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Distributed Rate Allocation for Inelastic Flows
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Abstract—A common assumption behind most of the recent re-
search on network rate allocation is that traffic flows are elastic,
which means that their utility functions are concave and contin-
uous and that there is no hard limit on the rate allocated to each
flow. These critical assumptions lead to the tractability of the ana-
lytic models for rate allocation based on network utility maximiza-
tion, but also limit the applicability of the resulting rate allocation
protocols. This paper focuses on inelastic flows and removes these
restrictive and often invalid assumptions.

First, we consider nonconcave utility functions, which turn
utility maximization into difficult, nonconvex optimization prob-
lems. We present conditions under which the standard price-based
distributed algorithm can still converge to the globally optimal rate
allocation despite nonconcavity of utility functions. In particular,
continuity of price-based rate allocation at all the optimal prices
is a sufficient condition for global convergence of rate allocation
by the standard algorithm, and continuity at at least one optimal
price is a necessary condition. We then show how to provision link
capacity to guarantee convergence of the standard distributed
algorithm. Second, we model real-time flow utilities as discontin-
uous functions. We show how link capacity can be provisioned to
allow admission of all real-time flows, then propose a price-based
admission control heuristics when such link capacity provisioning
is impossible, and finally develop an optimal distributed algorithm
to allocate rates between elastic and real-time flows.

Index Terms—Capacity provisioning, congestion control,
inelastic flow, network control by pricing, network utility maxi-
mization, optimization, resource allocation.

I. INTRODUCTION

A. Motivation and Organization

I N A SEMINAL paper published in 1995, Shenker [18] dis-
cussedInternetservicemodels tosupportapplicationsbeyond

best-effort, in the framework of network utility models for four
types of traffic. In particular, two major characteristics of ‘elastic
traffic’ were highlighted: “These applications are rather elastic
in nature, in that they tolerate packet delays and packet losses
rather gracefully Moreover, because of this elasticity, they can
decrease their transmission rate in the presence of congestion.”
Utility functions for elastic traffic were modeled as smooth,
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concave functions of data rates, which lead to the conclusion in
[18] that network utility is always maximized when no users are
denied access. Over the last decade, maximization of concave
utility functions and the resulting distributed rate allocation for
elastic traffic have gained extensive attention. Elegant analytic
results and rigorous mathematical frameworks for a standard
price-based distributed algorithm become possible because of
the concavity and continuity assumptions on utility functions and
the elasticity assumption on application traffic. In particular, it
has been shown (e.g., [12], [19]) that TCP congestion control can
be reverse-engineered as implicitly solving concave utility maxi-
mization through price-based distributed subgradient algorithm.

However, it appears that the other classes of traffic (e.g., real-
time, delay-adaptive, or streaming traffic) are not amenable to
the utility maximization framework, and applicability of the dis-
tributed subgradient algorithm for rate allocation among these
inelastic flows remains an open problem. Utility functions for
inelastic flows are nonconcave or discontinuous, and they can
only tolerate a limited amount of packet delay or fluctuations
during rate allocation transients. Furthermore, when the source
data rate requirements are rigid, some inelastic sources might be
amenable only to admission control, which introduces boolean-
valued variables and turn the problem into discrete optimization.

This paper tackles the difficulties of distributed rate alloca-
tion for inelastic flows. There are two standard ways to model
inelastic traffic’s utility function: a nonconcave utility function
based on user perception model (e.g., sigmoidal utility for voice
traffic based on MOS scores) or a discontinuous utility function
based on the model where real-time flows attain zero utility if
the rate is below a threshold and a constant positive utility (or
concave increasing utility) above the threshold.

In the first part of the paper, Sections II and III, we examine the
case of nonconcave utility functions.Recent work [11]has shown
that the standard price-based distributed rate allocation may not
even converge when one of the flows has a sigmoidal utility func-
tion. We answer the following question in Section II: “When will
the standard distributed algorithm converge to the globally op-
timal rate allocation even when some flows have nonconcave util-
ities?” Then in Section III, we answer a further question: “Can
link capacities be provisioned to guarantee such convergence?”

In the second part of the paper, Section IV, we examine the
case of discontinuous utility functions for real-time traffic flows,
and answer the following questions in sequence: “Can link ca-
pacities be provisioned such that all real-time flows can be ad-
mitted? If not, how should the admission control decision be
distributively made based on pricing information? And how can
a fair share of link capacities be ensured for elastic flows sharing
links with real-time flows?”

An overview of the answers to the above questions will be
presented in Section I-C, after a brief review of distributed rate
allocation through concave and continuous utility maximization
in Section I-B.

1063-6692/$25.00 © 2007 IEEE
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B. Review: Concave and Continuous Utility Maximization

Since the publication of the seminal paper [9] by Kelly et al.
in 1998, the framework of network utility maximization (NUM)
has found many applications in network rate allocation algo-
rithms and Internet congestion control protocols [5], in partic-
ular, distributed solutions of NUM are used to share link ca-
pacities among sources, and TCP congestion control variants
are implicitly solving NUM for different utility functions (e.g.,
[10], [12], [14], [15], [19], [21]).

Consider a communication network with links, each with
a fixed capacity of bps, and sources, each transmitting at a
source rate of bps. Each logical source emits one flow (thus we
will use the terms ‘source’ and ‘flow’ interchangeably), using a
fixed set of links in itspath, andhasautility function .
The basic version of NUM is the problem of maximizing the total
network utility , over the source rates , subject to
linear flow feasibility constraints for all links

maximize

subject to

(1)

where the variables are and means component-wise in-
equality between two vectors. Let be a globally optimal
rate allocation that solves NUM.

The following basic assumption on utility functions are well-
motivated in many, although not all, applications and will still
be maintained in this paper: utilities are functions of the allowed
rates (rate-dependency), network utility is the sum of source
utilities (additivity), and each source utility is an increasing
(monotonicity) and local function of its own rate (locality). How-
ever, we will remove the standard yet often invalid assumption
that utility functions are strictly concave and continuous.

Assuming that becomes concave for large enough
is reasonable, because the law of diminishing marginal utility
eventually will be effective. However, may not be concave
throughout its domain. Despite deficiency in the concavity as-
sumption, almost all papers in the NUM literature for Internet
rate allocation assume that utility functions are concave. Part of
the reason is that the concavity assumption significantly simpli-
fies the structure of the basic NUM problem (1) and leads to a
distributed rate allocation algorithm as reviewed below.

