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Abstract
We propose the contextual combinatorial cas-
cading bandits, a combinatorial online learning
game, where at each time step a learning agent is
given a set of contextual information, then selects
a list of items, and observes stochastic outcomes
of a prefix in the selected items by some stop-
ping criterion. In online recommendation, the
stopping criterion might be the first item a us-
er selects; in network routing, the stopping cri-
terion might be the first edge blocked in a path.
We consider position discounts in the list order,
so that the agent’s reward is discounted depend-
ing on the position where the stopping criterion is
met. We design a UCB-type algorithm, C3-UCB,
for this problem, prove an n-step regret bound
Õ(
√
n) in the general setting, and give finer anal-

ysis for two special cases. Our work generalizes
existing studies in several directions, including
contextual information, position discounts, and a
more general cascading bandit model. Experi-
ments on synthetic and real datasets demonstrate
the advantage of involving contextual informa-
tion and position discounts.

1. Introduction
Multi-armed bandit (MAB) has been extensively studied
in statistics and machine learning. The problem is usual-
ly formulated as a system of K base arms whose rewards
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are random samples from unknown distributions with un-
known means. The learning agent pulls one arm every time
and tries to minimize the cumulative regret, which is the
difference in cumulative rewards between always pulling
the best arm in expectation and playing according to the a-
gent’s strategy. The problem of MAB has to deal with the
trade-off between exploitation (pulling the best empirical
arm) and exploration (trying other arms which are not suf-
ficiently pulled).

Recently, stochastic combinatorial bandit started to draw
much attention (Gai et al., 2012; Chen et al., 2013; Lin
et al., 2014; Gopalan et al., 2014; Chen et al., 2014; Kve-
ton et al., 2014; 2015b;a;c; Lin et al., 2015; Combes et al.,
2015b). At every time step, a learning agent chooses a sub-
set of ground items (super arm) under certain combinato-
rial constraints. There are several different kinds of feed-
back: (1) bandit feedback, where the learning agent can
only obtain the reward of the chosen super arm; (2) semi-
bandit feedback, where the learning agent can also obtain
the stochastic outcomes of the all base arms constituting
the chosen super arm; (3) cascading feedback, where the
learning agent can obtain the reward of the chosen super
arm and the weights of some base arms in the chosen super
arm, according to some problem-specific stopping criterion
for observation.

Cascading feedback model fits into many real application
scenarios. For example, in online or mobile recommenda-
tion, it is a typical practice that an ordered list (instead of
a single item) is recommended to a user, who usually goes
over the list based on the recommended order and selects
one of her interest to click through. Thus it is reasonable to
assume that items before the clicked item is of no interest
to the user while user’s interest to items after the clicked
item is unclear. Another example is in networking routing,
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where the agent needs to select a routing path that is least
likely of being blocked. To determine whether a path is
blocked, the agent checks from the source node until meet-
ing a blocked edge. The edges before the blocked one are
unblocked and the edges after the blocked one are unob-
served. In both of the above applications, we observe the
feedbacks of a prefix of items in the chosen ordered list.
The bandit problem with such cascading feedback has been
studied in recent papers (Kveton et al., 2015a;c). In this pa-
per, we generalize their work in several directions to cover
more realistic scenarios.

First, we incorporate contextual information into cascading
bandits. In online recommendation, contextual information
includes various user and item information, and user behav-
iors in different contexts are different. Therefore utilizing
contextual information is crucial for personalized recom-
mendation. In network routing, temporal and spatial con-
textual information may also be useful to determine better
routing paths. Therefore, we incorporate contextual infor-
mation into the cascading bandit formulation. Second, cas-
cading bandits studied in (Kveton et al., 2015a;c) treats all
positions in the cascading list equally, but in applications
different positions may bring different rewards. For exam-
ple, in online recommendation, we usually prefer users to
find their interested item in the list as early as possible to
increase user satisfaction. In network routing, we may pre-
fer to hit a blocked edge as late as possible. To model these
preferences, we introduce position discounts to the cascad-
ing bandit, and we show through experiments that incor-
porating position discounts may significantly improve the
learning result. Finally, we generalize the reward functions
of (Kveton et al., 2015a;c), which are based on disjunctive
and conjunctive binary random variables, to more gener-
al non-linear reward functions satisfying monotonicity and
Lipschitz continuity conditions. This generalization allows
us to cover new realistic scenarios not covered in (Kveton
et al., 2015a;c), as exhibited in Section 4.3.

