
Secure Cloud Storage Hits Distributed String
Equality Checking: More Efficient, Conceptually

Simpler, and Provably Secure

Fei Chen∗¶, Tao Xiang†, Yuanyuan Yang‡, Cong Wang§, Shengyu Zhang¶

∗Department of Computer Science and Engineering, Shenzhen University. Email:feichenn@gmail.com.
†College of Computer Science, Chongqing University. Email: txiang@cqu.edu.cn.

‡Department of Electrical and Computer Engineering, Stony Brook University. Email: yuanyuan.yang@stonybrook.edu.
§Department of Computer Science, City University of Hong Kong. Email: congwang@cityu.edu.hk.

¶Department of Computer Science and Engineering, The Chinese University of Hong Kong. Email:syzhang@cse.cuhk.edu.hk.

Abstract—Cloud storage has gained a remarkable success
in recent years with an increasing number of consumers and
enterprises outsourcing their data to the cloud. To assure the
availability and integrity of the outsourced data, several pro-
tocols have been proposed to audit cloud storage. Despite the
formally guaranteed security, the constructions employed heavy
cryptographic operations as well as advanced concepts (e.g.,
bilinear maps over elliptic curves and digital signatures), and
thus are inefficient to admit wide applicability in practice. In
this paper, we design a novel secure cloud storage protocol,
which is conceptually and technically simpler and significantly
more efficient than previous constructions. Inspired by a classic
string equality checking protocol in distributed computing, our
protocol uses only basic integer arithmetic (without advanced
techniques and concepts). As simple as the protocol is, it supports
both randomized and deterministic auditing to fit different
applications. We further extend the proposed protocol to support
data dynamics, i.e., adding, deleting and modifying data, using a
novel technique. As a further contribution, we find a systematic
way to design secure cloud storage protocols based on verifiable
computation protocols. Theoretical and experimental analyses
validate the efficacy of our protocol.

I. INTRODUCTION

With the increasing popularity of cloud computing, the
security of cloud storage has recently drawn considerable
attention from the research community [1]–[7]. Various pro-
tocols with different strengths and weaknesses which can
check the integrity of outsourced data have been proposed for
securing cloud storage [1]–[7]. One can categorize the existing
protocols from different perspectives. When functionality is
concerned, some protocols do not support full data dynamics
[1]–[3], [7], while the others do [4]–[6]. From the security
perspective, some protocols rely their security on standard
model [1], [2], [6], while others assume the random oracle
model (ROM) [3]–[5]. From the technical perspective, some
protocols employ only basic number theoretic operations [1]–
[3], [7], while others build heavily on bilinear parings over

The corresponding author is Tao Xiang (txiang@cqu.edu.cn).

elliptic curves [4], [5]; these different techniques incur differ-
ent efficiency.

For practical applicability of cloud storage with protection
for users against potentially malicious clouds, one desires
protocols without heavy cryptographic operations yet still
efficient and able to support data dynamics and third-party
auditing. In this paper, we provide a provably secure cloud
storage protocol with conceptual and technical novelty. At the
same time, the protocol does not need any heavy cryptographic
operation, yet supports data dynamics under a malicious cloud.

Our protocol is inspired by a classic protocol solving the
string equality checking problem in communication com-
plexity of distributed computing [8], [9]. Our protocol runs
basically as follows: 1) we model the data as a vector in some
vector space; 2) when the user checks the availability and
integrity of the outsourced data, the user asks the cloud to
compute an inner product of the data with some challenge
vector in a “verifiable” way; 3) the verifiability of the inner
product ensures the integrity of the cloud storage.

Our protocol enjoys several merits. First, it is very efficient
because it involves only integer additions and multiplications,
which enables a fast implementation. Besides, our protocol is
conceptually and technically very simple and does not rely
on heavy cryptograhic operations. The proposed protocol only
uses inner product of the input string and some randomly
chosen strings together with pseudorandom functions. Further-
more, our protocol is provably secure under a formal definition
with real-world motivations of security.

We further propose a novel method for supporting data
dynamics. In the protocol design, we associate with each data
block a unique sequence number to ensure verifiability of
outsourced data in the cloud. Supporting data insertion and
deletion is pretty challenging when modeling the cloud as
malicious. To solve the data dynamics problem, we employ
two ideas: the first is to increase the sequence number all
the time whenever new data is inserted; the second is to
re-normalize the sequence number periodically such that no



sequence number gap exists when data blocks are deleted. The
re-normalization operation is achieved by sending carefully
designed update messages. This method for supporting data
dynamics is novel and efficient.

Next, we step further and find a generic framework for
designing secure cloud storage protocols in a systematic way
based on verifiable computation protocols [10]. This can be
used to automatically transform previous protocols to new ones
with desirable security properties.

To summarize, we make the following contributions:
1) We propose a novel and efficient secure cloud storage

protocol which enjoys both conceptual and technical
simplicity. We connect the secure cloud storage problem
to the canonical distributed string equality checking
problem.

2) We introduce a new technique to support data dynamics,
including adding, deleting and modifying data blocks,
which only requires constant-size user-side cache. The
communication cost incurred can be amortized for fre-
quent data updates.

3) We formally prove the security of the our protocol under
a practical security definition. More importantly, we
find a systematic framework to construct secure cloud
storage protocols based on verifiable computation proto-
cols. Theoretical and experimental analyses validate the
efficacy of our protocol.

The remaining of the paper proceeds as follows. Section
II first models the secure cloud storage problem, and then
proposes a solution framework and a formal security defini-
tion. Section III details the design of the secure cloud storage
protocol, which is followed by the security and performance
analysis in Section IV. Section V shows how to extend
the protocol to support data dynamics. Section VI shows a
systematic way to design secure cloud storage protocols based
on verifiable computation protocols. Section VII presents the
experimental evaluation of the proposed protocol. Section VIII
reviews related work. Finally, Section IX concludes the paper.

