
A Semantic Hash Tree Based Verifiable Data
Access Protocol on the Cloud

Fei Chen∗, Tao Xiang†, Jianyong Chen‡, Wei Yu§, Xinwen Fu¶, and Shengyu Zhang‖

∗Department of Computer Science and Engineering, Shenzhen University. Email:fchen@szu.edu.cn.
†College of Computer Science, Chongqing University. Email: txiang@cqu.edu.cn.

‡Department of Computer Science and Engineering, Shenzhen University. Email: jychen@szu.edu.cn.
§Department of Computer & Information Sciences, Towson University. Email: wyu@towson.edu.

¶Department of Computer Science, University of Massachusetts Lowell. Email: xinwenfu@cs.uml.edu.
‖Department of Computer Science and Engineering, The Chinese University of Hong Kong. Email:syzhang@cse.cuhk.edu.hk.

Abstract—With the popularity of outsourcing data to the
cloud, security of cloud storage has drawn considerable attention.
While many research efforts have been devoted to verifying the
availability and integrity of the outsourced data, it remains a
critical challenge how to efficiently verify the correctness of the
cloud’s response on data access request. In particular, when
a user requests a data item from a mobile or Web interface,
what if the cloud claims that the data item does not exist while
the item does exist? We refer to this as verifiable data access.
In this paper, we present a formal model for verifiable data
access, and then propose a privacy-preserving and provably
secure protocol to address the problem. In order to achieve the
verifiability, we develop a novel mechanism called semantic hash
tree. Through a sophisticated design of such a tree, our protocol
supports verifiable data access in constant time with logarithm
communication cost. Experimental evaluation further validates
the practicality and efficiency of our protocol.

I. INTRODUCTION

Cloud computing security has drawn considerable attention
in recent years. To mitigate security issues for cloud storage,
research efforts have been devoted to cloud storage auditing
and encrypted search. Cloud storage auditing can help users
verify whether their outsourced data remains available and
intact in the cloud [1]–[6]. Encrypted search can enable users
to search for their encrypted data (which is encrypted before
outsourcing) efficiently in the cloud [7]–[15].

While cloud storage auditing and encrypted search address
important security issues in cloud storage, other severe security
problems remain. In this paper, We consider the following
problem: On a data item access request from a user, an untrust-
ed cloud may cheat when responding to the request. The cloud
could either claim a data item not existing when the data item
does exist or vice versa. From the perspective of the user, both
cases are possible and then the user is fooled by an untrusted
cloud. The cheating of the cloud could be due to various
reasons, e.g. internal/external adversaries, hardware/software
failures, government pressures, etc. Therefore, users who buy
cloud storage services should have the ability to verify the

The corresponding author is Jianyong Chen (jychen@szu.edu.cn).

cloud’s answer. This requirement is referred to as Verifiable
Data Access (VDA).

It is worth noting that encrypted search in the cloud cannot
address verifiable data access efficiently. Most current research
on encrypted search assumes that the cloud always follows
the protocol [7]–[9], [12]–[14]. Only a few pieces of work
such as [10], [11], [15] tackle malicious clouds. While these
results can enable verifiability of encrypted search, they are
not efficient. Thus, how to solve the verifiable data access
problem efficiently still remains very challenging.

To address the aforementioned verifiable data access prob-
lem, we propose an efficient and provably secure protocol
to empower the user to verify the received answer when
accessing a data item in cloud storage. Our protocol achieves
two desirable effects: one is to protect the privacy of the data
item during a user access request and the other is to enable
the user to verify whether the returned answer is correct.
The first effect is obtained by employing a pseudorandom
function, HMAC (Hash Message Authentication Code), in our
protocol to mask the ID of the data item. The second effect is
achieved by exploiting two ideas: one is to actively separate all
possible data items (including both existing and non-existing
data items) and the other is to sophisticatedly authenticate
the data before outsourcing. The first idea is implemented by
assigning a special ID for all non-existing data items and the
second idea is realized by a novel enhancement of the hash
authentication tree.

From a high-level view, our protocol runs as follows: When
outsourcing data items, we employ a hash table to store all IDs
of existing data items as well as non-existing data items in a
sophisticated way. Along with the data items, the hash table
also contains versatile semantics along with outsourced data.
Then, the hash table is authenticated using a semantic hash
tree. Later, the hash table together with the semantic hash tree
is outsourced. When a user accesses a data item, the cloud
returns both the data item and the corresponding semantics-
embedded authentication path of the semantic hash tree as a
correctness proof. We combine the hash table and the semantic
hash tree gracefully to make our protocol highly efficient.

To summarize, in this paper we make the following contri-
butions:
• We propose an efficient, privacy-preserving, and provably

secure protocol to enable users to verify the result of a
data access on a remote cloud.

• We analyze the performance of our protocol and formally
prove its security. Furthermore, we conduct extensive
experiments to evaluate the effectiveness of our proposal.

