
Information Processing Letters 99 (2006) 149–153

www.elsevier.com/locate/ipl

The communication complexity of the Hamming distance problem
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Abstract

We investigate the randomized and quantum communication complexity of the HAMMING DISTANCE problem, which is to
determine if the Hamming distance between two n-bit strings is no less than a threshold d. We prove a quantum lower bound of
�(d) qubits in the general interactive model with shared prior entanglement. We also construct a classical protocol of O(d logd)

bits in the restricted Simultaneous Message Passing model with public random coins, improving previous protocols of O(d2)

bits [A.C.-C. Yao, On the power of quantum fingerprinting, in: Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, 2003, pp. 77–81], and O(d logn) bits [D. Gavinsky, J. Kempe, R. de Wolf, Quantum communication cannot simulate
a public coin, quant-ph/0411051, 2004].
© 2006 Published by Elsevier B.V.
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1. Introduction

Communication complexity was introduced by Yao
[17] and has been extensively studied afterward not only
for its own intriguing problems, but also for its many
applications ranging from circuit lower bounds to data
streaming algorithms. We refer the reader to the mono-
graph [12] for an excellent survey.
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We recall some basic concepts below. Let n be an in-
teger and X = Y = {0,1}n. Let f :X × Y → {0,1} be a
Boolean function. Consider the scenario where two par-
ties, Alice and Bob, who know only x ∈ X and y ∈ Y ,
respectively, communicate interactively with each other
to compute f (x, y). The deterministic communication
complexity of f , denoted by D(f ), is defined to be the
minimum integer k such that there is a protocol for com-
puting f using no more than k bits of communication
on any pair of inputs. The randomized communication
complexity of f , denoted by Rpub(f ), is similarly de-
fined, with the exception that Alice and Bob can use
publicly announced random bits and that they are re-
quired to compute f (x, y) correctly with probability
at least 2/3. One of the central themes on the classi-
cal communication complexity studies is to understand
how randomness helps in saving the communication
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cost. A basic finding of Yao [17] is that there are func-
tions f such that R(f ) = O(logD(f )). One example is
the EQUALITY problem, which simply checks whether
x = y.

Later results show that different ways of using ran-
domness result in quite subtle changes on communica-
tion complexity. A basic finding in this regard, due to
Newman [13], is that public-coin protocols can save at
most O(logn) bits over protocols in which Alice and
Bob toss private (and independent) coins. The situation
is, however, dramatically different in the Simultaneous
Message Passing (SMP) model, also introduced by Yao
[17], where Alice and Bob each send a message to a
third person, who then outputs the outcome of the pro-
tocol. Apparently, this is a more restricted model and
for any function, the communication complexity in this
model is at least that in the general interactive commu-
nication model. Denote by R‖(f ) and R‖,pub(f ) the
communication complexities in the SMP model with
private and public random coins, respectively. It is in-
teresting to note that R‖,pub(EQUALITY) = O(1) but
R‖(EQUALITY) = �(

√
n) [2,14,5].

Yao also initiated the study of quantum communica-
tion complexity [18], where Alice and Bob are equipped
with quantum computational power and exchange quan-
tum bits. Allowing an error probability of no more than
1/3 in the interactive model, the resulting communi-
cation complexity is the quantum communication com-
plexity of f , denoted by Q(f ). If the two parties are
allowed to share prior quantum entanglement, the quan-
tum analogy of randomness, the communication com-
plexity is denoted by Q∗(f ). Similarly, the quantum
communication complexities in the SMP model are de-
noted by Q‖ and Q‖,∗, depending on whether prior en-
tanglement is shared. The following relations among the
measures are easy to observe.

Q∗(f ) � Rpub(f )

Q‖,∗(f )
� R‖,pub(f ). (1)

Two very interesting problems in both communi-
cation models are the power of quantumness, i.e., de-
termining the biggest gap between quantum and ran-
domized communication complexities, and the power
of shared entanglement, i.e., determining the biggest
gap between quantum communication complexities
with and without shared entanglement. An impor-
tant result for the first problem by Buhrman et al.
[7] is Q‖(EQUALITY) = O(logn), an exponential sav-
ing compared to the randomized counterpart result
R‖(EQUALITY) = �(

√
n) mentioned above. This
exponential separation is generalized by Yao [19],
showing that R‖,pub(f ) = constant implies Q‖(f ) =
O(logn). As an application, Yao considered the HAM-
MING DISTANCE problem defined below. For any
x, y ∈ {0,1}n, the Hamming weight of x, denoted by
|x|, is the number of 1’s in x, and the Hamming dis-
tance of x and y is |x ⊕ y|, with “⊕” being bit-wise
XOR.