The organization of this paper is as follows: Section 2 com-
pares our work to previous work; Section 3 presents the
formulation of contextual combinatorial cascading bandits
with general reward functions and position discounts; Sec-
tion 4 gives our algorithm and main results both on general
reward functions and two special reward functions; Sec-
tion 5 demonstrates the experimental results; and Section 6
gives a final conclusion.

2. Related Work
We first discuss several studies most relevant to our work.
Table 1 summarizes the different settings of these work,
which we will explain in details next. A comparison of
regret bounds by different methods is deferred to Section
4.3, after we provide full results of our regret bounds.

context cascading position general
discount reward

CUCB no yes no yes
C2UCB yes no no yes
Comb-

Cascade no yes no no
C3-UCB

(ours) yes yes yes yes

Table 1. Comparisons of our setting with previous ones

Kveton et al. (2015a) introduced the cascading model to
the multi-armed bandit framework with disjunctive objec-
tive, where the set of feasible actions form a uniform ma-
troid, and the reward of an action is 1 if there is at least
one “good” item in the list. The combinatorial cascading
bandits of (Kveton et al., 2015c) (referred to as ‘CombCas-
cade’ in Table 1) generalized the framework, allowing each
feasible action to be a subset of ground items under combi-
natorial constraints. It studied a problem of combinatorial
bandits with conjunctive objective, where each feasible ac-
tion is a chain of items, and reward is 1 if all items are
“good”. Our work generalizes these models and involves
both contextual information and position discounts.

The experiments of (Kveton et al., 2015a) found that rec-
ommending items in increasing order of their UCBs (mean-
ing the items with lower preference come early) has a better
performance than in decreasing order of their UCBs. This
unnatural result is perhaps because the order of items does
not affect the reward and thus putting low preference item-
s first and high preference items in the back may result in
more feedbacks in the cascade. The position discounts in-
troduced in this paper makes the recommended set in the
decreasing order of UCBs, which is more realistic. Combes
et al. (2015a) considered a similar cascading model to that
of (Kveton et al., 2015a) with a particular case of contextu-
al information, where a user is recommended with K items
selected from a user-related group. Under this particular
setting, they considered position discounts. In our setting,
users and items are represented by general feature vectors.

Our work considers contextual combinatorial bandits with
cascading feedback and nonlinear reward. The paper (Li
et al., 2010) studied multi-armed bandit with contextual in-
formation, which recommends one item a time. A recent
work (Qin et al., 2014) (referred to as ‘C2UCB’ in Table
1) introduced contextual combinatorial bandit with semi-
bandit feedback and nonlinear reward. Their feedback is
more informative than ours. We relax the feedback from
semi-bandit to cascading, yet our algorithm achieves the
same order of regret bound.

There have been several pieces of work on partial monitor-
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ing MAB, but the results are not applicable to our setting.
The papers of (Agrawal et al., 1989; Bartók et al., 2012) s-
tudied partial monitoring problems but their algorithms are
inefficient in our setting. Lin et al. (2014) studied combi-
natorial partial monitoring problem and their feedback is
a fixed (with respect to the chosen action) combination of
weights. In our setting, if the chosen action is fixed, the
number of observed items varies with the user’s behavior,
thus the combination constituting feedback is not fixed.

Chen et al. (2016) considered general reward functions and
probabilistic triggering of base arms in the stochastic com-
binatorial semi-bandit model (referred to as ‘CUCB’ in Ta-
ble 1). Cascading bandits can be viewed as one type of
probabilistic triggering, where the head of the list is deter-
ministically triggered and all the remaining items are prob-
abilistically triggered. However, their work does not con-
sider contextual information, and it is also difficult to in-
corporate position discounts in a general triggering model.

3. Problem Formulation
We formulate the problem of contextual combinatorial cas-
cading bandits as follows. Suppose we have a finite set
E = {1, ..., L} of L ground items, also referred to as base
arms. Let Πk = {(a1, ..., ak) : a1, ..., ak ∈ E, ai 6=
aj for any i 6= j} be the set of all k-tuples of distinct items
from E; we call each of such tuples an action of length k.
We will use |A| to denote the length of an action A. Let
Π≤K = ∪Kk=1Πk denote the set of all actions with length
at most K, and let S ⊆ Π≤K be the set of feasible ac-
tions with length at most K. As a convention, we always
use boldface symbols to represent random variables, and
denote [m] = {1, . . . ,m}.