The paper proceeds as follows. In Section II, we formulate
the verifiable data access problem and present a solution
framework. In Sections III and IV, we show the full details
of our protocol design and a complete analysis of our proto-
col, respectively. The analysis includes correctness, security,
privacy, and efficiency of our protocol. In Section V, we
evaluate our protocol experimentally, followed by a discussion
of related work in Section VI. Finally, we conclude the paper
in Section VII.

II. PROBLEM FORMULATION

In this section, we formulate the verifiable data access
(VDA) problem. We also present a high-level design to a
protocol solving the VDA problem by explicitly verifying the
returned answers from the cloud. To better understand the
security of a VDA protocol, we abstract a formal security
definition by refining the security intuition of a practical VDA
protocol. Finally, we introduce some technical mechanisms
which are construction components in our verifiable data
access protocol.

A. System Model, Assumptions & Design Goals

We model a system that supports VDA as in Fig. 1. The
system contains three entities: a data owner, a data user and
a cloud. In practice, the data owner could be a company and
then the data user is an employee of the company. The data
owner possesses valuable data, which is outsourced to the
cloud. Before outsourcing the data, the data owner processes
the data with a secret key such that the result returned from the
cloud can be verified. Then, the data owner shares the secret
key with the data user. When the data user wants to access a
data item, the user sends the data item ID (e.g. filename) to
the cloud to query for the file. If the data item does exist, the
cloud returns the data item and a correctness proof showing
that the returned data is indeed the requested data. If the data
item does not exist, the cloud indicates that no such data with
the requested ID exists using a proof. We aim to design a
verifiable data access protocol in this paper to support the
system in Fig. 1.

We model the cloud as malicious. The cloud can cheat in
two ways: the cloud may claim that an existing data item does
not exist or vice versa. We explicitly state several assumptions
to make our problem clearer. We assume that the ID and
the content of a data item is well-combined, authenticated,
and encrypted using a Message Authentication Code (MAC)
and a data encryption algorithm. Hence, a malicious cloud
cannot modify the content of the data item and the privacy
of the data content is well protected from the cloud. We are

Fig. 1. System Model for VDA

not focusing on protecting the access pattern of the user to
trade-off for more efficiency, as most of previous works in
encrypted search do, including [7]–[9], [12]–[14]. In theory,
hiding the access pattern from the cloud can be enabled using
oblivious RAM [16]. Nonetheless, oblivious RAM incurs a
huge computational cost [16]. Thus, the VDS protocol in this
paper aims at protecting the privacy of user by efficiently
protecting the IDs of the requested data items.

It is worth stressing that the real challenging part of the
verifiable data access problem is how to verify the returned
result from the cloud on a data item access request. What is
not challenging is how to prevent the cloud not modifying the
content of a data item, which can be solved straightforwardly
by authenticating the data content using a message authenti-
cation code (MAC). In our protocol design, such data content
protection is also applied, as we have assumed explicitly in the
above. Thus we mainly focus on the variability of the cloud’s
answer in this paper.

In summary, a verifiable data access protocol should protect
the privacy of the user and enable the verifiability of the
cloud’s response. More specifically, a VDA protocol should
have the following properties:
• Correct. The protocol should enable the user to get the

requested data item if all parties are honest, i.e. following
the protocol without cheating.

• Verifiable. If the cloud cheats, the data user is able to
detect such behavior. For existing data items, the cloud
cannot claim the non-existence of them; for non-existing
data items, the cloud also cannot reply with an existence
proof for the corresponding data item access request.

• Privacy-preserving. By running the protocol, the cloud
should not get meaningful knowledge about the requested
data item. The privacy of the data item ID and data
content should be well protected.

• Efficient. The computation, storage, and communication
of all parties should be as small as possible.

B. Solution Framework & Security Definition

We now present a framework to the VDA problem and
formally define its security. By abstracting the system model
as shown in Fig. 1, a verifiable data access protocol VDA =

(KeyGen, Outsource, Query, Search, Verify) contains five
efficient algorithms as follows:
• KeyGen(1λ)→ K: On input a security parameter λ, the

data owner runs this algorithm to output a secret key K.
• Outsource(F ;K) → F ′: On input a collection of data
F , the data owner processes the data to embed some
authentication information in the data using the secret
key K and then outsources the processed data F ′ to the
cloud.

• Query(f ;K) → q: On input a data item ID f to
be requested, the data user sends a request query q
containing the information about f to the cloud.

• Search(q) → (χ,Γ): On input a query q for some data
item, the cloud finds the data item in the outsourced data.
Then, the cloud sends the queried data item χ back; the
cloud also sends a proof Γ to show χ is indeed the data
item the user requested.

• Verify(f, χ,Γ;K) → δ: On input the returned answer
χ, correctness proof Γ, the original requested data item
f , and the secrete key K, the data user checks whether
the cloud cheats. If the verification succeeds, accept the
answer and output δ = 1; else, reject the answer and
output δ = 0.