Definition 1.1. For 1 � d � n, the d-HAMMING DIS-
TANCE problem is to compute the following Bool-
ean function HAMn,d : {0,1}n × {0,1}n → {0,1}, with
HAM(x, y) = 1 if and only if |x ⊕ y| > d .

Lemma 1.2. (Yao [19].) R‖,pub(HAMn,d) = O(d2).

In a recent paper [10], Gavinsky et al. gave another
classical protocol, which is an improvement over Yao’s
when d � logn.

Lemma 1.3. (Gavinsky et al. [10].) R‖,pub(HAMn,d) =
O(d logn).

In this paper, we observe a lower bound for
Q∗(HAMn,d), which is also a lower bound for
R‖,pub(HAMn,d) according to Eq. (1).

Notice that HAM(x, y) = n − HAM(x, ȳ), where

ȳ
def= 11 · · ·1 ⊕ y. Therefore

Q∗(HAMn,d) = Q∗(HAMn,n−d),

and we need only consider the case d � n/2.

Proposition 1.4. For any d � n/2, Q∗(HAMn,d) =
�(d).

We then construct a public-coin randomized SMP
protocol that almost matches the lower bound and im-
proves both of the above protocols.

Theorem 1.5. R‖,pub(HAMn,d) = O(d logd).

We shall prove the above two results in the follow-
ing sections. Finally we discuss open problems and a
plausible approach for closing the gap.

Other related work. Ambainis et al. [3] considered
the error-free communication complexity, and proved
that any error-free quantum protocol for the Hamming
Distance problem requires at least n − 2 qubits of com-
munication in the interactive model, for any d � n − 1,
Feigenbaum et al. [9] started the secure multiparty ap-
proximate computation of the Hamming distance.
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2. Lower bound of the quantum communication
complexity of the Hamming distance problem

For proving the lower bound, we restrict HAMn,d

on those pairs of inputs with equal Hamming distance.
More specifically, for an integer k, 1 � k � n, define

Xk = Yk
def= {x: x ∈ {0,1}n, |x| = k}. Let HAMn,k,d :

Xk × Yk → {0,1} be the restriction of HAMn,d on
Xk × Yk .

Before proving Proposition 1.4, we briefly intro-
duce some related results. Let x, y ∈ {0,1}n. The
DISJOINTNESS problem is to compute the following
Boolean function DISJn : {0,1}n × {0,1}n → {0,1},
DISJn(x, y) = 1 if and only if there exists an inte-
ger i, 1 � i � n, so that xi = yi = 1. It is known that
R(DISJn) = �(n) [11,15], and Q∗(DISJn) = �(

√
n)

[16,1,4].
We shall use an important lemma in Razborov [16],

which is more general than his remarkable lower bound
on quantum communication complexity of DISJOINT-
NESS. Here we may abuse the notation by viewing
x ∈ {0,1}n as the set {i ∈ [n]: xi = 1}.

Lemma 2.1. (Razborov [16].) Suppose k � n/4 and
l � k/4. Let D : [k] → {0,1} be any Boolean predi-
cate such that D(l) 	= D(l − 1). Let fn,k,D :Xk × Yk →
{0,1} be such that fn,k,D(x, y)

def= D(|x ∩ y|). Then
Q∗(fn,k,D) = �(

√
kl).

Proof of Proposition 1.4. Consider D in Lemma 2.1
such that D(t) = 1 if and only if t < l. For any x, y ∈
Xk , we have |x ∩ y| = k − HAM(x, y)/2. Let l =
k − d/2, then k − HAM(x, y)/2 < l if and only if
HAM(x, y) > d . Therefore, D(|x ∩ y|) = 1 if and
only if HAM(x, y) > d . This implies that fn,k,D and
HAMn,k,d are actually the same function, and thus
Q∗(fn,k,D) = Q∗(HAMn,k,d ).

