [α]d−1 × [L] grid, where
L = (n′ − 2α)βd−1.

Claim 3. we can use Theorem 9 with Gw = [nr]d−1 and
Gc = [L] to prove lower bounds on RLS([n]d) and QLS([n]d).

640

Proof. Omitted. See the full version [24].

Now T =
L/2� and pt = O(1/
√

td−1) for t ≤ n2r and
pt = O(1/nr(d−1)) for t > n2r. For the randomized lower
bounds, if d ≥ 4, then let r = d/(2d − 2) and we get

RLS([n]d) = Ω(L/(
Pnd/(d−1)

t=1 1/
√

td−1+L/nd/2))) = Ω(nd/2).
If d = 3, let r = 3/4 − log log n/(4 log n), then we have
RLS([n]3) = Ω((n3/ log n)1/2). For d = 2, let r = 2/3 and
we get RLS([n]2) = Ω(n2/3).

For the quantum lower bounds, if d ≥ 6, let r = 2d/(3d −
3) and we get QLS([n]d) = Ω(nd/3). If d = 5, then let r =
5/6 − log log n/(6 log n) and QLS([n]5) = Ω((n5/ log n)1/3).
For 2 ≤ d ≤ 4, we let r = d/(d + 1), then QLS([n]d) =
Ω(nd/2−d/(d+1)).

4.2.3 Further improvement on the 2-dimensional grid
Some other random walk can be used to further improve

the lower bound on low dimension grid cases. For example,
we can cut the 2-dimensional grid into n2/5 blocks (each
of size n4/5 × n4/5), and let blocks to serve as the clock.
Using a random walk similar to Aaronson’s in [2] (with some
modifications to move to the next block after each step), we
can prove 6

Claim 4. QLS([n]2) = Ω(n2/5).

Proof. Omitted. See the full version [24].

This completes the proof of Theorem 3.

5. NEW ALGORITHMS FOR LOCAL SEARCH
ON GENERAL GRAPHS

In [4, 2], a randomized and a quantum algorithm for Local
Search on general graphs are given as follows. Do a random
sampling over all the vertices, find a vertex v in them with
the minimum f -value. (For the minimum f -value finding
procedure, The randomized algorithm in [4] just queries all
these vertices and find the minimum, while the quantum
algorithm in [2] uses the algorithm by Durr and Hoyer [11]
based on Grover search [12] to get a quadratic speedup.) If
v is a local minimum, then return v; otherwise we follow
a decreasing path as follows. Find a neighbor of v with
the minimum f -value, and continue this minimum-value-
neighbor search process until getting to a local minimum.
We can see that the algorithms actually fall into the generic
algorithm category (see Section 1), with the initial point
picked as the best one over some random samples.

In this section, we give new randomized and quantum al-
gorithms, which work better than this simple “random sam-
pling + steepest descent” method when the graph expands
slowly. Here the idea is that after finding the minimum ver-
tex v of the sampled points, instead of following the decreas-
ing path of v, we start over within a smaller range, which
contains those vertices “close to” v. If this smaller range con-
tains a local minimum for sure, then we can simply search a
local minimum in it and do this procedure recursively. But
one caveat here is that a straightforward recursion does not
work, because a local minimum u in the smaller range may
be not a local minimum in the original larger graph G (since
6Note that this walk suffers from the fact that the “passing
probability” is now n4/5 times the “hitting probability”. So
it only it only gives better results for QLS([n]2).

u may have more neighbors in G). So we shall find a small
range which has a “good” boundary in the sense that all
vertices on the boundary have a large f -value.