Maximizing an additive concave function over linear con-
straints is a special case of convex optimization (minimizing
a convex objective function over convex constraints [3]) called
monotropic programming [16]. Thus, a local optimum is also a
global optimum, and the duality gap1 is zero. Zero duality gap
means that the minimized objective value of the Lagrange dual
problem, which provides a decomposition structure, is equal to
the maximized total utility in the primal problem (1).

The Lagrange dual problem of the basic NUM is readily de-
rived. We first form the Lagrangian of (1)

1Duality gap is the difference between the optimized dual objective value and
the optimized primal objective value.

where is the Lagrange multiplier (i.e., link price) associ-
ated with the linear flow constraint on link . Additivity of total
utility and linearity of flow constraints lead to a Lagrangian dual
decomposition into individual source terms

where is the path price seen by source . For
each source , only depends on
local rate and the path price (i.e., sum of on links used
by source ).

The Lagrange dual function is defined as the maximized
over for a given . This ‘net utility’ maximization

obviously can be conducted distributively by each source, as
long as the aggregate link price is fed back to source , where
source maximizes over for a given

(2)

We can thus define a price-based rate allocation function for
each source, also denoted as , that maps into a maximizer
of the partial Lagrangian . Collecting such functions for all
the sources, we write the Lagrangian maximizer vector as
where the argument is the vector of link prices.

The Lagrange dual problem of (1) is

minimize

subject to (3)

where the optimization variable is . It is well-known that, since
is the point-wise supremum of a family of affine functions

in , it is convex and (3) is a convex minimization problem
(even if the primal problem (1) is not a concave maximization
problem).

An iterative subgradient method2 can be used to update the
dual variables to solve the dual problem (3)

(4)
where is the th component
of a subgradient vector of , is the iteration number, and

are step sizes.
Certain choices of step sizes, such as for some

constant , guarantee that the sequence of dual variables
converges to the dual optimal as . It can be

shown that when the utility functions are concave, the primal
variable also converges to the primal optimal variable

. For a primal problem that is a convex optimization, the
convergence is towards a global optimum. Rates are implic-
itly assumed to be upper bounded by finite numbers. Therefore,
the global optimum can be attained since (1) is maximizing a
continuous function over a compact set.

2A subgradient of a (possibly nondifferentiable) function f : R ! R is
any vector g such that, for any x in the domain of f , we have f(y)� f(x) �
g (y � x) for all y in the domain of f .
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In summary, we have the following well-known rate alloca-
tion algorithm for concave and continuous utility flows.

Algorithm 1—Price-Based Distributed Algorithm: The se-
quence of source and link algorithms (2), (4) forms a distributed
subgradient algorithm that globally solves NUM (1) and the
dual problem (3), and computes an optimal rate vector and
optimal link price vector .

C. Overview: Nonconcave or Discontinuous Utility

Suppose we remove the critical assumption that
are concave functions, and allow them to be any nonlinear
functions.3 The resulting optimization problem becomes non-
convex and significantly harder to analyze and solve, even
by centralized computational methods. In particular, a local
optimum may not be a global optimum and the duality gap can
be strictly positive. The standard distributive algorithms that
solve the dual problem may produce infeasible or suboptimal
rate allocation. Global maximization of nonconcave functions
is an intrinsically difficult problem of nonconvex optimization.
Indeed, over the last two decades, it has been widely recognized
that “in fact the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity”
(Rockafellar, [17]).

When some source utilities are nonconcave, it appears that
Algorithm 1 will not converge or will converge to only a lo-
cally optimal rate allocation, because it is based on solving the
dual problem and yet the duality gap can be strictly positive.
However, we show in Section II that, even when all source util-
ities are nonconcave functions, Algorithm 1 may still converge
to a globally optimal rate allocation and duality gap may still be
zero. We then prove that continuity of price-based rate alloca-
tion at all the optimal prices is a sufficient condition
for global convergence, and its continuity at at least one of the
optimal prices is a necessary condition.

The sufficient condition leads to the idea of provisioning link
capacities so as to achieve convergence of Algorithm 1 to the
global optimum. Intuitively, if link capacities can be provisioned
such that the optimal price for a nonconcave utility source

is steered away from the points where is discontinuous,
then Algorithm 1 is guaranteed to converge to the globally op-
timal rate allocation. This intuition is made rigorous in Sec-
tion III, where we derive the set of link capacity vector that
ensures global convergence of Algorithm 1 and formulate the
problem of computing the appropriate amount of link capacity
provisioning. This section reveals the connection between link
capacity configuration and the effects of source elasticity, and
the results can be used to conduct offline design of network ca-
pacity, striking a tradeoff between provisioning link capacities
and accommodating inelastic flows.

Then in Section IV, we turn to the case of discontinuous
utility function by considering a network with real-time flows
sharing link capacities with elastic flows. There are three key
questions addressed in this case: when will the optimal solution
be to admit all the real-time flows (with type (b) inelastic utility
in Fig. 1)? If admission control is needed for real-time flows,

3Sometimes a nonconcave function can be easily turned into a concave one by
a simple transformation, for example in the case of the “pseudo-nonconvexity”
in the power control problems in [4], [7]. Here we are concerned with noncon-
cave functions that cannot be readily turned into concave ones.

Fig. 1. Some examples of utility functions U (x ): it can be concave, sig-
moidal, discontinuous, or any general nonconcave function. Elastic flows have
concave utilities, inelastic flows have (a) nonconcave utilities or (b) discon-
tinuous utilities that stays at a constant level after a threshold, and enhanced
real-time flows have (c) discontinuous utilities that is concave after a threshold.

how should it be carried out at the network edge? If all real-time
flows can be admitted and they follow type (c) inelastic utility in
Fig. 1, how to protect the elastic flows so that they are guaran-
teed a share of the link capacities? We answer the first question
by applying the idea of capacity provisioning, answer the second
question by proposing a price-based, two-phase admission con-
trol heuristic, and answer the third question by proposing an op-
timal algorithm that guarantees a minimum bandwidth share to
elastic flows.