At time t, feature vectors xt,a ∈ Rd×1 with ‖xt,a‖2 ≤ 1
for every base arm a ∈ E are revealed to the learning a-
gent. Each feature vector combines the information of the
user and the corresponding base arm. For example, sup-
pose the user at time t is characterized by a feature vector
ut and the base arm a has a feature vector va, then we can
use xt,a = utv

>
a , the outer-product of ut and va, as the

combined feature vector of base arm a at time t. (See Sec-
tion 5.2 for an application.) Denote xt = (xt,a)a∈E as all
contextual information at time t. Then the learning agent
recommends a feasible action At = (at1, ...,a

t
|At|) ∈ S to

the user. In the cascading feedback models, the user checks
from the first item of recommended action and stops at the
Ot-th item under some stopping criterion. For example,
in recommender systems, the stopping criterion might be
that the user finds the first attractive item. Then the learn-
ing agent observes the weights of firstOt base arms inAt,
denoted by wt(a

t
k), k ≤ Ot.

LetHt denote the history before the learning agent chooses

action at time t. Thus Ht contains feedback information at
all time s < t, as well as contextual information at time t.
Each arm a has a weight wt(a), representing the “quality”
to the user at time t. Given history Ht, we assume that
wt(a)’s are mutually independent random variables with
expectation

E[wt(a)|Ht] = θ>∗ xt,a, (1)

where θ∗ is an unknown d-dimensional vector with the as-
sumption that ‖θ∗‖2 ≤ 1 and 0 ≤ θ>∗ xt,a ≤ 1 for all t, a.
Denote by

wt,a = θ>∗ xt,a

the expected weight of base arm a at time t. We assume
that each wt(a) is a random variable with R-sub-Gaussian
tail, which means that for all b ∈ R,

E[exp(b(wt(a)− θ>∗ xt,a))|Ht] ≤ exp(b2R2/2).

Recall that the random variable Ot is the number of ob-
served base arms in At and at time t, the agent observes
the first Ot items of At. We say that item a is ob-
served if a = atk for some k ≤ Ot. Thus, Ht consists
of {xs,As = (as1, ...,a

s
|As|),Os,ws(a

s
k)}k≤Os,s<t and

{xt}.

We introduce position discounts γk ∈ [0, 1], k ≤ K. For
example in website recommendations by a search engine,
if the user selects the first website, the learning agent will
receive reward 1; and if the user selects the k-th website,
the learning agent will receive a discounted reward γk.

The reward function on round t is an application dependent
function. We assume the expected reward of action A is a
function f(A,w) of expected weights w = (w(a))a∈E ∈
[0, 1]E (at time t, w = (wt,a)a∈E = (θ>∗ xt,a)a∈E) and
satisfies the following two assumptions.

Monotonicity The expected reward function f(A,w) is a
non-decreasing with respect to w: for any w,w′ ∈ [0, 1]E ,
if w(a) ≤ w′(a), we have f(A,w) ≤ f(A,w′).

Lipschitz continuity The expected reward function
f(A,w) is B-Lipschitz continuous with respect to w to-
gether with position discount parameters γk, k ≤ K. More
specifically, for any w,w′ ∈ [0, 1]E , we have

|f(A,w)− f(A,w′)| ≤ B
|A|∑
k=1

γk|w(ak)− w′(ak)|,

where A = (a1, . . . , a|A|).

The assumption of Lipschitz continuity gives an estimate
of changes in the reward function. To obtain a good esti-
mation of the reward function, the position k with large γk
needs a good estimation ofw(ak). This means the position-
s with large γk are more important to the reward function.
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For example in website recommendations, the learning a-
gent will receive the highest reward if the user selects the
first item, so the first position is the most important.

Notice that we do not require the knowledge how f(A,w)
is defined. We only assume that the agent has access to an
oracle OS(w) that outputs recommended action A. More
precisely, an oracle OS(w) is called an α-approximation
oracle for some α ≤ 1, if on given input w, the oracle re-
turns an action A = OS(w) ∈ S satisfying f(A,w) ≥
αf(A∗, w) where A∗ = argmaxA∈Sf(A,w). In applica-
tions, the oracle OS(w) is often what the best offline al-
gorithm can achieve. For this reason, in the regret defined
next, we compare our online algorithm with what the best
offline algorithm can produce, i.e. αf∗t .