We define the security of a VDA protocol based on the
cloud’s capability (i.e. thread model) and the security intuition.
First, the cloud’s capability is that it can observe many
interactions between the users and the cloud when a VDA
protocol is run. Second, intuitively, a VDA protocol is secure
if no real-world polynomial time cloud can fool the user on
any data item (either existing or non-existing) access request
with a high probability. We capture this intuition using the
concept of forgery: we say a tuple (f∗, χ∗,Γ∗) is a forgery if
either f∗ exists but the cloud (χ∗,Γ∗) claims that it does not
exist, or f∗ does not exist but the cloud (χ∗,Γ∗) claims that
it does exist. The intuition of security is then that a malicious
cloud cannot find such a forgery. Thus, we define security as
follows:

Definition 1. Let VDA = (KeyGen, Outsource, Query,
Search, Verify) be a verifiable data access protocol, A be
a malicious cloud, and Adv(λ;VDA) be the probability that
A cheats successfully by finding a forgery (f∗, χ∗,Γ∗) after A
observes many verification results. Adv(λ;VDA) is computed
as

Pr


K ← KeyGen(1λ)

F ′ ← Outsource(F ;K)
qi← Query(fi;K)

(χi,Γi)← Search(qi)
δi ← Verify(fi, χi,Γi;K)

i = 1, · · · , poly(λ)

:

A(F ′, qi,δi)
outputs a
forgery

(f∗, χ∗,Γ∗)
and the user

accepts it

 (1)

where poly(λ) denotes a polynomial function in λ. We say
that a VDA protocol is secure if the cheating probability
Adv(λ;VDA) is negligible (i.e. Adv(λ;VDA) < 1

poly(λ) holds
asymptotically for any polynomial in λ).

C. Technical Mechanisms
CRYPTOGRAPHIC HASH FUNCTION. Our protocol employs

hash functions extensively, which is introduced here. A hash

Fig. 2. Hash Tree Example

function is a compressing function mapping any finite-length
string over {0, 1} to a fixed-length string. A cryptographic
hash function is a hash function with more security constraints.
Let A be a real-world polynomial time algorithm and

Pr

[
hi = Hash(mi)

i = 1, · · · , poly(λ) :
A(mi, hi) outputs
m 6= m∗ such that

Hash(m) = Hash(m∗)

]
(2)

be the probability of finding a successful collision, denoted
as Adv(Hash). A cryptographic hash function is said to be
collision-resistant if Adv(Hash) is negligible for any A. In
our protocol, hash functions are used in two different ways.
One is to use a hash function to index an element in an array
and the other is to use a cryptographic hash function to build
a (semantic) hash authentication tree.

HASH AUTHENTICATION TREE. A hash authentication tree
is a complete-binary-tree-like data structure which can authen-
ticate the integrity of the data, which was first proposed by
Merkle in late 1970’s [17]. Figure 2 shows an example of
a hash authentication tree with height 2. The leaf level of
a hash authentication tree is associated with a collection of
data items, which are to be authenticated as a whole. Each
node of the tree has a value. For the i-th leaf node, its value
is Hash(di) where di is the i-th data item and Hash(·) is
a cryptographic collision resistant hash function. The hash
authentication tree is computed recursively from the bottom
to the top. For each internal node of the hash tree, its value
is computed as Hash(left ‖ right) where left and right
are the values of its left child and right child respectively,
and ‖ denotes concatenation of two strings. The value of
the root node is the authentication information of the data
collection. To authenticate the i-th data item, the path from the
i-th leaf node to the root node, which contains all necessary
intermediate hash values and the i-th data item, is provided
as a proof. For example, the tuple (d2, a2, a3, a01, a0123) can
authenticate d2. To verify this proof, one first check whether
a0123 is same with the root value, then checks whether
the authentication path is correct, i.e. a2 = Hash(d2) and
a0123 = Hash(Hash(a2, a3), a01). If all verification passes,
then the data item d2 is authenticated.

PSEUDORANDOM FUNCTION. A pseudorandom function
family {FK(·)} indexed by K is a set of deterministic func-
tions mapping a domain X to an image Y . Let the set RX→Y
denote all functions mapping domain X to image Y . The

Fig. 3. An Example of Our Protocol

family {FK(·)} is said to be pseudorandom if any polynomial-
time algorithm cannot differentiate the set {FK(·)} from
RX→Y [18]. Intuitively, the output of a function in {FK(·)}
looks random.

III. ENABLING VERIFIABLE DATA ACCESS

In this section, we present all the details for our protocol
design which enables verifiable data access on a cloud. We
first explain the basic idea of our protocol design followed by
an example. We then show how to address all technical chal-
lenges, followed by a detailed protocol design by discussing all
detailed algorithms in VDA = (KeyGen, Outsource, Query,
Search, Verify).