Results in this work further advances the method of dis-
tributed rate allocation in practically important cases where
some flows are inelastic. Numerical examples are used to
illustrate the key results throughout the paper. A summary
of the recent approaches to distributed rate allocation with
nonconcave and discontinuous utilities is presented in Table I.

II. NONCONCAVE UTILITY FLOWS: OPTIMALITY CONDITIONS

With nonconcave utility functions, Algorithm 1 may fail to
converge to the primal optimal solution . One reason is
that solving the dual problem (3) is no longer equivalent to
solving the primal problem (1). In the case of allocating rates
by solving NUM, it is the primal problem that we care about.
Lee, Mazumdar, and Shroff [11] show that, in the case of sig-
moidal utilities, Algorithm 1 may cause link congestion and pro-
duce suboptimal rate allocation. A ‘self-regulating’ heuristics
is proposed, and is shown to avoid link congestion caused by
sigmoidal utilities, but may not attain the optimal rate alloca-
tion except in the asymptotic case when the proportion of
self-regulated sources that stop transmitting data vanishes.

In this section, we study the general case where are
nonconcave functions. The goal of our study is to investigate
sufficient and necessary conditions4 under which Algorithm 1
still converges to the globally optimal rate allocation, i.e., the
primal optimizer .

4When these conditions do not hold, a centralized computational method
based on the sum-of-squares approach has recently been studied [8] and is em-
pirically found to compute the globally optimal rate allocation efficiently. How-
ever, this approach is not amenable to distributed algorithms.
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TABLE I
SUMMARY OF DIFFERENT APPROACHES OF DISTRIBUTED RATE ALLOCATION FOR INELASTIC FLOWS

Fig. 2. Network topology for Example 1 and Example 4.

A. Does Algorithm 1 Work for Nonconcave Sources?

The following example illustrates that Algorithm 1 can con-
verge even when the utility functions are nonconcave.

Example 1: There are three flows over three links as shown
in Fig. 2. The small number of flows and links allow exhaustive
search to compute the global optimum and check against dis-
tributed algorithm’s solution. All three utility functions are non-
concave: where is the comple-
mentary cumulative distribution of standard Gaussian variable
and are positive parameters. The link capacity vector is varied
within the set

. Each capacity vector gives one realization of a noncon-
cave NUM. Algorithm 1 is executed for this problem and the
resulting rate allocation is indeed found to be globally optimal
for all . As shown in Fig. 3 for some of the choices of

, the maximized network utility through Algorithm 1 matches
precisely with that from exhaustive search.

A natural question thus arises: under what conditions will Al-
gorithm 1 converge to the globally optimal rate allocation for
nonconcave NUM? In short, when will Algorithm 1 ‘work’ for
inelastic flow rate allocation? One necessary condition that im-
mediately manifests itself is the zero duality gap condition.

B. Necessary Condition: Zero Duality Gap

Let be the globally optimal primal objective value and
a maximizer, i.e., , and be the

globally optimal dual objective value and a minimizer, i.e.,
. It is well-known that, irrespective of the con-

cavity of the utilities, [3]. The duality gap for (1)
is defined as and we have in general.
The zero duality gap condition means that . It is easy
to see that zero duality gap is a necessary condition for Algo-
rithm 1 to converge to primal optimal. Algorithm 1 solves the
basic NUM through its Lagrange dual problem (3). The primal
variable that the algorithm converges to can be a solution of the
original NUM problem only if the duality gap is zero.

Fig. 3. (Example 1) Distributed subgradient algorithm may still converge to
globally optimal rate allocation despite nonconcavity of U (x ). A cross-sec-
tional sample is shown in the graph where Algorithm 1’s converged results co-
incide with the globally optimal rate allocation computed through exhaustive
search.

While concavity of all utility functions is a suffi-
cient condition to guarantee zero duality gap in (1), it is not
a necessary condition. Duality gap can be zero even for non-
convex optimization problems. However, proving zero duality
gap in these cases can be much more difficult and requires argu-
ments beyond the standard ones in convex optimization [3]. In
this subsection, we demonstrate a more general sufficient con-
dition for duality gap to be zero, which includes the concavity
condition of utility functions as a special case, but shows that
duality gap can be zero even for nonconcave utilities.

Consider the optimized total utility as a
function of link capacities: . This is a completely different
function from the utility functions , which are func-
tions of source rates. As long as is a concave function,
the duality gap of (1) is zero under mild technical conditions.
There is a subtle but significant difference between concavity
of , i.e., concavity of each user’s utility as a function of
rate, and the more general concavity of , i.e., concavity of
the optimized total utility as a function of link capacities. The
former implies the latter, but not vice versa. In Example 1, it
can be verified that is concave for even though the
individual utility functions are not all concave.

The condition is stated formally as follows. For each in
a set of possible link capacity vectors, there is a set of fea-
sible for (1), which defines a set of achievable values of total
utility . The following lemma follows directly from the
‘min common max crossing duality’ principle in nonlinear op-
timization theory [2]:
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Fig. 4. Sigmoidal utility function and illustration of x and q .

Lemma 1: If is a concave function, duality gap
for (1) is zero.

While zero duality gap is a necessary condition for conver-
gence of Algorithm 1 to the global optimum, additional condi-
tions are required to ensure that the price-based rate allocation
resulting from the algorithm also converges to the optimal solu-
tion of the original problem, as illustrated through the following
example.

Example 2: Consider a simple network: two flows sharing a
link with capacity . One flow is elastic data traffic, with log-
arithmic (concave) utility function, and the other is inelastic
traffic, with sigmoidal (nonconcave) utility function shown in
Fig. 4. We will demonstrate that, if the capacity has a partic-
ular value, then zero-duality gap holds for the problem and yet
Algorithm 1 does not provide the optimal rate allocation.