The α-regret of action A on time t is

Rα(t, A) = αf∗t − f(A,wt),

where f∗t = f(A∗t , wt), A∗t = argmaxA∈Sf(A,wt) and
wt = (θ>∗ xt,a)a∈E . Our goal is to minimize the α-regret

Rα(n) = E[

n∑
t=1

Rα(t,At)].

4. Algorithms and Results
4.1. Algorithm

Before presenting the algorithm, we explain the main ideas
in the design. By Eq.(1), at time s, we have

E[(γkws,as
k
)|Hs] = θ>∗ (γkxs,as

k
).

To estimate the expected reward, we first estimate θ∗,
which can be viewed as a ridge regression problem on sam-
ples x and labels w. In details, using the ridge regression
on data

{(γkxs,as
k
, γkws,as

k
)}k∈[Os],s∈[t],

we get an l2-regularized least-squares estimate of θ∗ with
regularization parameter λ > 0:

θ̂t = (X>t Xt + λI)−1X>t Y t, (2)

where Xt ∈ R(
∑t

s=1 Os)×d is the matrix whose rows are
γkx
>
s,as

k
and Y t is a column vector whose elements are

γkws(a
s
k), k ∈ [Os], s ∈ [t]. Let

V t = X>t Xt + λI = λI +

t∑
s=1

Os∑
k=1

γ2kxs,as
k
x>s,as

k
.

Then V t ∈ Rd×d is a symmetric positive definite matrix.
For any symmetric positive definite matrix V ∈ Rd×d and
any vector x ∈ Rd×1, we define the 2-norm of x based
on V to be ‖x‖V = (x>V x)

1
2 . Next we obtain a good

estimate of the difference between θ̂t and θ∗ by Theorem 2
in (Abbasi-Yadkori et al., 2011), restated as follows.

Lemma 4.1 (Abbasi-Yadkori et al., 2011) Let

βt(δ) = R

√
ln

(
det(V t)

λdδ2

)
+
√
λ. (3)

Then for any δ > 0, with probability at least 1 − δ, for all
t > 0, we have

‖θ̂t − θ∗‖V t
≤ βt(δ). (4)

Thus with high probability, the estimate θ̂ lies in the ellip-
soid centered at θ∗ with confidence radius βt(δ) under V t

norm. Building on this, we can define an upper confidence
bound of the expected weight for each base arm a by

U t(a) = min
{
θ̂>t−1xt,a + βt−1(δ)‖xt,a‖V −1

t−1
, 1
}
. (5)

The fact that U t(a) is an upper confidence bound of ex-
pected weight wt,a = θ>∗ xt,a is proved in the following
lemma.

Lemma 4.2 When Ineq.(4) holds for time t− 1, we have

0 ≤ U t(a)− wt,a ≤ 2βt−1(δ)‖xt,a‖V −1
t−1
.

Proof. Note wt,a = θ>∗ xt,a. By Hölder’s inequality,∣∣∣θ̂>t−1xt,a − θ>∗ xt,a∣∣∣ =
∣∣∣[V 1/2

t−1(θ̂t−1 − θ∗)]>(V
−1/2
t−1 xt,a)

∣∣∣
≤ ‖V 1/2

t−1(θ̂t−1 − θ∗)‖2‖V −1/2t−1 xt,a‖2
= ‖θ̂t−1 − θ∗‖V t−1

‖xt,a‖V −1
t−1

≤ βt−1(δ)‖xt,a‖V −1
t−1
.

Because 1− θ>∗ xt,a ≥ 0 and

0 ≤ (θ̂>t−1xt,a + βt−1(δ)‖xt,a‖V −1
t−1

)− θ>∗ xt,a

≤ 2βt−1(δ)‖xt,a‖V −1
t−1
,

the claimed result is obtained. �

Based on the above analysis, we design our algorithm
as follows. First, the learning agent computes the up-
per confidence bounds (UCBs) U t ∈ [0, 1]E for the ex-
pected weights of all base arms in E. Second, the a-
gent uses the computed UCBs, U t, to select an action
At = (at1, ...,a

t
|At|). Third, assume that the user check-

s from the first base arm inAt and stops after checking the
Ot-th base arm and the agents observes wt(a

t
k), k ≤ Ot.