II. PROBLEM FORMULATION

A. System Model & Threat Model

Abstracting from the real-world usage of a cloud, we model
the secure cloud storage problem as in Fig. 1. Two entities are
involved: user and cloud. A secure cloud storage system runs
as follows: The user outsources the data to the cloud. Later,
to verify whether the outsourced data remains intact on the
cloud, the user may send audit queries any time to the cloud
to verify the integrity of the outsourced data. On each audit
query, the cloud is supposed to “prove” to the user compactly
that the data is well stored in the cloud. Then, the user verifies
whether the cloud’s “proof” is indeed correct to know whether
the data is damaged.

Similar to previous work [1]–[3], [6], [7], we model the
cloud as malicious due to internal/external attacks, aiming
at stronger security and wider applicability. A malicious
cloud can deviate the protocol in arbitrary ways. We focus

Fig. 1. System Model for Verifiable Cloud Storage.

on integrity of the outsourced data. For confidentiality and
authentication, we assume they are well protected using other
mechanisms, e.g., secure encryption algorithms and MACs.
Our main goal is to devise novel, efficient, elementary, and
provably secure protocols to ensure the integrity of the out-
sourced data.

B. Solution Framework & Security Definition

We employ the same framework and security definition for
a basic secure cloud storage protocol as previous work [1]–[7].

Let an integer λ denote the security level and D denote
the data to be outsourced. A secure cloud storage protocol,
denoted as SCS, comprises five algorithm components (Key-
Gen, Outsource, Audit, Prove, Verify). It runs as follows:
• KeyGen(1λ) 7→ K: On input a security level λ, the user

runs this algorithm to generate a secret key K.
• Outsource(D;K) 7→ D′: On input the data D to be

outsourced and the secret key K, the user runs this
algorithm to obtain the outsourced data D′.

• Audit(K) 7→ χ: The user runs this algorithm to generate
an audit query χ and sends it to the cloud.

• Prove(D′, χ) 7→ Γ: On receiving an audit query χ, the
cloud runs this algorithm to output a “proof” Γ, which
was then sent to the user, with the aim to convince the
user that the data is well stored in the cloud.

• Verify(χ,Γ;K) 7→ {0, 1}: On receiving a proof Γ from
the cloud, the user runs this algorithm to check whether
the returned proof is correct. The algorithm is supposed
to output 1 if the data remains intact, and to output 0
otherwise.

We now formally define the security for a SCS protocol.
We say a pair (χ∗,Γ∗) is a forgery if Γ∗ is not computed using
D′ for the query χ∗. A forgery models the malicious cloud’s
behavior. Let A denote a malicious cloud and Pr[Cheat]
denote the probability of a malicious cloud that successfully
finds a forgery after sufficient learning of the protocol. Then,
Pr[Cheat] can be computed as

Pr


KeyGen(1λ)→ K

Outsource(D;K)→ D′

Audit(K)→ χi
Prove(D′, χi)→ Γi

Verify(χi,Γi;K)→ δi
i = 1, . . . , poly(λ)

:
A(D′, χi,Γi, δi)

outputs a
forgery (χ∗,Γ∗)

 (1)

where poly(λ) is an arbitrary but fixed polynomial in the
security level λ. The left part before the colon ”:” of Eq. (1)
denotes the capability of the cloud and the right part captures
a malicious cloud’s malicious behavior. Let B be a user that



wants to recover the original data from the interaction with
the malicious cloud. Let Pr[Recover] denote the probability
of a successful recovery of the data. Then, Pr[Recover] can
be computed similarly

Pr


KeyGen(1λ)→ K

Outsource(D;K)→ D′

Audit(K)→ χi
Prove(D′, χi)→ Γi

Verify(χi,Γi;K)→ δi
i = 1, . . . , poly(λ)

:
B(K,χi,Γi, δi)

outputs F ∗
and F ∗ = F

 (2)

where the left part before ”:” denotes the interaction between
the user and the malicious cloud and the right part models a
successful data recovery. We introduce a useful concept before
presenting the formal security definition. A function f(λ) is
negligible in λ if f(λ) < 1

poly(λ) for every polynomial in λ

as λ tends to positive infinity, denoted as f(λ) = negl(λ).

Definition 1. A secure cloud storage protocol SCS is secure
if Pr[Cheat] = negl(λ) and Pr[Recover] = 1− negl(λ).

C. Preliminary

In the design of our secure cloud storage protocol, we use a
tool pseudorandom functions which is the only cryptographic
tool employed in this paper. Let PRF = {FK(·)} be a set of
deterministic functions indexed by K, mapping some input
domain X to output image Y . Intuitively, a deterministic
function PRF = {FK(·)} is said to be pseudorandom if any
polynomial time algorithm cannot distinguish it from a truly
random function. Please refer to [11] for more details on
security definition of pseudorandom functions. In practice, a
secure encryption algorithm or a keyed hash function can be
used as a pseudorandom function.

We also fix some notations for use later. Let p denote a
prime number and Zp denote the set {0, 1, . . . , p− 1} and Z∗p
the set {1, . . . , p − 1}. For any g ∈ Z∗p, it holds that gp−1 =
1 mod p, which is a basic fact in number theory. Let D denote
the data to be outsourced and FK(·) denote a pseudorandom
function mapping integers to Zp.

III. DISTRIBUTED STRING EQUALITY CHECKING BASED
PROTOCOL

In this section, we detail the design of an efficient, simple,
and provable secure cloud storage protocol by leveraging a
traditional distributed string equality checking protocol. By
efficiency, we seek that the user’s and cloud’s computation
and communication cost should be as small as possible. By
simplicity, we aim that all the operations in the protocol should
be elementary and no bilinear parings or digital signatures are
needed. Most importantly, we expect a protocol with confident
security guarantee. We first present the basic idea of the
proposed protocol; then we show the details of the protocol.

A. The Basic Idea

The basic idea of our protocol design is to model the secure
cloud storage problem as a variant of the distributed string
equality checking problem, and then transform a classical
solution for the latter to a solution for secure cloud storage.