For any given sigmoidal curve , construct a straight
line from the origin to be tangent to the sigmoidal curve. Denote
the x-coordinate of the intersection of the tangent with the curve
by and the slope of the tangent by . It is easy to verify that

, i.e., both 0 and maximize .
Consider . In this case, the dual optimal price

because it can verified that any subgradient to the
dual function is zero at (if not, a nonzero subgradient can be
verified to change sign when evaluated on either side of in an

neighborhood of , i.e., ).
At the dual optimal , we have both

and as the price-based rate allocation.
We have , and

by definition of primal opti-
mality and feasibility of . So we have .
But we also have by weak duality. Therefore,

, i.e., the duality gap is zero at both the price-based
rate allocations. However, only one of the price-based rate
allocation is also a primal optimal, the pair . The
other pair is not a primal optimal but still satisfies
the zero-duality gap condition.

Note that this example is a constructed scenario where the ca-
pacity was just enough to achieve zero-duality gap but still not
enough to result in convergence of the price-based rate alloca-
tion to the primal optimal. If the capacity is slightly larger than
this minimum value, then the price-based rate allocation for the

sigmoidal function becomes continuous and Algorithm 1 con-
verges to the primal optimal.

C. Sufficient Condition: Continuity of Price-Based Source
Rates

In this subsection, we provide a sufficient condition under
which Algorithm 1 converges. This sufficient condition sub-
sumes the well-known sufficient condition of concavity of the
utility functions for convergence. The condition is stated for-
mally in the following theorem.

Theorem 1: Continuity of price-based rate allocation
at all optimal prices implies that the price-based rate allo-
cation obtained through Algorithm 1 converges to a glob-
ally optimal rate allocation .

Proof: First we claim that continuity of price-based rate al-
location at the optimal price implies that
and satisfy complementary slackness and that
is primal feasible. The complementary slackness condition be-
tween the optimal congestion price and price-based rate alloca-
tion is given by

To see this, for any given , consider first the case where
. Let be sufficiently small such that we can define price

vectors where
and where .
By the definition of subgradient, we have

Since , we have that the th component of
the subgradient evaluated at is nonpositive, resulting in

Similarly, the th component of the subgradient evaluated at
is nonnegative, resulting in

By continuity of at , , which
implies both complementary slackness and primal feasibility.

Next, consider the case . While complementary
slackness condition is obvious, we need to show that the price-
based rate allocation is primal feasible. Let , and
and be as defined before. The th component of the sub-
gradient at is nonnegative

By continuity of at , in this
case, proving primal feasibility.
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We now show that

where (a) follows from the definition of dual optimal value,
(b) from the definition of Lagrange dual function, (c) from the
definition of Lagrangian, (d) from complementary slackness,
and (e) from the definition of primal optimal value. But then,
by weak duality, . Thus, , i.e., inequality
(e) must be an equality. Therefore, price-based rate allocation

is a feasible rate vector that attains the globally op-
timal network utility, i.e., Algorithm 1 converges to the globally
optimal rate allocation.

A consequence of Theorem 1 is that the continuity property
implies zero duality gap, and further results in the convergence
of Algorithm 1 to the primal optimal. We revisit the previous
example to illustrate this property.

Example 3: Consider the simple network in Example 2 with
two flows sharing a link with capacity . One flow is elastic data
traffic, with logarithmic utility function, and the other is inelastic
traffic, with sigmoidal utility function shown in Fig. 4. Let
and be as defined in Example 2. We vary the link capacity
and observe the behavior of the convergence of Algorithm 1 to
the global optimum. We observe that for , we
have neither zero duality gap nor convergence of Algorithm 1 to
primal optimum. For , we have zero duality gap
but Algorithm 1 does not converge. But for ,
continuity property in Theorem 1 holds, duality gap is zero, and
Algorithm 1 converges.

As shown in Fig. 5, as link capacity becomes larger than a
threshold, i.e., , the optimal dual variable ,
thus ensuring continuity of price-based rate allocation, and Al-
gorithm 1 converges to the primal optimal. The convergence is
shown by a time plot in Figs. 6 and 7 where we see that Algo-
rithm 1 converges only if the capacity is larger than the min-
imum required . In fact, for , the al-
gorithm is deceptively convergent with occasionally transitions
to zero source rate for the inelastic sigmoidal source. The closer
the link capacity is to the minimum required for convergence,
the less frequent the transitions to zero rate.

If is discontinuous at all optimal prices , Algo-
rithm 1 certainly cannot converge. This observation readily
leads to the following necessary condition:

Theorem 2: Continuity of at at least one of the optimal
prices is a necessary condition for Algorithm 1 to converge
to a globally optimal rate allocation.

If the dual objective function is strictly convex (note
that it is always convex), even if it is nondifferentiable, there
is a unique optimal price. Therefore, we have the following
corollary.

Fig. 5. (Example 3) The dual optimal � as a function of the link capacity c.

Fig. 6. (Example 3) Price-based rate allocation when link capacity c � 5:38.
Rate allocation for inelastic source does not converge.

Fig. 7. (Example 3) Price-based rate allocation when link capacity c > 5:38.
Rate allocation for both sources converge.

Corollary 1: If is strictly convex, continuity of at
is a necessary and sufficient condition for Algorithm 1 to

converge to the globally optimal rate allocation.
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III. NONCONCAVE UTILITY FLOWS: CAPACITY PROVISIONING

FOR CONVERGENCE OF ALGORITHM 1

A. Motivation

As shown in Section II-C, it is possible to achieve conver-
gence of Algorithm 1 to the optimal rate allocation even with
nonconcave utility functions, as long as certain path prices
are avoided. This section points out the relationship between
link capacity provisioning and convergence of Algorithm 1,
and quantifies the tradeoff between the cost of capacity provi-
sioning and the need for the standard price-based rate allocation
algorithm (e.g., TCP congestion control variants) to converge.
Results in this section can thus be used for both convergence
analysis and offline link capacity design.

We focus on the case of sigmoidal utilities in this section. An
intuitive guess is that Algorithm 1 would converge if link capac-
ities can guarantee that the optimal rate for a sigmoidal utility
source lies in the concave part of the sigmoidal curve. It turns out
this intuition is imprecise. We will develop the correct intuition
in this subsection, followed by quantitative characterization and
numerical examples in the next three subsections.