Then, the learning agent updates V t,Xt,Y t in order to
get a newer estimate θ̂t of θ∗ and new confidence radius
βt(δ). Our proposed algorithm, C3-UCB, is described in
Algorithm 1. There we use the notation [A;B] to de-
note the matrix obtained by stacking A and B vertically

like
(
A
B

)
.
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Algorithm 1 C3-UCB
1: Parameters:
2: {γk ∈ [0, 1]}k≤K ; δ = 1√

n
;λ ≥ Cγ =

∑K
k=1 γ

2
k

3: Initialization:
4: θ̂0 = 0,β0(δ) = 1,V 0 = λI,X0 = ∅,Y 0 = ∅
5: for all t = 1, 2, . . . , n do
6: Obtain context xt,a for all a ∈ E
7: ∀a ∈ E, compute
8: U t(a) = min{θ̂>t−1xt,a + βt−1(δ)‖xt,a‖V −1

t−1
, 1}

9: //Choose actionAt using UCBs U t

10: At = (at1, ...,a
t
|At|)← OS(U t)

11: PlayAt and observeOt,wt(a
t
k), k ∈ [Ot]

12: //Update statistics
13: V t ← V t−1 +

∑Ot

k=1 γ
2
kxt,at

k
x>t,at

k

14: Xt ← [Xt−1; γ1x
>
t,at

1
; . . . ; γOtx

>
t,at

Ot

]

15: Y t ← [Y t−1; γ1wt(a
t
1); . . . ; γOt

wt(a
t
Ot

)]

16: θ̂t ← (X>t Xt + λI)−1X>t Y t

17: βt(δ)← R
√

ln(det(V t)/(λdδ2)) +
√
λ

18: end for t

4.2. Results

4.2.1. GENERAL RESULTS

To state our main theorem, we need some definitions.
Let pt,A be the probability of full observation of A, that
is, the probability of observing all base arms of A =
(a1, . . . , a|A|) at time t. Let p∗ = min1≤t≤T minA∈S pt,A
be the minimal probability that an action could have al-
l base arms observed over all time. The following is the
main theorem on the regret achieved by our C3-UCB algo-
rithm.

Theorem 4.3 Suppose the expected reward function
f(A,w) is a function of expected weights and satisfies the
requirements of monotonicity and B-Lipschitz continuity.
Then the α-regret of our algorithm, C3-UCB, satisfies

Rα(n) ≤ 2
√

2B

p∗

√
nKd ln(1 + Cγn/(λd))

·
(
R
√

ln [(1 + Cγn/(λd))dn] +
√
λ

)
+ α
√
n

= O

(
dBR

p∗

√
nK ln(Cγn)

)
, (6)

where R is the sub-Gaussian constant and Cγ =∑K
k=1 γ

2
k ≤ K.

The regret bound deteriorates as p∗ gets smaller. But unfor-
tunately, this reciprocal dependence on p∗ is not known to
be improvable, even in the special case of disjunctive ob-
jective. Indeed, in that case, the bound in Section 2.3 of
(Kveton et al., 2015c) also has a reciprocal dependence on

p∗. However, in the special case of conjunctive objective,
we will give an improved bound.

Proof. (sketch) Assume At = (at1, . . . ,a
t
|At|). We first

employ the monotonicity and B-Lipschitz continuity of f
to upper bound regret as follows.

Rα(t,At) ≤ 2B

|At|∑
k=1

βt−1(δ)γk‖xt,at
k
‖V −1

t−1
. (7)

As V t contains only information of observed base arms,
our UCB-type algorithm guarantees the sum of the firstOt

items in the right of Ineq. (7) to be small, with the leftover
sum (from Ot + 1 to |At|) out of control. We cope with
this by a reduction to the case thatOt = |At|.

E[Rα(t,At)|Ht]

=E
[
Rα(t,At)E

[
1

pt,At

1{Ot = |At|}
∣∣∣∣At

]∣∣∣∣Ht]
≤ 1

p∗
E [Rα(t,At)1{Ot = |At|}|Ht] . (8)

Combining (7) and (8) gives an upper bound of Rα(n) in
terms of

∑n
t=1

∑|Ot|
k=1 γk‖xt,at

k
‖V −1

t−1
. The next lemma up-

per bounds this sum of norms, squared.

Lemma 4.4 If λ ≥ Cγ , then for any time t,

t∑
s=1

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

≤ 2d ln (1 + Cγt/(λd)) .