1) Distributed String Equality Checking Primitive: A dis-
tributed string equality protocol can enable two parties pos-
sessing two strings (e.g., messages) in a network to find
whether their strings are equal [8] with minimum communica-
tion cost. The problem setup is as follows. Alice and Bob are
two entities in a distributed network. Alice has an n-bit string
x ∈ {0, 1}n and Bob also has such a string y ∈ {0, 1}n. To
complete a distributed computation task cooperatively, Alice
and Bob want to know whether their two stings are equal by
communicating to each other. The question is that how many
communication bits are at least needed to finish the task.

We now present a classical protocol for enabling distributed
string equality checking. This protocol is very simple since it
only involves inner product computations. Suppose there is a
public random string pool Z ⊆ {0, 1}n with size O(n). A
classical protocol with O(log n) communication bits works as
follows [9]:
• Alice chooses a random string z ∈ Z in the pool and

sends the index to Bob. Alice also sends the inner produce
〈x, z〉mod 2.

• Bob also computes 〈y, z〉mod 2 and checks whether
Bob’s result is equal to Alice’s result 〈x, z〉mod 2. If not,
Bob tells Alice that the two strings are not equal and the
protocol aborts. Otherwise, the protocol continues.

• Alice and Bob repeat this process 100 times. If 〈x, z〉 =
〈y, z〉 all the time, Bob reports that the two strings are
equal and the protocol stops.

The basic rationale of the above protocol is as follows: If
x = y, then 〈x, z〉 = 〈y, z〉 always holds and the protocol
is correct. If x 6= y, in a single run we have Prz[〈x, z〉 =
〈y, z〉] = 1

2 . After running 100 times, we can find that x is
not equal to y if 〈x, z〉 6= 〈y, z〉 for some z. We can only
make a mistake when 〈x, z〉 = 〈y, z〉 for all 100 z’s. However,
this bad even only occurs with probability 1

2100 , which is very
small.

2) Adaptation: In this subsection, we construct a secure
cloud storage protocol by adapting the above distributed string
equality checking protocol. Our idea is as follows: we take the
user as Alice possessing x and the cloud as Bob possessing y;
then cloud storage checking can be modeled as and solved by
distributed string equality checking. The cloud can compute
〈y, z〉 straightly. Nonetheless, one challenge remains: the user
does not know how to compute 〈x, z〉 since the user does not
possess x anymore which is outsourced to the cloud.

Before solving the remaining challenge, we first make two
improvements in order to achieve good efficiency: 1) instead
of working over {0, 1}n, we model the data D = (d1, . . . , dn)
to be outsourced as a vector in Znp where di ∈ Zp is a data
block and n is the total number of data blocks, which can
decrease false positive probability significantly and promote
efficiency; 2) instead of using a public random string pool,
we send a random string directly to the cloud which can be
generated by a pseudorandom function to save communication
cost.

We now solve the remaining challenge by leveraging the
cloud to compute 〈x, z〉 for the user in a verifiable way.



It works as follows: when outsourcing D = (d1, . . . , dn),
the user also outsources an integer si = gr·di+FK(i) mod p
using some secret information for each data block di, where
g, r ∈ Z∗p are randomly chosen and FK(i) is the output of a
pseudorandom function FK(·) on input i. The values r and
FK(i) are kept secret from the cloud. Let ei be the random
sequence sent to the cloud for computing the inner product.
The cloud computes

α =
∑
i

di · ei mod (p− 1) (3)

and
β =

∏
is
ei
i = gr·(

∑
i diei)+

∑
i eiFK(i) mod p. (4)

Equivalently, α contains the inner product of the cloud side,
which is similar to 〈y, z〉 for distributed string equality; and
β contains the information on the inner production of the
user side, which is similar to the functionality of 〈x, z〉 for
distributed string equality. We can check whether the inner
products are equal by checking whether β = grα+

∑
i eiFK(i)

holds, where r, ei, FK(i) are known by the user.
We present some intuition on why our adaptation is correct

and secure. Please refer to Section IV for more strict argument.
Suppose a data block dj∗ for some j∗ is damaged. When
the user audits this block, the cloud needs to return the inner
produces α and β. When the user checks β = grα+

∑
i eiFK(i),

the secret information FK(j∗) is only known to the user. If
the cloud wants to cheat the user that the data is not damaged,
the cloud needs to know the secret value of FK(j∗), for which
we employ a pseudorandom function here to keep it private.

B. Detailed Protocol Design

In this section, we combine the basic ideas above to design
a secure cloud storage protocol SCS = (KeyGen, Outsource,
Audit, Prove, Verify) in detail by showing all the design
choices for each algorithm in SCS.

KEY GENERATION. In the key generation algorithm, we
choose parameters for the protocol according to a security
level; we also generate secret keys. The parameters include
p, g, r and FK(·). The prime p is public and can be generated
randomly. However, the bit length of p should be at least the
same as the security demand, the reason of which can be found
in the security analysis in Section IV. For example, if the
security level is 128 bit, then p should be a prime number
whose bit length is greater or equal to 128. After p is chosen,
the numbers g and r can be chosen as any random number
in Z∗p. The pseudorandom function FK1(·) can be any secure
one in the pseudorandom function family {FK1

(·)} indexed
by a secret key K1 [11]. Thus, the public key is (p, g); and
the private key is (r,K1).

OUTSOURCE. To outsource the data D to the cloud, we
first divide it into blocks (d1, . . . , dn) where di ∈ Zp and n
is the total number of blocks. In order to enable future audit
queries that can check the integrity of the outsourced data, we
embed some secret information in the data using the secret key
(r,K1). For each di, we compute si = gr·di+FK1

(i) mod p
and outsource (di, si) to the cloud, where FK1(i) is the

output by the pseudorandom function on input i. Implicitly,
we contain an index information in the outsourced data. This
index information is very important for the security of the
secure cloud storage protocol since it can prevent a malicious
cloud from cheating the user.