Now we describe the algorithm precisely, with some nota-
tions as follows. For G = (V, E), a given function f : V → N,
a vertex v ∈ V and a set S ⊆ V , let n(v, S) = |{u ∈ S :
f(u) < f(v)}|. The boundary B(S) of the set S ⊆ V is de-
fined by B(S) = {u ∈ S : ∃v ∈ V −S s.t. (u, v) ∈ E}. In par-
ticular, B(V) = ∅. A decreasing path from a vertex v ∈ V
is a sequence of vertices v0, v1, ..., vk such that v0 = v, vk is
a local minimum and f(vi+1) = minv:(vi,v)∈E f(v) < f(vi)
for i = 0, ..., k − 1. We write f(u) ≤ f(S) if f(u) ≤ f(v) for
all v ∈ S. In particular, it always holds that f(u) ≤ f(∅).
Suppose d = maxu,v∈V |u − v| is the diameter of the graph,
and δ = maxv∈V |{u : (u, v) ∈ E}| is the max degree of the
graph. In the following algorithm, the asymptotical num-
bers at the end of some command lines are the numbers of
randomized or quantum queries needed for the step. For
those commands without any number, no query is needed.

1. m0 = d, U0 = V ;

2. i = 0;

3. while (|mi| > 10) do

(a) Randomly pick (with replacement) � 8|Ui|
mi

log 1
ε1

�
vertices from Ui, where ε1 = 1/(10 log2 d);

(b) Search the sampled vertices for one vi with the
minimal f value.
- Randomized algorithm: query all the sampled
vertices and get vi. — O

“
8|Ui|
mi

log 1
ε1

”
- Quantum algorithm: use Durr and Hoyer’s algo-
rithm [11] with the error probability at most ε2 =

1/(10 log2 d). — O
“q

8|Ui|
mi

log 1
ε1

log 1
ε2

”
(c) if i = 0, then ui+1 = vi;

else if f(ui) ≤ f(vi), then ui+1 = ui;
else ui+1 = vi;

(d) for j = 1, 2, ...

i. Randomly pick mij ∈ Mi = {m : mi/8 ≤
m ≤ mi/2, |W (m)| ≤ 10|Ui|/mi}, where
W (m) = {w ∈ Ui : |w − ui+1| = m}. Let
Wij = W (mij).

ii. Test whether f(ui+1) ≤ f(Wij)
- Randomized algorithm: query all vertices in
Wij . — O(|Wij |)
- Quantum algorithm: use Durr and Hoyer’s
algorithm [11] on Wij with the error prob-
ability at most ε3 = 1/(200 log2 d). —
O
“p|Wij | log 1

ε3

”
iii. If the answer is Yes, jump out of this for loop

and go to Step 3e.

(e) Ji = j, mi+1 = mij , Wi = Wij , Ui+1 = {u ∈ Ui :
|u − ui+1| ≤ mi+1};

(f) i = i + 1;

4. I = i;

641

5. Follow a decreasing path of uI to find a local minimum.

- Randomized algorithm: in each step, query all the
neighbors — O(δ)

- Quantum algorithm: in each step, use Durr and
Hoyer’s algorithm with the error probability at most
1/100 — O(

√
δ)

Define c(k) = maxv∈V |{u : |u− v| ≤ k}|. Apparently, the
expanding speed of a graph is upper bounded by c(k). The
following theorem says that the algorithm is efficient if c(k)
is small.

Theorem 12. The algorithm outputs a local minimum
with probability at least 1/2. The randomized algorithm uses
O
“PI−1

i=0
c(mi)

mi
log log d

”
queries in expectation, and the quan-

tum algorithm uses O
“PI−1

i=0

q
c(mi)

mi
(log log d)1.5

”
queries

in expectation.
In case that c(k) = O(kα) for some α ≥ 1 and k = 1, ..., d,

the expected number of queries that the randomized algorithm
uses is O

“
dα−1−1
1−21−α log log d

”
if α > 1 and O(log d log log d)

if α = 1. The expected number of queries that the quan-

tum algorithm use is O

„
d

α−1
2 −1

1−2
1−α

2
(log log d)1.5

«
if α > 1 and

O(log d log logd) if α = 1.

Several comments before proving the theorem:

1. limα→1
dα−1−1
1−21−α = limα→1

d
α−1

2 −1

1−2
1−α

2
= log2 d

2. If α − 1 ≥ ε for some constant ε > 0, then dα−1−1
1−21−α =

Θ(dα−1) and d
α−1

2 −1

1−2
1−α

2
= Θ(d(α−1)/2).

If further the bound c(k) = O(kα) is tight in the sense
that N = c(d) = Θ(dα), then RLS(G) = O

`
N
d

log log d
´

and QLS(G) = O(
q

N
d

(log log d)1.5).