Let be a sigmoidal function as shown in Fig. 4.
It is strictly increasing, has one inflection point , and

, for and ,
for . Let be the slope of the tangent from the
origin to the sigmoidal curve . Let be the source rate
at which the tangent intersects the sigmoidal curve .
Theorem 1 shows that continuity of at the dual optimal

implies convergence of Algorithm 1 and primal optimality
of . We note that for the sigmoidal function ,

is discontinuous when . For , we have
and the source gets 0 rate. On the other hand, for

, we have and the source gets positive rate
and utility. If the optimal price is such that for
every sigmoidal utility source, then is continuous at
the optimal price, and the sufficient condition is met. Algorithm
1 can then be applied to this nonconvex optimization problem
to obtain the global optimal.

The optimal price on a link depends on the link capacity and
the load offered by all the sources using the link. In general, the
link capacities can be increased to bring down the optimal prices
to a desired value that ensures the convergence of Algorithm 1.
Naturally we would like to use the minimal set of capacities that
would ensure continuity of the price-based rate allocation. We
quantify this idea in the rest of this section.

B. Capacity Provisioning for Convergence

Consider a network with links and sources as in Sec-
tion I-B. Let of the sources have a nonconcave sigmoidal
utility, and, without loss of generality, let these be the first
of the sources. The other sources have con-
cave utility functions. Without loss of generality, we assume that
all of the links considered serve some nonconcave sigmoidal
source, because otherwise the links that do not serve any sig-
moidal source can be ignored (increasing the capacity on those
links does not contribute towards reducing the prices seen by
the sigmoidal sources).

Let the routing matrix corresponding to the sigmoidal
sources be a matrix (where the entry of the

routing matrix is 1 if and 0 otherwise) and the routing
matrix of the other sources be , so that is
the routing matrix of the entire network. For sigmoidal utility
sources, let and be the vector of source rates and slopes,
respectively, at the point where the tangent from the origin in-
tersects the sigmoidal curves.

Theorem 3: Consider the NUM problem with source utili-
ties a mix of strictly concave and sigmoidal functions as mod-
eled in this section. Algorithm 1 applied to this NUM problem
converges to the primal optimal rate allocation, and sources
with sigmoidal utilities obtain nonzero source rates, if there is a

satisfying the following inequality5

(5)

and the link capacities where

(6)

Here, and are the price-based rate allocation at
price obtained by solving (2) for sources with nonconcave and
concave utilities, respectively.

Proof: First recall that the subgradient of the Lagrangian
dual function is given by

If , then the subgradient at price vanishes, i.e.,
. The solution to the dual problem (3), , is

unique [Proposition 1 in [11]] under the modeling assumption
in this section. This implies that . For the nonconcave
sources, we have and . So we
have . This implies that the sigmoidal sources have
an optimal pricing that is less than the critical pricing , hence
the price-based rate allocation is continuous, implying
that Algorithm 1 converges to primal optimal. Furthermore,

is strictly positive, i.e., rate allocation to each source
is nonzero.6

Remark 1: Note that the capacities are larger for smaller
prices . This result highlights the following interesting rela-
tionship between provisioning link capacity and ensuring the
applicability of standard price-based rate allocation: If link ca-
pacities are sufficiently large, Algorithm 1 can still converge
to the globally optimal rate allocation despite nonconcavity of
source utilities. Furthermore, since is nonincreasing in , we
conclude that the more inelastic the flows are (i.e., smaller ),
the larger the link capacities needed for convergence. Source
elasticity can be traded-off with link capacity.

Remark 2: Given a price vector that satisfies (5), the ca-
pacities that correspond to the set of prices does
not span the entire set of capacities . We define as
the set of capacities that satisfy the conditions of Theorem 3. So

for some that satisfies (5)}.

5Note that p is a generic representation of the dual price vector based on
which the capacity requirements have been specified. We reserve the notation ���
for the price vector associated with Algorithm 1.

6An alternative proof to the theorem can be obtained by noting that the van-
ishing subgradient implies complementary slackness and hencex (p) is indeed
the primal optimum.
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Fig. 8. (Example 4) Sigmoidal utilities for the two sources.

Remark 3: Convergence to primal optimal can be achieved
even at capacities lower than that specified in Theorem 3. If the
capacity vector satisfies the following condition:

(7)

then Algorithm 1 also converges to the primal optimal. How-
ever, the primal optimal solution in this case allocates zero rate
to all sigmoidal utility sources and this situation is not of much
practical interest. Let be the set of capacities that satisfy (7).

Therefore, is the set of capacities that achieves conver-
gence and allocates strictly positive rates to sigmoidal sources,
while is the set of capacities that achieves convergence but
allocates zero source rates to sigmoidal sources. For capacities
that belong to neither nor , convergence is unclear and re-
mains to be characterized.

Based on Theorem 3, we propose the following algorithm for
capacity provisioning in a network.

Algorithm 2—Capacity Provisioning: For a network with any
combination of elastic and inelastic flows:

• Pick a price vector that satisfies (5).
• Calculate the capacity vector as as in (6).
Example 4: To confirm the predictions by Theorem 3, con-

sider the network topology shown in Fig. 2. The network con-
sists of three links shared by three flows. The first two flows
have sigmoidal utilities and the third one has a concave utility.
As shown in Fig. 8, the two sigmoidal utilities have
and , respectively. The corresponding source rates are

Mb/s and Mb/s, respectively.
We first fix the capacities of the second and the third link to

10 Mb/s each. Algorithm 1 is tested for convergence as the ca-
pacity of the first link is varied. It can be verified from Fig. 9
that the convergence is observed only when the capacity of the
first link is at least 10.5 Mb/s. The capacity of the first link
needed for convergence can be reduced to the minimum possible
value by increasing the capacities of the other two links indefi-
nitely, which results in vanishing prices on these links. The min-
imum required capacity of the first link becomes

Mb/s in this case. The minimum cannot be reduced all the
way to Mb/s since the two sigmoidal sources
share the same link and must see the same price when the prices
on other links go down to zero.

Fig. 9. (Example 4) Distributed Algorithm 1’s convergence against link ca-
pacity c.