A. An Example

We use an example depicted in Fig. 3 to show our basic
ideas. For convenience, we assume that there is no collision
when hashing a data item into a slot of the hash table; we show
how to handle collisions in a later section. Here, the data owner
has two data items f ′1 and f ′2 to be outsourced. The data owner
masks the data item IDs to obtain f1 and f2. The data owner
use a unique ID f# for all non-existing data items. Later, the
data owner stores the data in a hash table of size 4. The hash
function associated with the hash table is h(·) mapping the
masked data item ID to an integer in {0, 1, 2, 3}. The data
item f1 is stored in the first slot of the hash table according
to h(f1) = 0 and f2 in the last slot according to h(f2) = 3.
All remaining empty slots of the hash table are filled with the
unique ID f# for non-existing data items. Each slot of the
hash table has the semantics (index, ID,Hash(index, ID)),
where index is the position of data item ID in the hash table,
which is equal to h(ID) for existing data items, and Hash(·) is
a cryptographic hash function. We explain the reason for such
semantics later. After the hash table is filled, the data owner
constructs a semantic hash tree over the hash table. The leaf
level of the hash tree is obtained by applying Hash(·) on each
slot of the hash table (e.g. a0 = Hash(0, f1,Hash(0, f1))).
The data owner then computes the semantic hash tree from
bottom-up to get the root value a0123 as the authentication
information for the outsourced data. The data owner shares
the pseudorandom random function and the authentication
information a0123 with the user.

When data item f ′1 is requested, the user employs the
pseudorandom function to obtain a masked ID f1 and sends

f1 to the cloud. On receiving the request f1, the cloud finds
its slot in the hash table according to h(·), which is equal to
0. Then, the cloud returns the data item (0, f1,Hash(0, f1))
and the authentication path (a0, a1, a23, a0123) to the user. On
receiving the response from the cloud, the user verifies: (i)
whether the returned data item is f1 or f# (in this case f1 is
matched to an existing data item), (ii) whether the returned slot
is equal to h(f1), (iii) whether the data item is modified by the
cloud by computing Hash(h(f1), f1) and comparing the result
with the returned value, and (iv) whether the authentication
path is correct using the stored authentication value a0123.

When the data item with ID f ′3 is requested, which does
not exist, the user obtains a masked ID f3 and sends f3 to
the cloud. Suppose h(f3) = 2. The cloud checks the slot
with index 2 in the hash table and finds that the unique
ID f# is contained in the corresponding slot. The unique
ID f# indicates that the requested data item does not exist;
otherwise, the corresponding slot must contain an existing
data item. Thus, the cloud returns (2, f#,Hash(2, f#)) and
the authentication path (a2, a3, a01, a0123) to the user. Then
the user verifies: (i) whether the returned data item is f3 or
f# (in this case, f# is matched to a non-existing data item),
(ii) whether the returned slot is h(f3), (iii) whether the data
item is modified by the cloud by computing Hash(h(f3), f#)
and comparing the result with the returned value, and (iv)
whether the authentication path is correct using the stored
authentication value a0123.

B. Addressing Technical Challenges

Our protocol design leaves several technical challenges
which are addressed in this subsection:

Collision Handling. We employ the double hashing tech-
nique for handling the collisions of a hash table (i.e. using
independent hash functions to find a different slot when a
collision occurs) [19]. Specifically, suppose a data item ID
is a string f ′ over {0, 1}∗ and its masked ID is also a string f
over {0, 1}∗. To map this data item to a slot of the hash table,
we can use a hash function h1 : {0, 1}∗ → {0, 1, · · · , L− 1},
where L is the size of the hash table. The data item is to be
put into the h1(f) slot. If slot h1(f) is occupied by some
other data item, we use another hash function h2 : {0, 1}∗ →
{0, 1, · · · , L−1} to obtain another slot. If a collision happens
again, a third hash function h3 is used on the value h2(f). For
later collisions, we fix the issue by using a third hash function
h3(·) iteratively on the value h3(·).

Hash Table Size. We choose to balance the hash table size
and the collision probability by using the load factor concept
of the hash table (i.e. the ratio of the number of existing data
items over the size of the hash table). Denote the load factor
as α, the set of all existing data items as F , and |F | as the
hash table size. We can control the value of α to reduce the
collision probability. An example for the load factor could be
α = 0.1. The size of the hash table should roughly be |F |α .
Because a semantic hash tree is built on the hash table and
the tree needs to be a complete binary tree, we set the hash
table size to be 2dlog2

|F |
α e, where dxe denotes the smallest

integer that is greater than or equal to x. Note that the size of
the hash table is linear only in the total number of outsourced
data items.