3. For 2-dimensional grid, d = Θ(n) and α = 2. Thus
Theorem 5 follows immediately.

Proof. We shall prove the theorem for the quantum al-
gorithm. The analysis of the randomized algorithm is al-
most the same (and actually simpler). We say Wi is good if
f(ui+1) ≤ f(Wi). We shall first prove the following claim,
then the theorem follows easily.

Claim 5. For each i = 0, 1, ..., I − 1, the following three
statements hold.

1. n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ mi/8 ≤ mi+1 with prob-
ability 1 − ε1 − ε2.

2. If n(ui+1, Ui) ≤ mi/8, then Wi is good with probability
1 − ε3Ji, and E[Ji] ≤ 2.

3. If W0, ..., Wi are all good, then f(ui+1) ≤ f(B(Ui+1)),
and ui+1 /∈ B(Ui+1).

Proof. 1: In Step 3a - 3c, denote by S the set of the
� 8|Ui|

mi
log 1

ε1
� sampled vertices in Step 3a. Let a = minu∈S f(u),

then |{v ∈ Ui : f(v) < a}| ≤ mi/8 with probability at least
1−ε1. The vi found in Step 3b achieves the minimum in the

definition of a with probability at least 1 − ε2. Put the two
things together, we have n(vi, Ui) ≤ mi/8 with probability
at least 1 − ε1 − ε2. Since f(ui+1) ≤ f(vi) (by Step 3c),
Ui+1 ⊆ Ui (by Step 3e) and mi+1 ≥ mi/8 (by Step 3(d)i),
we have n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ n(vi, Ui) ≤ mi/8 ≤
mi+1 with probability at least 1 − ε1 − ε2.

2: We say an mij is good if the corresponding Wij is good,
i.e. f(ui+1) ≤ f(Wij). Note that for any mij ∈ [mi], we
have Wij ⊆ Ui, and also have Wij ∩ Wij′ = ∅ if mij �= mij′ .
Therefore, if n(ui+1, Ui) ≤ mi/8, then at most mi/8 distinct
mij ’s in [mi] are not good. Also note that the number of
distinct mij ’s s.t. |W (mij)| > 10|Ui|/mi is less than mi/10.
Therefore, |Mi| ≥ (3

8 − 1
10)mi > mi/4. So if n(ui+1, Ui) ≤

mi/8, a random mij in Mi is good with probability at least
1/2, and thus E[Ji] ≤ 2. Also the probability that all the
Grover searches in Step 3(d)ii are correct is at least 1−Jiε3.

3: We shall first prove B(Ui+1) ⊆ B(Ui)∪Wi. In fact, any
s ∈ B(Ui+1) satisfies that s ∈ Ui+1 and that ∃t ∈ V − Ui+1

s.t. |s − t| = 1. Recall that Ui+1 ⊆ Ui, so if t ∈ V − Ui,
then s ∈ B(Ui) by definition. Otherwise t ∈ Ui − Ui+1, and
thus t ∈ Ui and |t − ui+1| > mi+1 by the definition of Ui+1.
Noting that |s − ui+1| ≤ mi+1 since s ∈ Ui+1, and that
|s − t| = 1, we have |s −ui+1| = mi+1, which means s ∈ Wi.
Thus for all s ∈ B(Ui+1), either s ∈ B(Ui) or s ∈ Wi holds,
which implies B(Ui+1) ⊆ B(Ui) ∪ Wi.

Applying the result recursively, we have B(Ui+1) ⊆ B(U0)∪
W0 ∪ ... ∪ Wi = W0 ∪ ... ∪ Wi. Since we have f(ui+1) ≤
f(ui) ≤ ... ≤ f(u1) (by Step 3c) and f(uk+1) ≤ f(Wk)
(for k = 0, ..., i) by the assumption that all Wk’s are good,
we know that f(ui+1) ≤ f(W0 ∪ ... ∪ Wi), which implies
f(ui+1) ≤ f(B(Ui+1)).