C. Minimal Capacity

As can be inferred from Theorem 3, by selecting a sufficiently
small price , we can push the optimal set of prices to a
range where all the sigmoidal sources see a price less than the
critical value. However, if the price is not carefully selected,
this could result in unnecessary over-provisioning of capacity.
It is desirable to reduce the price only to the extent required
resulting in a capacity vector that is on the Pareto-minimal
boundary of , which we refer to as the minimal capacity vector

.
The set of prices that lead to a minimal capacity vector can

be characterized under two distinct cases. If is full column
rank, then any pricing vector that satisfies leads
to a Pareto-minimal capacity vector

(8)

where satisfies the following equality:

If, on the other hand, is not full row rank, then there might
not exist any such that . Any price vector such
that for each there is some satisfying

results in a Pareto-minimal capacity vector,

(9)

where satisfies the following inequality:

and for all , there is a such that .
Minimal capacity vector may not be unique and is only min-

imal in the Pareto-optimal sense: it is impossible to find another
pricing vector that satisfies the constraint and also leads to a dif-
ferent capacity vector each of whose component is smaller than
that in .

Let denote the set of minimum capacity vectors. Then
is the Pareto-minimal boundary of the set . To guarantee both
convergence of Algorithm 1 and nonzero rate allocation to sig-
moidal utility sources, it is sufficient to provision capacity to a
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TABLE II
CONVERGENCE OF ALGORITHM 1 AT DIFFERENT CAPACITY CONFIGURATIONS

value just a little more than the minimum capacity vector, since
. In fact, we see from (8) and (9) that is the set

of capacities at which at least one of the sigmoidal utility en-
counters it’s critical price and thus convergence of Algorithm 1
is not assured although zero duality gap is achieved.

Thus far in the paper, we have quantified several relationships
between the properties of Algorithm 1 and link capacity config-
urations, as summarized in Table II.

It is natural to further optimize the capacity configuration by
associating a cost of for provisioning one unit of capacity
on link . We can then seek the capacity provisioning that min-
imizes the total cost and still results in convergence of
Algorithm 1. The following capacity provisioning problem is
thus formulated:

minimize

subject to

(10)

However, problem (10) is a non-convex optimization problem
because the constraint set is nonconvex (due to for

).

D. Capacity Provisioning for a Medium Size Network

Example 5: Consider a medium size network as shown in
Fig. 10, consisting of 10 flows that share 8 links. Let the first
5 flows be elastic with concave utilities and the next 5 inelastic
with sigmoidal utility functions. We assume that all links in the
network have the same capacity , and examine the convergence
of Algorithm 1 as is varied.

In Fig. 11, we plot the price-based rate allocation achieved by
Algorithm 1 when the link capacities are all set to Mb/s.
The price-based rate allocation is plotted on the top half for
elastic sources and the on the bottom half for inelastic sources.
We notice that the elastic sources achieve convergence eventu-
ally while only one of the inelastic sources achieves convergence.
Indeed, the capacity vector all of whose components are equal
to 10 Mb/s does not satisfy the criterion specified in Theorem 3.
We also observe that the link prices (not plotted) converge even
though the source rates do not. Furthermore, the sources (both
elastic and inelastic ones) whose rates achieve convergence do
not necessarily converge to the globally optimal rates.

Figs. 12 and 13 show the evolutions of price-based rate alloca-
tion when the link capacities are all equal to 15 and 20 Mb/s, re-
spectively. At Mb/s, elastic sources converge faster than
in Fig. 11, and four out of the five inelastic sources converge. In
fact,exceptfor theinelasticsourcethatdoesnotconverge, thepath
prices seen by all other sources converge to values less than the
critical slopes . When link capacities are all set to Mb/s,
all sources achieve rate convergence and the convergence is faster
as well. It can be verified that the path prices indeed converge
to values less than the critical for all the inelastic sources.

Fig. 10. Network topology for Example 5.

Fig. 11. (Example 5) Distributed Algorithm 1’s convergence when
link capacities = 10 Mb/s. Four of the five inelastic flows’ rates do
not converge.

Some observations for this example are in order. First, link
prices and hence path prices always converge. Path
prices converge to the critical slope for the inelastic
sources that do not achieve convergence in rate, and to a value
less than the critical slope for the inelastic sources that do
converge. Second, price-based rate allocation always converges
for elastic sources, but converges for inelastic sources only if
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Fig. 12. (Example 5) Distributed Algorithm 1’s convergence against
link capacities = 15 Mb/s. One of the five inelastic flows’ rates does not
converge.

Fig. 13. (Example 5) Distributed Algorithm 1’s convergence against
link capacities = 20 Mb/s. All source rates converge, and to the globally
optimal allocation.

the link capacities are sufficiently high. Third, when all sources
achieve convergence, the convergence is to the primal optimum.
However, when only some of the sources achieve convergence,
the converged solution may not be a global optimum.

IV. DISCONTINUOUS UTILITIES: OPTIMIZATION FRAMEWORK

A. NUM Formulation and Capacity Provisioning

In this section, we turn to real-time flows, whose utilities
are best represented as discontinuous functions, and consider
real-time flows sharing link capacity with elastic flows. We use

to index a total of elastic flows with concave utilities, and
to index a total of real-time flows with discontinuous utilities.
A flow from real-time IP applications or CBR ATM applica-
tions requires a constant playback rate , attaining zero utility
if its allocated rate is below threshold and a constant positive

utility (or a concave increasing utility under a different mod-
eling assumption in Sections IV-C) if its rate is at or above .
This model can be generalized to utility functions in stair-case
shapes with multiple discontinuous jumps, and the methodolo-
gies developed in this section can still be applied.

As discussed in [18], for such real-time flows, admission con-
trol is needed. For each source , an admission decision is
made. Utility obtained is a constant if (i.e., the flow
is admitted) and 0 if (i.e., the flow is rejected). No-
tice that the optimization variables for flows indexed by are
boolean: , rather than continuous.

Now consider a NUM formulation for rate allocation in a net-
work shared by both types of flows, with the set of links used
by a concave utility flow denoted as and that used by a
real-time flow denoted as

maximize

subject to

(11)

where the optimization variables are and .
Two natural questions follow: under what special conditions

on link capacity vector will the optimal solution be admitting
all (or none) of the real-time flows? And in general how should
admission control be carried out distributively and jointly with
price-based rate allocation for elastic flows? These two ques-
tions are answered in this and next subsections, respectively.