Data Item Semantics. The data item in our protocol has
the semantics (index, ID,Hash(index, ID)). The “index” is
determined by the masked data item ID and the hash functions
of the hash table. To prevent the modification of a data item,
index and ID are then hashed using a cryptographic hash
function. Note that including the plaintext ID in the data item
gives explicit existence information about one data item. The
term “index” is used to handle data item collisions when data
items are placed in the slots of the hash table. A data item does
not have a fixed index in the hash table if multiple collisions
occur. If the term Hash(index, ID) is not contained in the data
item semantics, the cloud has modified the returned answer in
an attempt to cheat the user. We prove that this format is
strictly secure in Section IV.

We note that the design of collision handling, hash tree size,
and data item semantics in the hash table has a large impact on
the correctness and security of our protocol as will be shown
next.

C. Protocol Design

With the technical challenges addressed, we extend our
basic idea to design a verifiable data access protocol VDA
= (KeyGen, Outsource, Query, Search, Verify) in steps.
In each step, we detail one algorithm in VDA = (KeyGen,
Outsource, Query, Search, Verify).

VDA.KeyGen. The data owner runs this algorithm before
outsourcing the data. Suppose a data owner wants to outsource
a collection of data items F . The data owner first generates
a secrete key K for a pseudorandom function funcK(·). To
protect the privacy of the data item with identity f ′, the data
owner computes a masked ID f = funcK(f ′) for each data
item.

VDA.Outsource. The data owner runs this algorithm when
outsourcing the data. The data owner chooses a load factor
α. According to the total number of the data items |F | and
α, the data owner instantiates an empty hash table with size
2dlog2

|F |
α e and three hash functions h1, h2, h3 associated with

the hash table. The input of h1, h2, h3 is any string in {0, 1}∗

and the output is an integer in {0, 1, · · · , 2dlog2
|F |
α e − 1}. For

each data item in F , the data owner uses the hash functions
h1, h2, h3 to find a slot in the hash table. Then, the data owner
stores the item in the calculated slot of the hash table in the for-
mat (index, ID,Hash(index, ID)), where index is computed
using h1, h2, h3 and the data item ID, and Hash(·) is a cryp-
tographic hash function, e.g. SHA256. More specifically, if
no collision occurs, index = h1(ID); if one collision occurs,
index = h2(ID); if two collisions occur, index = h3(ID); if
three collisions occur, index = h3(h3(ID)). Similar collision
handling repeats until an empty slot of the hash table hash
been found for each data item. All remaining empty slots of
the hash table are filled with (index, f#,Hash(index, f#))

where index ∈ {0, 1, · · · , 2dlog2
|F |
α e − 1} is the natural

position of the corresponding empty slot in the hash table
and f# is the unique identity for all non-existing data items.
Once the data owner has filled the hash table, the has table is
authenticated by using a semantic hash tree. For the ith leaf
node of the hash tree, the value is computed as the output
of the cryptographic hash function Hash(·) applied on the
ith-slot of the hash table, which is a tuple with semantics
(index, ID,Hash(index, ID)). Once the leaf level of the
hash tree is determined, the hash tree is constructed from
bottom to top. The data owner keeps the root value R of the
semantic hash tree as an authentication of the outsourced data.
Finally, the data owner sends the hash table together with the
whole authentication tree to the cloud. The data owner also
shares the secret key K for the pseudorandom function and
the authentication value R with the user.

VDA.Query. The user runs this algorithm. To request a data
item with ID f ′, the user computes the masked ID as f =
func(f ′). Then, the user sends f as a data access request to
the cloud.

VDA.Search. The cloud runs this algorithm on a data item
access request as follows. The cloud first computes an index
h1(f) for the requested data item f , and checks the content of
the h1(f)-th slot of the hash table, which is outsourced to the
cloud by the data owner. The cloud then proceeds as follows:

• If the slot contains the unique ID f#, then the re-
quested data item does not exist. The cloud thus re-
turns this slot (h1(f), f#,Hash(h1(f), f#)) and it-
s authentication path in the semantic hash tree back
as a proof. Denote the proof for slot h1(f) as
P = [(h1(f), f#,Hash(h1(f), f#)), (left, right)H ,
(left, right)H−1, · · · , (left, right)1, R] where H is the
height of the hash authentication tree, (left, right)i are
the elements corresponding to the h1(f)-th leaf node at
height i for i = H, · · · , 1, and R is the root value of the
semantic hash tree. For this case, we say the proof of the
cloud contains one entry.

• If the slot contains the requested ID f , then the requested
data item does exist. The cloud thus returns this slot
(h1(f), f,Hash(h1(f), f)) and its authentication path P
in the semantic hash tree back as a proof. For this case,
we also say the proof of the cloud contains one entry.

• If the slot contains an ID that is different from both the
unique ID f# and requested ID f , a collision occurs.
Then, the cloud computes another index h2(f) and check-
s whether the h2(f)th slot of the hash table contains
the unique ID f# or the requested ID f . Three cases
are possible: (i) if f# is found, then the requested data
item does not exist; (ii) if f is found, then the requested
data item does exist; and (iii) if a different data item
ID is found, another collision occurs. We then handle
this collision again using h3(f) until no further collisions
happen. Eventually, either f or f# is found. Suppose in
total that k collisions happen and Pi is the proof for the
slot when the ith collision occurs. The cloud then returns
P1P2 · · ·Pk to the user.