AUDIT. Our protocol supports two types of auditing mech-
anisms: deterministic and randomized. For deterministic au-
diting, the user can send a challenge sequence (e1, . . . , en) to
ask the cloud for computing the inner product as in Eq. (3)
and its proof as in Eq. (4). The challenge sequence can be
generated using a pseudorandom function with a new secret
key K2. The user only needs to send a constant-length string
K2 to the cloud and the challenge sequence can be obtained
as ei = FK2

(i).
For randomized auditing, the user can send a much

shorter challenge sequence (ei1 , . . . , eiL) and their indices
(i1, i2, . . . , iL), where i1, i2, . . . , iL ∈ {1, 2, . . . , n} are ran-
domly chosen and L is far smaller than n. In the randomized
setting, the cloud only retrieves small parts of the data,
which may not touch the damaged data blocks. In order to
achieve a good accuracy, the user may repeatedly send multiple
independent queries.

PROVE. After the cloud receives the challenge se-
quence, the cloud simply computes the inner product α =∑
i di · ei mod p − 1 and β =

∏
is
ei
i which equals

gr·(
∑

i diei)+
∑

i eiFK(i) mod p. Then (α, β) is sent back as a
proof.

VERIFY. After the cloud returns a proof (α, β), the user
simply checks whether β = grα+

∑
i eiFK1

(i). It is easy to
find that grα+

∑
i eiFK1

(i) can be computed efficiently by first
computing t = rα+

∑
i eiFK(i) mod p− 1 and then comput-

ing the exponent gt mod p. All operations are very efficient.
Especially, p could be as small as a 128-bit prime. The user
accepts the proof if all returned (α, β)’s are correct for both
randomized and deterministic audits, i.e., the outsourced data
remains intact and available. Otherwise, the outsourced data is
damaged and then the user needs to take further actions which
is out of the scope of the current paper and thus is a future
research direction.

C. Protocol Specification

We summarize our protocol in a compact form. The pro-
posed secure cloud storage protocol SCS = (KeyGen, Out-
source, Audit, Prove, Verify) based on distributed string
equality checking runs as follows:

• KeyGen(1λ)→ K: On input a security level λ, the user
generates a prime p with bit length at least λ. The user
also generates two integers g, r ∈ Z∗p, and a λ-bit key K1

for the pseudorandom function FK1
(·) with input domain

integers and output image Zp. We require that g is a
generator of the group Z∗p. The secret key is K = (r,K1)
and the public key is (p, g).

• Outsource(D;K) → D′: On input the data D to be
outsourced, the user divides D into blocks (d1, . . . , dn)
where di ∈ Zp and n is the total number of blocks. For



each i, the user also computes si = gr·di+FK1
(i) mod p.

The user sends all (di, si)’s to the cloud.
• Audit(K) → χ: The user can audit the cloud’s storage

either in a deterministic way or a randomized way.
– For deterministic auditing, the user generates a new

secret λ-bit key K2 for the pseudorandom function
FK2

(·) and then the user sends K2 to the cloud. The
audit query is χ = K2.

– For randomized auditing, the user generates L in-
dices (i1, i2, . . . , iL) in {1, 2, . . . , n} and a vector
(ei1 , . . . , eiL) over ZLp to the cloud. The audit query
is χ = [(i1, i2, . . . , iL), (ei1 , . . . , eiL)].

• Prove(D′, χ) → Γ: Depending on whether it is a deter-
ministic audit or a randomized one, there are two cases.

– For deterministic auditing, the cloud uses χ = K2

to generate a vector (e1, . . . , en) over Znp . The cloud
computes α =

∑n
i=1 di · ei mod(p − 1) and β =∏

is
ei
i mod p. The cloud sends Γ = (α, β) back to

the user as a proof.
– For randomized auditing, the cloud computes
α =

∑L
j=1 dij · eij mod p − 1 and β =∏L

j=1s
eij
ij

mod p using the audit query χ =
[(i1, i2, . . . , iL), (ei1 , . . . , eiL)]. The cloud also sends
Γ = (α, β) back as a proof.

• Verify(χ,Γ;K) → {0.1}: On receiving a proof Γ =
(α, β), the user checks whether β = grα+

∑
i eiFK1

(i) is
true using the audit query χ and the secret key K. If yes,
the user accepts the proof; otherwise, rejects it.

IV. CORRECTNESS, SECURITY AND PERFORMANCE
ANALYSIS

A. Correctness

Our protocol is correct if both parities follow the protocol.
The user checks whether β = grα+

∑
i eiFK1

(i) holds on a
proof (α =

∑
i di · ei mod p− 1, β =

∏
is
ei
i ) from the cloud.

Note that β =
∏
is
ei
i =

∏
i(g

r·di+FK(i))ei , which is exactly
grα+

∑
i eiFK1

(i). Thus, an honest cloud with intact data can
always proves to the user that the data remains undamaged.

B. Security

We now show a cloud cannot cheat the user on any
data damage. We analyze security in two steps, focusing on
two probabilities according to Definition 1, respectively. We
first argue Pr[Cheat] is negligible by showing a cloud with
damaged data cannot compute the inner product correctly.
The proof idea is similar to the the Cramer-Shoup public-key
encryption algorithm [12]. We then argue Pr[Recover] is close
to 1 by proposing a data reconstruction algorithm.

Theorem 2. The protocol SCS = (KeyGen, Outsource,
Audit, Prove, Verify) specified in Section III-C is secure if
the pseudorandom function is secure.

Proof Sketch. We show the basic idea of our security argu-
ment. The detailed proof will be shown in an extended paper
in future, due to page limits.

TABLE I
THEORETICAL PERFORMANCE OF THE PROPOSED PROTOCOL

Computation Communication Storage
User O(l) O(l) O(1)

Cloud O(l) O(1) O(n)

Step I. We show a cloud with damaged data cannot cheat
with a non-negligible probability. First, suppose we use a
truly random function in our protocol and let Pr[Unbound]
be the probability of a successful cheating by a cloud. Then
we can show Pr[Unbound] = negl(λ) using a linear algebra
argument. Second, we return to the original protocol using a
pseudorandom function. The only difference lies in the pseu-
dorandom function. Thus, we have Adv[PRF] ≥ |Pr[Cheat]−
Pr[Unbound]| because the malicious cloud can be employed
to distinguish a pseudorandom function from a truly random
function. Therefore, Pr[Cheat] ≤ Adv[PRF] + negl(λ).