Problem (11) is in general an intractable, integer-constrained
optimization. However, we can gain insight on the optimal so-
lution by studying a relaxed version of the problem, where we
relax variables to take any value in the interval [0, 1]:

maximize

subject to

(12)

The relaxed problem (12) is an efficiently-solvable convex
optimization problem, since the relaxed constraint region is now
convex and the function to be maximized is concave. We have
the following characterization of the relationship between the
optimal (relaxed) admission variable and the optimal path
price seen by source .

Theorem 4: Each optimum admission variable for
problem (12) satisfies the following conditions:

A1

A2

A3

B1

B2

B3 (13)

where is the optimal dual variable of problem (12).
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Proof: We begin with the Lagrangian of (12).

where has the same link price interpretation as before
and and are the prices associated with the con-
straints on . Let denote the optimal dual
prices and the optimal primal variables. Comple-
mentary slackness condition for primal-dual optimality [3] im-
poses the following optimality conditions on the real-time flows:

(14)

where . If , then and
, resulting in . If , then
and , resulting in . If ,

then and , resulting in .
To prove the converse part, note that and
cannot both be 0 at the same time since that requires both

and . If we have and
, thus . If , then and
, thus . If , then

and , thus .
The original NUM problem (11) has an optimal network total

utility that is upper bounded by the optimal network utility in the
relaxed version of the problem (12), because the constraint set
of the relaxed version subsumes the constraint set of the original
problem. This means that, when the optimal solution for the
relaxed version of the problem is achieved at the extreme points

, which fall within the constraint set of the
original problem, the solution is optimal for the original problem
as well. Therefore, the cases of B1 and B3 in the above Theorem
are the most useful ones.

Consider now the possibility of admitting all the real-time
flows and allocating rates to elastic flows by Algorithm 1, as
long as link capacities fall within certain sets. Denote the con-
stant ratio as for real-time flow . Note that is a con-
stant parameter and not a function of link price vector . We can
admit every real-time flow into the network if . This
is similar to the discussion in Section III where we discuss the
minimal link capacity provisioning required for applicability of
Algorithm 1 for rate allocation among nonconcave utility flows.
Indeed, a similar argument proves the following theorem. Let

be the routing matrix for the real-time flows, be the vector
of constant rates of the real-time flows, be the routing ma-
trix of the elastic sources, and be the vector whose th entry
is .

Theorem 5: The optimal solution to problem (11) is to admit
all real-time flows, i.e., , if there is a satis-
fying the following inequality:

and the link capacities where

(15)

Remark 4: If the capacity vector is such that

for some that satisfies

(16)

then again Algorithm 1 will find the globally optimal rate al-
location for all elastic flows. But in this uninteresting case, in-
elastic sources will receive zero rate allocation and none of the
real-time applications are admitted in the optimal solution.

B. Price-Based Admission Control Heuristics

Let and denote the set of link capacity vectors
that satisfy (15) and (16), respectively. If the capacity vector

is such that it is neither in nor in , then the optimal
admission decision for problem (11) is uncertain and the out-
come of Algorithm 1 unclear. In such cases, as well as in cases
where a priori determination of whether falls in or
is impossible, price-based admission control policy needs to be
implemented, preferably at the network edge in a distributed
way.

Inspired by the results in the previous subsection and con-
ditions B1 and B3 in Theorem 4, we propose the following
price-based admission control heuristic. This heuristic is con-
ducted locally at the edge by each real-time source, following
the end-to-end principle and assuming cooperative end users. It
is parameterized by nonnegative integers and .

Algorithm 3—Two-Phase Admission Control Heuristics: If
the price seen by a real-time source is
smaller than the constant ratio for time slots, it is ten-
tatively admitted, and a message is passed to reserve amount
of bandwidth along the route it uses. This tentative admission
period is the resource reservation phase (the first phase).

If the price continues to be smaller than for more
time slots (the second phase), the flow is formally admitted and
transmission can start, otherwise the flow is rejected and has
to wait for another window of times slots, during which the
price is sufficiently low, before entering the resource reservation
phase again.

Remark 5: As is typical with other price-based heuristics
(e.g., [11]), Algorithm 3 is in general suboptimal, with larger
waiting parameters enhancing the probability that the
correct admission decision is made but also increasing the la-
tency incurred.

Example 6.: The admission control heuristic is tested on var-
ious networks. Typical results are summarized below for the net-
work shown in Fig. 14 with three links and four flows. Link ca-
pacities are 30, 20, and 40 Mb/s, respectively. Flows 1 and 2
are elastic data flows, with utility functions ,

1, 2, while flows 3 and 4 are inelastic real-time flows with
, , and playback rates of , . If

both flows 3 and 4 use in the admission control
heuristic, Fig. 15 shows the resulting rate allocation iterations
and convergence to the optimal solution. In this example, flow
3 is admitted in the first try (passing through both phases), and
flow 4 only enters the resource reservation phase once, during
which it is rejected. The optimal solution for this utility maxi-
mization problem is indeed to admit flow 3 and reject flow 4.
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Fig. 14. Network topology for Example 6.

Fig. 15. (Example 6) Rate allocation based on the admission control heuristic.

Fig. 16. (Example 6) The correct decision region in the (m;n) plane is shaded.

Extensive simulations are conducted on the same topology
for other pairs. A variety of rate allocation scenarios are
observed and classified into correct or incorrect final admission
decisions by comparing against the global optimum computed
through exhaustive search. The region in the plane where
correct decisions are made is the shaded region (and the rest of
the 2-D plane upwards and to the right) in Fig. 16. This con-
nected region illustrates the following desirable and intuitive
properties of the heuristic.

• When either or is larger than a threshold or ,
the other parameter can be as small as zero. If both and

are nonzero, they can be smaller than or and still
remain in the correct decision region.

• The Pareto optimal tradeoff curve between minimizing
and minimizing is the boundary line between the shaded
region and the unshaded region. If the total latency before
formal admission needs to be minimized, it is best to op-
erate at the point ( , ) for the network in Fig. 14.

• In practice, it is unlikely that the best will be used.
Thus, it is useful to observe that the latency associated with
any point on the Pareto optimal tradeoff curve in the
plane is only about 20% of the time it takes for all the flows
to converge to very close to the optimum. This shows the
effectiveness of this heuristic in reducing the time it takes
to make the right admission decision.