VDA.Verify. The user runs this algorithm upon receiving a
response from the cloud. We divide the cloud’s proof into the
following two cases:

1) The proof has only one entry. First, we check whether
the returned index is correct using the requested data
item ID f and the hash function h1. Second, we check
whether the cryptographic hash of the h1(f)-slot of
the hash table is correct. Third, we check whether the
authentication path of the semantic hash tree is correct.
Only if all the checks pass, then the cloud is honest. If
the requested data item ID f is found, the requested data
item does exist; otherwise f# is found and the requested
data item indeed does not exist.

2) The proof has k entries P1P2 · · ·Pk. The user checks
the correctness of each entry Pi using the different hash
functions h1, h2, h3 of the hash table sequentially as
case 1. If all checks are correct, the cloud is honest.
The information contained in Pk determines whether the
requested data item exists. If Pk has the requested data
item ID, the requested data item does exist; otherwise,
f# is in Pk and the requested data item indeed does not
exist.

D. Summary of the Protocol

Finally, we summarize our protocol in a compact and formal
manner. Our protocol VDA = (KeyGen, Outsource, Query,
Search, Verify) contains five probabilistic polynomial-time
algorithms as follows:
• KeyGen(1λ): The data owner runs this algorithm to

output a secret key K for a pseudorandom function
funcK(·). The data owner shares K with the data user.

• Outsource(F ;K): The data owner runs this algorithm on
input a collection of data items F . The data owner first
masks the original data item IDs using func(·). Then,
the data owner determines a load factor α and initiates
an empty hash table with size 2dlog2

|F |
α e and height⌈

log2
|F |
α

⌉
. The data owner also determines three hash

functions h1, h2, h3 to map a masked data item ID to a
slot of the hash table. Then, the data owner fills in all slots
of the hash table with semantics embedded and builds a
semantic hash tree over the hash table to get the root
authentication value R. The data owner then outsources
the hash table and the semantic hash tree to the cloud.
The data owner also shares R and h1, h2, h3 with the
data user.

• Query(f ′;K): The data user runs this algorithm to send
a request q = f to the cloud, where f = funcK(f ′).

• Search(q): For a request q for some data item, the cloud
finds it in the semantic hash tree. After handling all
collisions, the cloud returns the data item and a proof
back (χ,Γ) = {P1P2 · · ·Pk} where k is the number
of total collisions, Pi is the authentication for the i-th
collision with the format [(index, fi,Hash(index, fi)),
(left, right)H , (left, right)H−1, · · · , (left, right)1,
R].

• Verify(f ′, χ,Γ;K): After the data user receives an answer
{P1P2 · · ·Pk} from the cloud, the data user checks
whether the index, the data item ID, and the authenti-
cation path of each Pi are all correct. If yes, accept the
cloud’s answer; else, reject the answer.

IV. FORMAL ANALYSIS: SECURITY AND PERFORMANCE

A. Correctness & Privacy

We first analyze the correctness of our protocol. Suppose all
parties follow the protocol. There are two cases: an existing
data item request and a non-existing data item request. First,
when the data user requests an existing data item, an honest
cloud is able to find it in the hash table since VDA.Outsource
has placed all existing data items in the hash table and the
semantic hash tree. The honest cloud also returns a correct
authentication of the semantic hash tree following our proto-
col. Thus, the data user can successfully verify the returned
result. Second, the data user accesses a non-existing data item.
Although there are many non-existing data items, we only use
one special data item ID f# to denote all these data. When the
honest cloud searches the hash table, the cloud first computes
an index i using h1 and requested data item ID and checks
the corresponding i-th slot of the hash table. A simple case is
that the i-th data item is not occupied by an existing data item
and the data item ID in the hash table is f#. Thus, the cloud
just returns the i-th slot and the corresponding authentication
path in the semantic hash tree. By checking the returned
result, the data user knows that indeed the requested data item
doesn’t exist. However, collisions may occur and thus the first
computed slot may contain other data items. In this case, the
cloud can figure out that the current slot is different from the
requested data item by comparing their IDs; then, the cloud
computes and checks another index using h2, h3 repeatedly
until no collision occurs. Finally, a slot containing f# must
be found since the requested data item does not exist. Thus,
by returning all the proof entries, the data user can confirm
that the queried data item indeed doesn’t exist.

For privacy, the data item ID is masked by a pseudorandom
function. Then, the cloud cannot understand the real ID of the
requested data item; otherwise the cloud can differentiate a
pseudorandom function from a real random function. The data
item content is encrypted using a standard secure encryption
algorithm. Thus, the privacy of the data item content is well
protected.