For the other goal ui+1 /∈ B(Ui+1), it is sufficient to prove
ui+1 /∈ B(Ui) and ui+1 /∈ Wi. The latter is easy to see
by the definition of Wi. For the former, we can actually
prove uk+1 /∈ B(Uk) for all k = 0, ..., i by induction on k.
The base case of k = 0 is trivial because B(U0) = ∅. Now
suppose uk /∈ B(Uk−1). There are two cases of uk+1 by
Step 3c. If f(uk) ≤ f(vk), then uk+1 = uk /∈ B(Uk−1) by
induction. Again by the definition of Wk−1 we know that
uk /∈ Wk−1 and thus uk+1 = uk /∈ B(Uk). The other case
is f(uk) > f(vk), then uk+1 = vk, and therefore f(uk+1) =
f(vk) < f(uk) ≤ f(B(Uk)) (by the first part in 3), which
implies that uk+1 /∈ B(Uk).

(Continue the proof of Theorem 12) Now by the claim, we
know that with probability at least 1−I(ε1+ε2)−PI−1

i=0 Jiε3,
we will have that

n(uI , UI) ≤ mI , f(uI) ≤ f(B(UI)), uI /∈ B(UI).

Note that the correctness of the algorithms follows from
these three items. Actually, by the last two items, we know
that any decreasing path from uI is contained in UI . Oth-
erwise suppose (u0

I , u
1
I , ..., uT

I) is a decreasing path from uI

(so u0
I = uI), and the first vertex out of UI is ut

I , then
ut−1

I ∈ B(UI). Since u0
I /∈ B(UI), we have t − 1 > 0 and

thus f(ut−1
I) < f(uI), contradicting to f(uI) ≤ f(B(UI)).

Now together with the first item, we know that any decreas-
ing path from uI is no more than mI long. Thus Step 5 will
find a local minimum by following a decreasing path.

The error probability of the algorithm is I(ε1 + ε2) +
Jε3 + 10/100, where J =

PI−1
i=0 Ji. Since E[J] = 2I , we

know by Markov inequality that with J < 20I with prob-
ability at least 9/10. Since ε1 = ε2 = 1/(10 log2 d) and

642

ε3 = 1/(200 log2 d), and note that I ≤ log2 d because m0 = d
and mi+1 ≤ �mi/2�. So the total error probability is less
than 1/2.

We now consider the number of queries used in the i-th
iteration. Note from Step 1 and Step 3e that |Ui| ≤ c(mi)
for i = 0, 1, ..., I − 1. So Step 3b uses

O

 r
8|Ui|
mi

log log d log log d

!
= O

 r
c(mi)
mi

(log log d)1.5

!

queries. Also note from Step 3(d)i that |Wij | ≤ 10|Ui|/mi,
so Step 3d uses O(

PJi
j=1

p
c(mi)/mi log log d) queries, which

has the expectation of O(
p

c(mi)/mi log log d). Finally, Step
5 uses O(

√
δ) queries. Note that δ = c(1) = O(c(mI)/mI)

where mI is a constant integer in the range [6, 10]. Alto-
gether, the total expected number of queries used is

O

0
@
0
@log2 d−1X

i=0

p
c(mi)/mi

1
A (log log d)1.5

1
A .

If c(k) = O(kα) for some α ≥ 1 and k = 1, ..., d, then

log2 d−1X
i=0

r
c(mi)
mi

=
log2 d−1X

i=0

m
(α−1)/2
i

=
log2 d−1X

i=0

(d/2i)(α−1)/2 =
dβ − 1
1 − 2−β

where β = (α−1)/2. This completes the proof for the quan-
tum algorithm, except that in the case of α = 1, where we
have a quantum upper bound of O(log d(log log d)1.5). But
this is worse than the randomized algorithm, which uses
O(log d log log d) queries. So when α = 1, the quantum al-
gorithm just uses the randomized one. �

Acknowledgement
The author thanks Scott Aaronson, Xiaoming Sun and

Andy Yao very much for many valuable discussions. Thanks
also to Yves Verhoeven and Dirk Winkler for each pointing
out an error in a preliminary version of the paper.

6. REFERENCES
[1] K. Aardal, S. Hoesel, J.K. Lenstra, L. Stougie. A

Decade of Combinatorial Optimization. CWI Tracts
122, pp. 5-14, 1997.