C. Rate Allocation Among Different Groups of Flows

We conclude this section on real-time flows with a useful
variant of discontinuous utility model. Modeling the situation
where rates larger than may lead to improvements in user
perception of the real-time applications, we now allow the
utility functions to grow beyond , following a concave utility

with . We refer to these flows, still indexed
by , as enhanced real-time flows. An example of such utilities
is shown as type (c) utility curve in Fig. 1.

Consider the case where link capacity vector belongs to
as in Theorem 5. We may admit all real-time flows and ensure
that their rates are never smaller than the necessary threshold .
However, these inelastic flows do not back-off their rates below

while at the same time compete with elastic flows for the re-
maining capacity . Below, we propose a mech-
anism to control fairness of rate allocation between real-time
and elastic flows beyond that provided by the utility functions
and a hard bandwidth sharing constraint. We limit the allocation
to the group of enhanced real-time flows to a fraction of total
link capacity of link . We assume that is such that is
large enough to admit all the enhanced real-time flows sharing
link . The resulting problem of rate allocation among these two
groups of flows is thus formulated as follows:

maximize

subject to

(17)

The above problem can be solved for globally optimal rate
allocation by the following.

Algorithm—Rate Allocation Among Groups: This algorithm
is Algorithm 1 together with two modifications.

• At each iteration , the allocated rate to a source in the
enhanced real-time group is projected onto the interval

, i.e., if at some iteration ,
set .

• Distributively on each link, update another link price vector
called “fair share prices” , which enforces the constraint
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Fig. 17. Network topology for Example 7.

Fig. 18. (Example 7) Source rate allocation among four sources in two groups.

that at least percent of link capacity on link is provided
for elastic flows

where step size can be taken as for some constant
.

Each source in the enhanced real-time group uses the total price
(the sum of congestion price and fair

share price). Each source in the elastic group uses price
.

Theorem 6: Algorithm 4 converges to the globally optimal
rate allocation of (17).

Proof: Problem (17) is a convex optimization problem
with zero duality gap. Skipping details of the derivation due to
space limitation, Algorithm 4 can be verified to be a subgra-
dient method solving the Lagrange dual problem. The proof
of convergence is then a direct result of the convergence of
subgradient algorithms [1].

Example 7: A typical simulation for Algorithm 4 is shown for
the network in Fig. 17, where link capacities are 30 and 20 Mb/s,
respectively. Flows 3 and 4 are the enhanced real-time flows
with utility functions , pass
the threshold playback rate of , Mb/s. Flows 1 and
2 are elastic data flows with utility functions ,

.
Fig. 18 shows the source rate iterations. It is observed that

the two enhanced real-time flows never have their source rates
dropped below the minimum thresholds, and, at the same time,
they do not occupy more than , of link

capacities. The equilibrium rate allocation for flow 4 at global
optimality is six units, more than the minimum threshold . The
equilibrium in this numerical experiment has been verified to be
the globally optimal rate allocation through exhaustive search.

V. CONCLUDING REMARKS

The standard distributed subgradient algorithm (Algorithm 1)
for network utility maximization has been effective in mod-
eling TCP congestion control mechanisms and in allocating
rates among elastic flows. However, many flows are inelastic
and their rate allocation remains an open problem. This paper
tackles the difficult problems in distributed solution for network
utility maximization without the widespread, yet often invalid
assumptions of concave and continuous utility functions.

We first examine the case where some utilities are general
nonlinear, nonconcave functions, and show that Algorithm 1 can
still converge to the globally optimal rate allocation. A sufficient
condition to ensure the applicability of standard price-based rate
allocation is the continuity of at optimal prices . This
conclusion motivates the study of the relationships between link
capacity provisioning and convergence of Algorithm 1, and the
results are summarized in Table II. In particular, we derive the
link capacity vectors that guarantee the convergence and opti-
mality of Algorithm 1 when the nonconcavities are sigmoidal,
and quantify the tradeoff between the cost of provisioning link
capacities and the applicability of price-based rate allocation for
inelastic flows.

We then study the case where real-time flows with discon-
tinuous utility functions (regulated by admission control) share
a network with elastic flows (regulated by rate control). We
provide a sufficient condition on link capacity configuration so
that all real-time flows can be admitted. When such conditions
do not hold, we propose a price-based distributed admission
control heuristic (Algorithm 3). We motivate a need to protect
elastic flows’ share of link capacity and develop an optimal al-
gorithm (Algorithm 4) to allocate rates among elastic flows and
enhanced real-time flows.

The results in Section II are also applicable to general prob-
lems of convex constrained, nonconcave maximization with a
separable objective function, such as spectrum management in
OFDM communication systems and wireless network power
control in low SIR regime.

As one of the few papers studying rate allocation among in-
elastic flows in a rigorous manner, this paper’s contribution is
summarized in Table I. Given that these network utility maxi-
mization problems are NP-hard, it is not surprising that many
issues remain open on this challenging topic. First, it will be in-
teresting to arrive at a set of sufficient and necessary conditions
for the optimal convergence of the distributed subgradient al-
gorithm that can be distributively calculated at each source to
decide independently whether or not to participate in the price-
based rate allocation. Second, bounds on suboptimality gap for
our price-based admission control heuristic are also highly de-
sirable. Third, similar to most of the research literature on net-
work utility maximization, we have assumed a fixed number
of flows with infinite backlog. When utilities are concave and
continuous, it is recently shown (e.g., in [13] and [20]) that Al-
gorithm 1 remains stochastically stable when flows arrive at
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the network according to Poisson distribution with exponen-
tially-distributed file sizes, even when time-scale separation (Al-
gorithm 1 converges before the number of flows changes) is not
assumed. When some flows have nonconcave utilities, we know
that Algorithm 1 will still remain stochastically stable provided
that the time-scale separation can be assumed and link capacity
vector satisfy the condition for Algorithm 1’s convergence (in
the deterministic model) in Theorem 3. This is because the op-
timal rate allocation will occur in the concave regions of the non-
concave utilities. However, Algorithm 1’s stochastic stability
remains unknown when neither concave utility assumption nor
time-scale separation assumption holds. Furthermore, for gen-
eral filesize distrobution, stochastic stability of concave utility
maximization has recently been proved for certain utility func-
tions, e.g., in [6], but the case for nonconcave utility functions
remains unknown.
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