B. Provable Security

Theorem 2. If Hash(·) is collision resistant, then our protocol
is secure with respect to Definition 1.

Proof Sketch. We only show a proof sketch due to page limit.
The key observation is as follows: if the cloud can fool a user,
the cloud must be able to show a different authentication path
which is different from the true one in the semantic hash tree.
Then, a collision for the cryptographic hash function can be
constructed from the two different authentication paths.

TABLE I
THEORETICAL ASYMPTOTIC PERFORMANCE OF OUR PROTOCOL

Computation Storage Communication
Data Owner O(n) O(1) O(n)
Data User O(logn) O(1) O(1)

Cloud O(1) O(n) O(logn)

C. Theoretical Performance

Table I summarizes the performance of our protocol. De-
tailed analysis follows. We first focus on the data owner. The
data owner needs to compute the semantic hash tree to get
the root hash value as the authentication information. The
computation time is composed of two parts: computing the
masked data item ID and computing the semantic hash tree.
For the first part, it takes O(n) time. For the second part, it
depends on the total size of the hash tree. The size of the
leaf level is 2dlog2

n
αe, which is O(n). Then, the tree size is

at most O(n) + O(n − 1) + O(n) = O(n) since we employ
a complete binary tree as our semantic hash tree. Thus, the
computation of the data owner is O(n) in total. For storage,
the data owner only stores the secret key for the pseudorandom
function and the root value of the semantic hash tree; it is a
constant O(1). For communication, the data owner needs to
send the semantic hash tree which contains the data to the
cloud. The communication cost is then O(n). All the cost for
the data owner is a one-time cost; thus, it can be amortized in
the subsequent data item access requests. The same analysis
also applies to the data user and the cloud.

Data user. The data user needs to send a data access request
and verify an answer from the cloud. The former takes time
O(1) and the latter depends on the total number of proof
entries. As we have analyzed that the number of collisions
is O(1) and the semantic hash tree has height O(log n), the
length of an authentication path is O(log n) and the total
length of the proof is also O(log n). Thus, the computation
cost of the data user is O(log n). For storage, the data user
only needs to store the secret key to generate the data access
request and the root hash value; it takes O(1) storage. For
communication, the data user only sends the masked data item
ID to the cloud and the size of the data is just the output size
of the pseudorandom function. Thus, it is a constant, O(1).

Cloud. The cloud searches a data item in the hash table.
Although some collisions may occur, the computation is still
a constant O(1) since the total number of collisions is O(1).
However, for storage, the cloud needs to store the semantic
hash tree and then the storage cost depends on the size of the
semantic hash tree. As in the case of the data owner, the size
of the semantic hash tree is O(n). Thus, the storage of the
cloud is also O(n). For communication, the cloud needs to
send back a proof containing a series of authentication paths.
Since a single authentication path is with size O(log n) and
the number of collisions is O(1), the communication cost is
O(log n).

TABLE II
DATA SETS AND STORAGE COST IN BYTES

Benchmark Toy RFC50 RFC100 RFC200 RFC400
Total Data Items 4 50 100 200 400

Storage 46152 182632 258840 440448 946392

V. EXPERIMENTAL EVALUATION

A. Methodology

We implemented our protocol using Java on a PC with Intel
i3 3.1G CPU and 4GB of memory. We simulate a data owner,
a user, a cloud, and their interactions in our prototype. For
performance metrics, we focus on storage, computation, and
communication cost of the protocol. For each performance
indicator, we run the experiments 40 times and report the
average performance result. We use public data sets and open-
source our prototype [20].

We use five test data sets that can be found in Table II. The
first one has only 4 random data items that can confirm the
correctness of our prototype. The second data set is archived
RFC documents 1 through 50 [21]. Similarly, the third, fourth
and fifth data sets contain the first 100, 200, and then 400
RFC documents, respectively.

In our prototype, we choose HMAC based on SHA256
as the pseudorandom function to mask the data item ID.
We employ SHA256 as the cryptographic hash function to
construct the semantic hash tree. The load factor of the
protocol is set to α = 0.1.

B. Results

Table II shows the storage cost of our protocol. We measure
only the storage required for the semantic hash tree as this is
the main additional storage cost in our protocol. From Table
II, we can find that the storage cost roughly grows linearly
with the total number of data items. This is consistent with
the theoretical analysis in Section IV-C. The minimal storage
is 46,152 bytes for the “Toy” data set and the maximal storage
cost is 94,6392 bytes for the “RFC400” data set. We emphasize
that our protocol trade-off greater storage requirements for
more computation and especially for communication efficien-
cy. Furthermore, the storage cost of our protocol is also small
compared to the huge storage pool of today’s cloud storage
service providers.

Table III contains the computational cost of our protocol.
The most time-consuming operation is VDA.Outsource. This
is expected since the semantic hash tree is built in this
process. The time cost becomes larger with the total number of
outsourced data items. The maximal time cost is about 0.042s,
which is very small in practice. For other operations, the time
cost is also very small. The experimental results show that all
operations of our protocol take little time.