Step II. We show if Pr[Cheat] is non-negligible, the user
can reconstruct the data with probability Pr[Recover] = 1 −
negl(λ) by proposing a reconstructing algorithm. The basic
idea is that the user can obtain a linear system of equations
of the inner products of the outsourced data and the challenge
vectors, and then solve it to recover the outsourced data. We
remark that such similar treatment has also been used in earlier
proofs of storage works, e.g. [4], [13].

C. Performance

Tables I and II list the theoretical performance of our
protocol and comparisons with previous work. Let n denote
the total number of blocks of the outsourced data, λ denote
the security parameter, and l denote the length of the audit
query.

Theoretical Performance. For the user, four algorithms are
involved, i.e. SCS.KeyGen, SCS.Outsource, SCS.Audit,
and SCS.Verify. The key generation algorithm and the data
outsourcing algorithm are only executed once when the data is
outsourced. Thus, all computation in them can be amortized
in the following many audit queries. When the user audits
the cloud for data integrity and availability, generating the
audit query takes O(l) computation and O(l) communication
as well. When the user verifies the proof from the cloud,
it also takes O(l) computation to compute

∑
i eiFK1

(i) and
check β = grα+

∑
i eiFK1

(i). Thus, the total computation cost
is O(l). For communication, the user sends an audit challenge
to the cloud. Since the audit challenge has length O(l), the
communication cost is then also O(l). For storage, the user
only needs to store the secret key K = (r,K1). The random
r is just a random element in Zp and the key K1 is only a
constant-length bit string. Thus, the storage cost is O(1). The
same analysis also applies to the cloud.

Performance Comparison. We compare the performance
of the our protocol with recent protocols [1], [2], [4]–[7], [14]
in Table II to show their strength and their advantages. For
computation, storage, and communication cost, we account



TABLE II
COMPARISON OF DIFFERENT PROTOCOLS

Protocols Computation Storage Communication Heavy Crypto Data Dynamics Security Model
Juels and Kaliski [1] O(λl) / O(λl) O(λ) / O(n) O(l) / O(λl) NO NO Standard

Ateniese et al. [2] O(λl) / O(λl) O(λ) / O(n) O(l) / O(λl) YES NO ROM
Shacham and Waters [14] O(λl) / O(λl) O(λ) / O(n) O(l) / O(λl) YES NO ROM

Yang and Jia [5] O(λl) / O(λl) O(λ), O(n) / O(n) O(l) / O(λl) YES YES ROM
Wang et al. [4] O(λl) / O(λl) O(λ) / O(n) O(l) / O(λl) YES YES ROM
Shi et al. [6] O(λl), O(n) / O(λl), O(n) O(λ) / O(n) O(l), O(n) / O(λl), O(n) YES YES -

Chen et al. [7] O(λl) / O(λl) O(λ) / O(n) O(l) / O(λl) YES NO Standard
This Work O(λl), O(n) / O(λl) O(λ+ 1) / O(n) O(l), O(n) / O(λl) NO YES Standard

for both the user and the cloud by dividing the cost in two
parts, e.g., O(l) / O(λl) in the second row of Table II where
O(l) is for the user and O(λl) is for the cloud. When data
dynamics is supported, the cost may be different between
auditing and supporting data dynamics, e.g., O(λl), O(n) in
the seventh row of Table II where O(λl) is for auditing and
O(n) is for supporting data dynamics. We find that different
protocols are designed with different theoretical foundations;
thus different protocols may fit different application scenarios
depending on the requirement of the user and the cloud.
Most of the protocols employ heavy cryptography [2], [4]–
[7], [14], e.g., RSA signatures, elliptic curve cryptography,
etc. In contrast, our work only employs light-weight cryp-
tographic operations. The asymptotic performance is roughly
the same as the protocols in terms of O(λ), O(l) and O(n).
It is worth noting that the big-O notation hides different
constants depending on the block size of different protocols.
Our protocol has a small constant in the big-O notation for the
computation cost because no heavy crypto is employed; thus
our protocol is also very efficient. Our protocol can employ a
modulus p with 128 bits, which is much smaller and thus more
efficient than RSA and other signatures. The works [4]–[6]
and this work all support data dynamics; however, they differ
in assumptions and efficiency when supporting data dynamics,
which is discussed in detail in Section V. Some protocols also
base on their security on the random oracle model (ROM)
while ROM is not needed for other protocols, including the
protocol in this paper. The main advantage of our protocol
in this work includes: 1) its simplicity both in techniques
and concepts and its functionalities; 2) its efficiency due to
simplicity; 3) supporting simple yet efficient data dynamics;
and 4) no ROM assumption is needed. Finally, we stress that
different protocols may fit different applications.

V. SUPPORTING DATA DYNAMICS

We show our technique to support data dynamics in this sec-
tion. Data dynamics include three different types of operations:
deleting a data block, inserting a data block and modifying a
data block. The difficulty when handling data dynamics lies
in the fact that the secret information accompanying each data
block is correlated with the index of the block. If we modify
a data block while not changing the index, the cloud can
replay previous data blocks to avoid detecting of any data
loss. Adding a new data block and deleting a data block both
requires to tackle the embedded secret information and the
indices. To solve this challenge, we keep assigning new indices

whenever a data block is changed, either inserted, deleted or
modified and we keep a local cache recording the changes.
This idea is similar to the approach in [5], but requires a
smaller cache since we only cache the necessary updated
information but not all information on all the data blocks.
However, the challenge is not solved completely. When there
are considerable data dynamic operations, the local cache in
the user side may increase to a very large size. In order to solve
this cache size issue, we propose an algorithm to dynamically
empty the cache, which is achieved by re-normalizing all the
data blocks and sending new secret embedded information
with consecutive indices.