[2] S. Aaronson. Lower Bounds for Local Search by
Quantum Arguments. Proceedings of the thirty-sixth
Annual ACM Symposium on Theory of Computing,
pp. 465-474, 2004.

[3] E. Aarts and J. Lenstra, John Wiley & Sons, Inc. New
York, NY, USA, 1997.

[4] D. Aldous. Minimization Algorithms and Random
Walk on the d-Cube. Annals of Probability, 11(2), pp.
403-413, 1983.

[5] I. Althofer and K. Koschnich. On the Deterministic
Complexity of Searching Local Maxima. Discrete
Applied Mathematics 43, pp. 111-113, 1993.

[6] A. Ambainis. Polynomial Degree vs. Quantum Query
Complexity. Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pp.
230-239, 2003.

[7] A. Ambainis. Quantum Lower Bounds by Quantum
Arguments, Journal of Computer and System
Sciences, 64, pp. 750-767, 2002.

[8] H. Barnum, M. Saks, M. Szegedy. Quantum Query
Complexity and Semidefinite Programming.
Proceedings of the 18th Annual IEEE Conference on
Computational Complexity, pp. 179-193, 2003.

[9] R. Beals, H. Buhrman, R. Cleve, M.Mosca, R. de
Wolf. Quantum Lower Bounds by Polynomials.
Journal of ACM, 48, pp. 778-797, 2001.

[10] H. Buhrman and R. de Wolf. Complexity Measures
and Decision Tree Complexity: a survey. Theoretical
Computer Science, 288(1), pp. 21-43, 2002.

[11] C. Durr and P. Hoyer. A Quantum Algorithm for
Finding the Minimum, quant-ph/9607014, 1996.

[12] L. Grover. A Fast Quantum Mechanical Algorithm for
Database Search, Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing, pp.
212-219, 1996.

[13] P. Hoyer and R. Spalek. Lower Bounds on Quantum
Query Complexity, Bulletin of the European
Association for Theoretical Computer Science 87, pp.
78-103, 2005.

[14] D. Johnson, C. Papadimitriou, and M. Yannakakis.
How Easy is Local Search, Journal of Computer and
System Sciences 37, pp. 429-448, 1988.

[15] S. Laplante and F. Magniez. Lower Bounds for
Randomized and Quantum Query Complexity Using
Kolmogorov Arguments. Proceedings of the 19th
Annual IEEE Conference on Computational
Complexity, pp. 294-304, 2004.

[16] D. Llewellyn and C. Tovey. Dividing and Conquering
the Square. Discrete Applied Mathematics 43, pp.
131-153, 1993.

[17] D. Llewellyn, C. Tovey, M. Trick. Local Optimization
on Graphs. Discrete Aplied Mathematics 23, pp.
157-178, 1989. Erratum: 46, pp. 93-94, 1993.

[18] N. Megiddo and C. Papadimitriou. On Total
Functions, Existence Theorems, and Computational
Complexity. Theoretical Computer Science 81, pp.
317-324, 1991.

[19] J. Orlin, A. Punnen, A. Schulz. Approximate Local
Search in Combinatorial Optimization. SIAM Journal
on Computing, 33(5), pp. 1201-1214, 2004.

[20] M. Santha and M. Szegedy. Quantum and Classical
Query Complexities of Local Search Are Polynomially
Related. Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp.494-501, 2004.

[21] R. Spalek and M. Szegedy. All Quantum Adversary
Methods Are Equivalent. Proceedings of 32nd
International Colloquium on Automata, Languages
and Programming, pp. 1299-1311, LNCS 3580, Lisboa,
Portugal, 2005.

[22] Y. Verhoeven, Enhanced Algorithms for Local Search.
Information Processing Letters 97, 171-176, 2006.

[23] S. Zhang. On the Power of Ambainis Lower Bounds,
Theoretical Computer Science, 339(2-3), pp. 241-256,
2005.

[24] S. Zhang. New Upper and Lower Bounds for
Randomized and Quantum Local Search,
quant-ph/0603034, 2006.

643

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