To use Lemma 2.1, the following two constraints on
k and l need to be satisfied: k � n/4 and l � k/4. When
d � 3n/8, let k = 2d/3 � n/4, then l = 2d/3 − d/2 =
d/6 � n/16. Both requirements for k and l are satis-
fied. So applying Lemma 2.1, we get Q∗(HAMn,k,d ) =
Q∗(fn,k,D) = �(

√
kl) = �(d).

For 3n/8 < d � n/2, it is reduced to the above
case (d � 3n/8) rather than Lemma 2.1. Let m =
�8d/5 − 3n/5�. Fix first m bits in x to be all 1’s, and
use x′ to denote xm+1 . . . xn. Similarly, fix first m bits
of y to be all 0’s, and use y′ to denote ym+1 . . . yn. Put
n′ = n−m, k′ = n′/4, and d ′ = d−m. Then HAM(x, y)

= HAM(x′, y′) + m and Q∗(HAMn,d)(x, y) �
Q∗(HAMn′,k′,d ′)(x′, y′). It is easy to verify that
d ′ � 3n′/8 and d ′ = �(d). Employing the result of the
case that d � 3n/8, we have Q∗(HAMn′,k′,d ′) = �(d ′).
Thus Q∗(HAMn,d) � Q∗(HAMn′,k′,d ′) = �(d ′) =
�(d). �
3. Upper bound of the classical communication
complexity of the Hamming distance problem

To prove Theorem 1.5, we reduce the HAMn,d prob-
lem to HAM16d2,d problem by the following lemma.

Lemma 3.1.

R‖,pub(HAMn,d) = O
(
R‖,pub(HAM16d2,d )

)
.

Note that Theorem 1.5 immediately follows from
Lemma 3.1 because by Lemma 1.3, R‖,pub(HAMn,d) =
O(d logn), thus R‖,pub(HAM16d2,d ) = O(d logd2) =
O(d logd). Now by Lemma 3.1, we have

R‖,pub(HAMn,d) = O(d logd).

So in what follows, we shall prove Lemma 3.1. De-
fine a partial function HAMn,d|2d(x, y) with domain
{(x, y): x, y ∈ {0,1}n, |x ⊕ y| is either less than d or
at least 2d} as follows:

HAMn,d|2d(x, y) =
{

0 if HAM(x, y) � d,

1 if HAM(x, y) > 2d.
(2)

Then

Lemma 3.2.

R‖,pub(HAMn,d|2d) = O(1).

Proof. We revise Yao’s protocol [19] to design an O(1)

protocol for HAMn,d|2d . Assume the Hamming distance
between x and y is k. Alice and Bob share some ran-
dom public string, which consists of a sequence of γ n

(γ is some constant to be determined later) random
bits, each of which is generated independently with
probability p = 1/(2d) of being 1. Denote this string
by z1, z2, . . . , zγ , each of length n. Party A sends the
string a = a1a2 . . . aγ to the referee, where ai = x ·
zi (mod 2). Party B sends the string b = b1b2 . . . bγ to
the referee, where bi = y · zi (mod 2). The referee an-
nounces HAMn,d(x, y) = 1 if and only if the Hamming
distance between a and b is more than m = (1/2 − q)γ

where q = ((1 − 1/d)d + (1 − 1/d)2d)/4.
Now we prove the above protocol is correct with

probability at least 49/50. Let ci = ai ⊕ bi . Notice that
the Hamming distance between a and b is the number
of 1’s in c = c1c2 . . . cγ . We need the following lemma
by Yao [19]:
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Lemma 3.3. Assume that the Hamming distance be-
tween x and y is k. Given c as defined above, each ci is
an independent random variable with probability αk of
being 1, where αk = 1/2 − 1/2(1 − 1/d)k .

Since αk is an increasing function over k, to separate
k � d from k > 2d , it would be sufficient to discrim-
inate the two cases that k = d and k = 2d . Let Nk be
a random variable denoting the number of 1’s in c,
and E(Nk) and σ(Nk) denote corresponding expecta-
tion and standard deviation, respectively. Then we have
E(Nk) = αkγ , and σ(Nk) � (αkγ )1/2. Thus E(N2d) −
E(Nd) = γ (α2d − αd) = 1

2γ (1 − 1
d
)d(1 − (1 − 1

d
)d) �

1
8γ . Let γ = 20000, then E(N2d) − E(Nd) � 2500,
while σ(Nd), σ (N2d) < ( 1

2γ )1/2 = 100. The cutoff
point in the protocol is the middle of E(Nd) and
E(N2d). By Chebyshev Inequility, with probability of
at most 1/100, |Nd − E(Nd)| > 10σ(Nd) = 1000. So
does N2d . Thus with probability of at least 49/50, the
number of 1’s in c being more than cutoff point implies
k > 2d and vice versa. Therefore, O(γ ) communication
is sufficient to discriminate the case HAM(x, y) > 2d

and HAM(x, y) � d with error probability of at most
1/50. �

The following fact is also useful

Fact 1. If 2d balls are randomly thrown into 16d2 buck-
ets, then with probability of at least 7/8, each bucket
has at most one ball.