Therefore, we support data dynamics as follows:

• The user keeps a state recording the total number
of data blocks n, the maximal index max index,
the current index current index, the deleted indices
del index array. Initially, it holds that max index =
current index = n and del index array is empty.

• When a data block is deleted, the user adds the corre-
sponding index to del index array and decreases the
total number of blocks n by 1.

• When a data block is inserted, the user assigns its index as
current index+1 and embeds the secret information as
scurrent index+1 = gr·di+FK1

(current index+1). The user
also increases current index,max index and the total
number of blocks n by 1.

• When a data block is modified, the user first deletes this
data block and insert the modified value as a new data
block using the methods described above.

• When the local state of the cache achieves to a threshold,
the user resets all the secret information through an
algorithm as discussed later such that the data blocks
have consecutive indices from 1 to n again. The threshold
for user’s local cache can be set according to the data
access patterns of a particular application scenario. After
resetting, we have max index = current index = n
and empty del index array again. This procedure is
executed periodically whenever the cache exceeds the
threshold.

User auditing still works after data dynamics happens. When
the user sends an audit query to the cloud, the challenged
data blocks are with indices in [1,max index]. Since we
know those indices that are invalid from del index array,
the proposed protocol can still work.

The idea for periodic emptying of the cache is that we can



embed new secret information in the outsourced data using
another independent secret key for a pseudorandom function.
The user knows both secret keys for the pseudorandom func-
tions; thus, the user can send update messages to modify the
embedded secret information. Details are as follows: Suppose
when the cache is full, the cloud has n data blocks and they are
(dj , sj = gr·dj+FK1

(ij) mod p) where ij ∈ [1,max index]
and j = 1, . . . , n. We have max index is much larger than
n and the indices ij’s could not be consecutive. However,
the user indeed knows the detailed indices for all data blocks
since the user keeps all the state information locally. In order
to reset all the indices for the data in the cloud from 1 to
n, the user can choose a new secret key K3 for the pseu-
dorandom function and then change each secret information
from sj = gr·dj+FK1

(ij) mod p to sj = gr·dj+FK3
(j) mod p

for j = 1, . . . , n. This is achieved by sending a reset
message gFK3

(j)−FK1
(ij) for j = 1, . . . , n to cloud. The

cloud can obtain the new embedded secret information using
sj = gr·dj+FK1

(ij) and gFK3
(j)−FK1

(ij) by multiplying them
together. The security proof still holds in this case since the
cloud doesn’t get new information due to the pseudorandom-
ness of gFK3

(j)−FK1
(ij). In this way, the cache is emptied and

the state current index,max index, del index array can
return to the initial values.

Our technique advances the design of secure cloud storage
protocols that can support data dynamics for untrusted clouds.
To the best knowledge of the authors, three techniques sup-
porting data dynamics have been employed in the community
for secure cloud storage [4]–[6]. However, a challenge still
remains, i.e., how to support data dynamics in a scalable and
efficient way in front of a malicious cloud. The technique in
[4] avoids the use of an index to identify a data block when
supporting data dynamics assuming a semi-honest cloud. The
technique in [5] requires the user to store a cache with size
Ω(n) where n is the size of the total number of data blocks.
The technique in [6] instead requires the cloud to store a cache
with size Ω(n); the cache is later emptied periodically. Further,
[6] requires the user to download authentication information of
the updated data blocks and verify the correctness of the data
updates by the cloud. We solve the scalable data dynamics
challenge partially using a constant size cache in the user side
and a special technique. Compared with [6], the computation
cost of data updates in our approach is much lower both for
the user and the cloud by trading off some communication
cost.

VI. SECURE CLOUD STORAGE FROM VERIFIABLE
COMPUTATION

In this section, we propose a detailed framework to design
secure cloud storage protocols in a systematic way based
on any verifiable computation protocol, which is inspired by
reconciling our protocol proposed in this paper. We find that
the core of our protocol is the ability to compute inner products
verifiably, which turns to be a special case of a much broader
area, i.e., verifiable computation. The areas of the secure cloud
storage [1], [2], [4], [5] and verifiable computation [10], [15]

are currently being developed independently. We hope our
work here can make both areas benefit from each other. One
advantage of our systematic design is we automatically have
many secure cloud storage protocols based on previous work
on verifiable computation. In contrast, the previous ad-hoc
approaches designing secure cloud storage protocols [1], [2],
[4], [5] are more time-consuming and require good intuitions.
Another advantage of the systematic design is that we can
have a better and more in-depth understanding of the secure
cloud storage problem. Furthermore, many previous secure
cloud storage protocols can be modeled using the proposed
framework.

A verifiable computation protocol VC = (KeyGen, Prob-
Gen, Compute, Verify) contains a computationally weak user
and a powerful worker and runs as follows:

• KeyGen(1λ, f) → (PK,SK): On input a security level
λ and the function f to be computed, the user generates
a public key PK and a secret key SK. The public key,
which is given to the worker, contains the information
about the function to be outsourced and the secret key is
only known by the user.

• ProbGen(x;SK)→ x′: On input a point x on which the
user wants to evaluate f , the user generates an input x′

using the secret key SK.
• Compute(PK, x′)→ Γ: On input the processed input x′,

the worker computes f on x′ and outputs a value y′ and
a proof σy . The value y′ contains the information about
f(x) which is wanted by the user. The worker returns
Γ = (y′, σy) to the user.

• Verify(x,Γ;SK) → {y,⊥}: On receiving the computa-
tion result Γ = (y′, σy), the user finds the value y = f(x)
through y′. Then, the user verifies whether this value y
is correct using x, y, σy, SK. If it is indeed correct, the
user outputs y; else outputs ⊥ denoting that the answer
is not accepted.