VI. RELATED WORK

Because of limited space, we only briefly discuss the
research efforts very close to our research; more detailed
discussion is to be presented in a future enhanced version. En-
crypted search, authenticated data structure, and authenticated

TABLE III
COMPUTATION TIME FOR DIFFERENT ALGORITHMS IN NANOSECONDS

Benchmark Outsource Query Access Existing Access Non-existing Verify Existing Verify Non-existing
Toy 2712092 20037 27188 4825 58830 45720

RFC50 11921354 23000 51704 5421 83850 44081
RFC100 14576172 15137 30565 7366 62405 46191
RFC200 24524374 15874 37932 5437 65079 47640
RFC400 42127152 22462 36185 7175 81359 56711

databases are closely related to our work in this paper. The
works in [7]–[15] proposed protocols to verify the keyword
search results returned from an untrusted cloud. The works
in [22]–[24] proposed protocols to authenticate outsourced
data structures and databases. When these protocols are trans-
formed to solve the verifiable data access problem in this
paper, they are either not verifiable or inefficient. The work in
[25] can enable verifiability, but requires a large computational
cost.

VII. CONCLUSION

In this paper, we first formalized the verifiable data access
problem and then proposed a privacy-preserving protocol to
address the problem. The protocol builds its provable security
on collision-resistance with respect to a cryptographic hash
function. The proposed protocol is also highly efficient: it
takes only constant time to access a data item and the com-
munication cost is only the logarithm of the total number of
outsourced data items. We implemented the proposed protocol
to evaluate its performance and the experimental data validates
its efficiency. Our open-source prototype also provides a
foundation for further real-world development.

ACKNOWLEDGMENTS

The work in this paper is supported by the National Natural
Science Foundation of China (No. 61502314) and the Fun-
damental Research Funds for the Shenzhen University (No.
201533).

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc. of
ACM CCS. ACM, 2007, pp. 598–609.

[2] A. Juels and B. Kaliski Jr, “PORs: Proofs of retrievability for large files,”
in Proc. of ACM CCS. ACM, 2007, pp. 584–597.

[3] K. Yang and X. Jia, “An efficient and secure dynamic auditing protocol
for data storage in cloud computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 9, pp. 1717–1726, 2013.

[4] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Transactions
on Computers, vol. 62, no. 2, pp. 362–375, 2013.

[5] F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, “Secure cloud storage
meets with secure network coding,” in Prof. of IEEE INFOCOM, 2014.

[6] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of
retrievability,” in Proc. of ACM CCS. ACM, 2013, pp. 325–336.

[7] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of IEEE S&P. IEEE, 2000, pp. 44–55.

[8] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 8, pp. 1467–1479,
2012.

[9] C. Wang, K. Ren, S. Yu, and K. Urs, “Achieving usable and privacy-
assured similarity search over outsourced cloud data,” in Proc. of IEEE
INFOCOM. IEEE, 2012, pp. 451–459.

[10] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,” in Prof. of IEEE ICC. IEEE,
2012, pp. 917–922.

[11] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryp-
tion,” in Financial Cryptography and Data Security. Springer, 2012,
pp. 285–298.

[12] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption.” in Prof. of ACM CCS, 2012.

[13] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography and Data Security.
Springer, 2013, pp. 258–274.

[14] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. of NDSS, 2014.

[15] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable Attribute-based
Keyword Search over Outsourced Encrypted Data,” in Proc. of IEEE
INFOCOM. IEEE, 2014, pp. 451–459.

[16] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM, vol. 43, no. 3, pp. 431–473, 1996.

[17] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. of CRYPTO ’87, 1988, pp. 369–378.

[18] O. Goldreich, “Foundation of cryptography (in two volumes: Basic tools
and basic applications),” 2001.

[19] R. Motwani and P. Raghavan, “Randomized algorithms,” Cambridge
University, 1995.

[20] F. Chen, “Prototype: Verifiable data access on
the cloud,” https://sites.google.com/site/chenfeiorange/
semantic-hash-tree-based-verifiable-file-search, 2015.

[21] RFC, “Request for comments database,” http://www.ietf.org/rfc.html,
2014.

[22] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated
hash tables,” in Proc. of ACM CCS. ACM, 2008, pp. 437–448.

[23] H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification for out-
sourced dynamic databases,” in Proc. of VLDB. VLDB Endowment,
2009, pp. 802–813.

[24] H. Pang and K. Mouratidis, “Authenticating the query results of text
search engines,” in Proc. of VLDB. VLDB Endowment, 2008, pp.
126–137.

[25] F. Chen, T. Xiang, X. Fu, and W. Yu, “Towards verifiable file search on
the cloud,” in Proc. of IEEE CNS, 2014.