Proof. There are
(2d

2

)
pairs of balls. The probability of

one specific pair of balls falling into the same bucket is
1

16d2 · 1
16d2 ·16d2 = 1

16d2 . Thus the probability of having
a pair of balls in the same bucket is upper bounded by

1
16d2 · (2d

2

)
< 1/8. Thus Fact 1 holds. �

Now we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. If 16d2 � n, the lemma is obvi-
ously true by appending 0’s to x and y.

If 16d2 < n, suppose we already have a protocol P1
of C communication to distinguish the cases |x⊕y| � d

and d < |x ⊕y| � 2d with error probability at most 1/8.
Then we can have a protocol of C + O(1) communi-
cation for HAMn,d with error probability at most 1/4.
Actually, by repeating the protocol for HAMn,d|2d(x, y)

several times, we can have a protocol P2 of O(1) com-
munication to distinguish the cases |x ⊕ y| � d and
|x ⊕ y| > 2d with error probability at most 1/8. Now
the whole protocol P is as follows. Alice sends the con-
catenation of mA,1 and mA,2, which are her messages
when she runs P1 and P2, respectively. So does Bob
send the concatenation of his two corresponding mes-
sages mB,1 and mB,2. The referee then runs protocol Pi

on (mA,i ,mB,i) and gets the results ri . The referee now
announces |x ⊕ y| � d if and only if both r1 and r2 say
|x ⊕ y| � d .

It is easy to see that the protocol is correct. If |x ⊕ y|
� d , then both protocols announces so with probability
at least 7/8, and thus P says so with probability at least
3/4. If |x ⊕ y| > d , then one of the protocols gets the
correct range of |x ⊕ y| with probability at least 7/8,
and thus P announces |x ⊕ y| > d with probability at
least 7/8 too.

Now it remains to design a protocol of
O(R‖,pub(HAM16d2,d )) communication to distinguish
|x ⊕ y| � d and d < |x ⊕ y| � 2d . First we assume
that n is divisible by 16d2, otherwise we pad some
0’s to the end of x and y. Using the public ran-
dom bits, Alice divides x randomly into 16d2 parts
evenly, Bob also divides y correspondingly. Let Ai,Bi

(1 � i � 16d2) denote corresponding parts of x, y. By
Fact 1, with probability at least 7/8, each pair Ai,Bi

would contain at most one bit on which x and y dif-
fer. Therefore, the Hamming distance of Ai and Bi

would be either 0 or 1, i.e, the Hamming distance
of Ai and Bi equals the parity of Ai ⊕ Bi , which is
further equal to PARITY(Ai) ⊕ PARITY(Bi). Let ai

denote the parity of Ai , bi denote the parity bit of
Bi , and let a = a1a2 . . . a16d2 , b = b1b2 . . . b16d2 . Then
HAM16d2,d (a, b) = HAMn,d(x, y) with probability at
least 7/8. So we run the best protocol for HAM16d2,d

on the input (a, b), and use the answer to distinguish
|x ⊕ y| � d and d < |x ⊕ y| � 2d . �
4. Discussion

We conjecture that our quantum lower bound in
Lemma 1.4 is tight. It seems plausible to remove the
O(logd) factor in our upper bound. Recently, Aaron-
son and Ambainis [1] sharpened the upper bound of the
Set Disjointness problem from O(

√
n logn) to O(

√
n)

using quantum local search instead of Grover’s search.
In their method, it takes only constant communication
qubits to synchronize two parties and simulate each
quantum query. From Yao’s protocol [19], one can eas-
ily derive an O(d logd) two way interactive quantum
communication protocol using quantum counting [6]
and the connection between quantum query and com-
munication [8]. Methods similar to [1] might help to
remove the O(logd) factor in this upper bound.
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