We now show how to design a secure cloud storage protocol
SCS = (KeyGen, Outsource, Audit, Prove, Verify) from any
verifiable computation protocol VC = (KeyGen, ProbGen,
Compute, Verify). First, the user determines a function using
the data blocks to be outsourced. Later, the user asks the
cloud to compute some output of the determined function
in a verifiable way using a verifiable computation protocol.
The function is chosen in a way that the data blocks can be
reconstructed from the many outputs of the function on many
inputs. For example, the function could be an inner product
function as our protocol in Section III. The detailed design, in
parallel to our proposed protocol, is thus as follows:

• KeyGen(1λ, D) → K: On input a security level
λ, the user divides the data to be outsourced
into blocks (d1, . . . , dn) and determines a func-
tion fd1,...,dn(·) on these blocks. The user invokes
VC.KeyGen(1λ, fd1,...,dn) to generate (PK,SK). The
user keeps SK as the secret key and K = SK.

• Outsource(D;K) → D′: On input the data D to be
outsourced, the user gives D′ = PK to the cloud. The



TABLE III
WIKIPEDIA DATA SET AND STORAGE COST

Benchmark File Size Randomized Deterministic
#1 2.27KB 3.35KB 3.35KB
#2 1.45MB 2.0MB 2.0MB
#3 23.5MB 32.7MB 32.7MB
#4 121MB 162.7MB 162.8MB

value PK is generated in the key generation algorithm
and it contains the information about all data blocks as
in fd1,...,dn .

• Audit(K) → χ: To audit the availability and in-
tegrity of the outsourced data, the user first generates
an input x in the domain of fd1,...,dn , then invokes
VC.ProbGen(x;SK) to generate a processed value x′.
The user sends χ = x′ as the audit query. The user also
keeps x locally as a part of the secret key K. The value
of x determines whether the auditing is deterministic or
randomized.

• Prove(D′, χ) → Γ: On input an audit query, the cloud
invokes VC.Compute(PK, x′) to compute Γ = (y′, σy)
for the value fd1,...,dn(·) on input x′, where D′ = PK
and χ = x′. The cloud returns Γ.

• Verify(χ,Γ;K) → {0.1}: On receiving a proof Γ =
(y′, σy), the user invokes VC.Verify(x,Γ;SK) to check
whether the returned result is correct. If yes, the user
accepts the proof and the outsourced data remains intact;
else reject the returned result and report the damage of
the outsourced data.

VII. EXPERIMENTAL EVALUATION

Methodology. We prototype the proposed both the deter-
ministic and randomized protocols in Section III to evaluate
its performance. The user side and the cloud side are both
implemented using Java 1.7. We focus on the storage, com-
putation and communication cost of the proposed protocol for
performance evaluation. For each performance indicator, we
carry out the experiment for 20 times and then average the
results to get a stable performance result. We employ a public
data set [16] as in Table III for performance evaluation. We
also open-source our prototype for potential follow-up works
[17].

Results. We employ four test cases [16] using
data ’*-oldimage.sql.gz’, ’*-pages-articles-multistream-
index.txt.bz2’, ’*-stub-meta-current.xml.gz’, and ’*-pages-
meta-current.xml.bz2’ respectively, where ’*’ denotes
’simplewiki-20130608’. The bit length of the big-integer
arithmetic is set to be 1024 and the challenge length is set to
be 10. The experimental results are detailed as follows.

Storage Cost. For both the randomized protocol and the
deterministic protocol, the storage cost is shown as in Table
III. The cost is roughly the same for both randomized and
deterministic protocols. The maximal difference is 33232 bytes
for test case 4, which is 0.026% of the size of the outsourced
data. This is as expected since the two protocols only differ
in the way how the data is audited.

TABLE IV
COMPUTATION COST FOR RANDOMIZED AUDITING IN MILLISECONDS

Benchmark KeyGen Outsource Audit Prove Verify
#1 2108 331 0.05 170 17.6
#2 331 211679 0.12 178 18.1
#3 842 3516962 0.08 191 20.3
#4 297 17038286 5.97 168 17.0

TABLE V
COMPUTATION COST FOR DETERMINISTIC AUDITING IN MILLISECONDS

Benchmark KeyGen Outsource Audit Prove Verify
#1 1628.6 330 0.05 1106 1484
#2 395.6 210833 0.07 202864 2300
#3 1507 3653035 1.00 3542552 11139
#4 478 17285442 0.08 16964576 56586

Communication Cost. For the randomized protocol, the
communication consists of two parts: one is the indices and
coefficients of the challenged data blocks; the other is the
proof returned from the cloud. The former depends on the
challenge length, which is 10 in the experiments; the latter is
just two big integers. The total cost is roughly 2000bytes. For
the deterministic protocol, it is much smaller: the size of the
audit query is just a key for the pseudorandom function and
the size of the proof is just two big integers. The total cost is
about 400bytes in the experiments.

Computation Cost. Tables IV and V contain the detailed
computation cost for the randomized protocol and the deter-
ministic protocol. For key generation, the computation cost
is very small. The maximal time is 2.1 seconds and the
average cost is smaller than 1 second. For outsourcing, it
takes considerable computation cost; however, this is a one-
time cost and it can be amortized in the following audit and
proof interactions. For auditing, the time is quite small. The
computation cost for the cloud answering a query is quite
different for the randomized and deterministic protocols. For
the former, the time cost only depends on the length of the
audit query. The maximal time cost is 0.2 seconds, which is
very small. For the deterministic protocol, the time cost is
very large. It is roughly the same time as that of outsourcing,
which is as expected since all the data in the cloud needs to be
processed as in the theoretical analysis. The same observation
also holds for the verification process. The verification time
is also very small for both the randomized protocol and the
deterministic protocol.

It is worth noting that the most frequent operations are
SCS.Audit, SCS.Prove and SCS.Verify for data auditing.
These operations cost very small time as proved in Tables IV
and V. Therefore, the experimental results suggest that the
proposed protocol is effective in practice.

VIII. RELATED WORK

This section reviews the most relevant work. Juels et al. [1]
and Ateniese et al. [2] first proposed the secure cloud storage
problem for a malicious cloud. These two initial attempts
however cannot support data dynamics. Shacham et al. also



proposed two protocols based on MACs and bilinear parings
[14]. Xu et al. [3] also improved these protocols by suggesting
to use polynomial computations. The data dynamics is also not
well solved. Wang et al. and Yang et al. [4], [5] also employed
bilinear maps to audit cloud storage. Wang. et al. also reviewed
several cloud storage auditing protocols in [18]. Wang et al.
[19] proposed a protocol to support fast user revocation. Chen
et al. [7] found a general design of secure cloud storage
protocols based on secure network coding protocols. Shi et
al. [6], [13], [20] showed how to support data dynamics using
skip lists, B+ trees, etc. Researchers also extend single cloud
storage auditing to multiple cloud auditing to further ensure
data availability [21]–[23].

It is worth noting that Benabbas et al. [24] studied spe-
cial verifiable polynomial computation delegation protocols.
Indeed, such a protocol can be applied to cloud storage
auditing. While this protocol is pretty beautiful in theory, the
resulting cloud storage auditing protocol is not useful at all
and is rather inefficient, mainly because only deterministic
auditing is supported and too many big-integer operations are
required. Besides, data dynamics is also not supported while
this property is highly expected by cloud storage users, and the
security foundation highly depends on the DDH assumption.

Compared with previous work, the proposed protocol in this
paper supports data dynamics, and furthermore is efficient,
provably secure, and especially pretty simple both concep-
tually and technically. More importantly, our protocol shows
the connection between cloud storage auditing and distributed
string equality checking; our protocol also gives insights on
designing cloud storage auditing protocols systematically from
any verifiable computation protocols.

IX. CONCLUSION

In this paper, we propose an efficient protocol for verifying
the integrity and availability of outsourced data on a cloud. The
proposed protocol is designed from a classic protocol checking
whether two strings are equal in distributed computing. Com-
pared with previous protocols, the proposed protocol is simple
both technically and conceptually with no heavy cryptography
required. The proposed protocol employs a new technique
to support data dynamics, including adding, deleting and
modifying data. Further, we generalize the idea of the proposed
protocol. As a result, we propose a general framework to
design a secure cloud storage protocol systemically from
a verifiable computation protocol. We thus can have many
secure cloud storage protocols automatically. Experimental
results validate the effectiveness of the proposed protocol.
The connections of distributed string equality checking, secure
cloud storage, and verifiable computation are very interesting
and may find more applications in other problems related to
cloud storage. To design secure cloud storage protocols based
on such connections is a very interesting future work.

ACKNOWLEDGEMENT

The authors are thankful to the reviewers for their insightful
comments. Tao Xiang’s research was partially supported by

the Natural Science Foundation Project of CQ CSTC (No.
cstc2013jcyjA40001) and the Fundamental Research Funds
for the Central Universities (No. CDJZR13185501); Yuanyuan
Yang’s research was partially supported by the National Nat-
ural Science Foundation of China (No. 61373178); Cong
Wang’s research was partially supported by Research Grants
Council of Hong Kong (Project no. CityU 138513); and
Shengyu Zhang’s research was partially supported by Re-
search Grants Council of the Hong Kong S.A.R. (Project no.
CUHK419413).

REFERENCES

[1] A. Juels and B. Kaliski Jr, “Pors: Proofs of retrievability for large files,”
in Proc. of ACM CCS, 2007.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc. of
ACM CCS, 2007.

[3] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in
Proc. of ACM ASIACCS, 2012.

[4] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Transactions
on Computers, vol. 62, no. 2, pp. 362–375, 2013.

[5] K. Yang and X. Jia, “An efficient and secure dynamic auditing protocol
for data storage in cloud computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 9, pp. 1717–1726, 2013.

[6] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of
retrievability,” in Proc. of ACM CCS, 2013.

[7] F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, “Secure cloud storage
meets with secure network coding,” in Proc. of IEEE INFOCOM, 2014.

[8] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting (preliminary report),” in Proc. of ACM STOC, 1979.

[9] Wikipedia, “Communication complexity,” http://en.wikipedia.org/wiki/
Communication complexity, 2014.

[10] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” Proc. of
CRYPTO, pp. 465–482, 2010.

[11] O. Goldreich, “Foundation of cryptography (in two volumes: Basic tools
and basic applications),” 2001.

[12] R. Cramer and V. Shoup, “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack,” in Proc. of CRYPTO.
Springer, 1998, pp. 13–25.

[13] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of ACM CCS, 2009.

[14] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc.
of ASIACRYPT, 2008, pp. 90–107.

[15] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Proc. of IEEE S&P, 2013.

[16] Wikipedia, “Wikipedia dump service,” http://dumps.wikimedia.org/
simplewiki/20130608/, 2013.

[17] F. Chen, “Source code,” https://sites.google.com/site/chenfeiorange/
secure-cloud-storage-hits-distributed-string-equality-checking, 2014.

[18] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable secure
cloud data storage services,” IEEE Network Magazine, vol. 24, no. 4,
pp. 19–24, 2010.

[19] B. Wang, B. Li, and H. Li, “Public auditing for shared data with efficient
user revocation in the cloud,” in Proc. of IEEE INFOCOM, 2013.

[20] Z. Mo, Y. Zhou, and S. Chen, “A dynamic Proof of Retrievability (PoR)
scheme with O(logn) complexity,” in Proc. of IEEE ICC, 2012.

[21] T. Schwarz and E. Miller, “Store, forget, and check: Using algebraic
signatures to check remotely administered storage,” in Proc. of IEEE
ICDCS, 2006.

[22] K. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability and
integrity layer for cloud storage,” in Proc. of ACM CCS, 2009.

[23] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and
dependable storage services in cloud computing,” IEEE Transactions On
Services Computing, vol. 5, no. 2, pp. 220–232, 2012.

[24] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” Proc. of CRYPTO, pp. 111–131, 2011.