The claimed result follows from Cauchy-Schwartz inequal-
ity. See Appendix for a complete proof. �

4.2.2. DISJUNCTIVE OBJECTIVE

In the problem of cascading recommendation, when recom-
mended with an ordered list of itemsAt = (at1, ...,a

t
|At|),

the user checks the list in that order. The checking process
stops if the user selects one item or has checked all items
without selecting anyone. The weight of each base arm a
at time t, wt(a), is a {0, 1} value indicating whether the
user has selected item a or not. Then the random variable
Ot satisfies

Ot =

{
k, if wt(a

t
j) = 0,∀ j < k and wt(a

t
k) = 1,

|At| , if wt(a
t
j) = 0, ∀ j ≤ |At| .

If the user selects the k-th item, then the learning agent
receives a reward γk ∈ [0, 1]. Usually {γk} are decreasing
with k:

1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0.
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If the user does not select any item, the agent gets no
reward. At the end of time step t, the learning agen-
t observes Ot,wt(a

t
k), k ≤ Ot and receives a reward

rt = wt(a
t
Ot

)γOt
. It is not hard to see that rt =∨|At|

k=1 γkwt(a
t
k) is the disjunctive of discounted weights,

where we use the notation that
∨n
k=1 ak = max1≤k≤n ak.

Notice that the order of At affects both the feedback and
the reward.

Now let us define a function f : S × [0, 1]E → [0, 1] on
A = (a1, ..., a|A|) ∈ S, w = (w(1), ..., w(L)) by

f(A,w) =

|A|∑
k=1

γk

k−1∏
i=1

(1− w(ai))w(ak). (9)

It is easily verified that rt = f(At,wt) and that E[rt] =
f(At, θ

>
∗ xt) = f(At, wt). So f is the expected reward

function and also a function of expected weights. It can
be proved that f satisfies the properties of monotonicity
and 1-Lipschitz continuity. (All verifications are left in Ap-
pendix.) We thus have the following corollary.

Corollary 4.5 In the problem of cascading recommenda-
tion, the expected reward function is defined in Eq. (9),
where 1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0. Then the α-regret of
our algorithm, C3-UCB, satisfies

Rα(n) ≤ 2
√

2

p∗

√
nKd ln(1 + Cγn/(λd))

·
(√

d ln[(1 + Cγn/(λd))dn] +
√
λ

)
+ α
√
n

= O

(
d

p∗

√
nK ln(Cγn)

)
. (10)

4.2.3. CONJUNCTIVE OBJECTIVE

The above formulation is on the disjunctive objective, for
which the user stops once she finds a “good” item. Similar-
ly, we could also consider the case of conjunctive objective,
for which the user stops once she finds a “bad” item. In this
case, we derive a better result.

The Bernoulli random variable wt(a) ∈ {0, 1} indicates
the weight of item a at time t satisfying Eq. (1). The learn-
ing agent observes the first position k in the given action
At = (at1, . . . ,a

t
|At|) with wt(a

t
k) = 0. We also con-

sider partial rewards: if the k-th item is the first item with
weight 0, then the learning agent receives reward 1− γk; if
all items have weight 1, the agent receives reward 1.

The more items reveals, the more reward the agent should
receive. This can be used to model scenarios such as on-
line surveys, where questions are adaptively given, and the
more questions are observed, the more helpful it is to the
survey conductor. Based on this, we assume that

1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0.

At the end of time step t, the learning agent observes
Ot,wt(a

t
k),∀k ≤ Ot and receives a reward rt:

rt =

{
1− γk if wt(a

t
i) = 1,∀i < k, and wt(a

t
k) = 0,

1 if wt(a
t
i) = 1,∀i ≤ |At| .

If we define a function f : S × [0, 1]E → [0, 1] on A =
(a1, . . . , a|A|) ∈ S and w = (w(1), . . . , w(L)) by

f(A,w) =

|A|∑
k=1

(1−γk)

k−1∏
i=1

w(ai)(1−w(ak))+

|A|∏
i=1

w(ai),

(11)
then it is not hard to verify that rt = f(At,wt) and
E[rt] = f(At, wt) = f(At, θ

>
∗ xt). Next is our result for

the conjunctive objective, where the bound in Theorem 4.3
is improved with p∗ replaced by αf∗, where f∗ = mint f

∗
t

with f∗t = maxA∈S f(A,wt). In network routing problem,
the p∗ is related with the bad paths, which can make the
probability of observing the whole path very small, and f∗

is related with good paths, which makes f∗ usually large.

Theorem 4.6 Suppose 1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 1 −
α
4 f
∗. Then the α-regret of our algorithm, C3-UCB, for the

conjunctive objective satisfies

Rα(n) ≤
√

128

αf∗

√
nKd ln(1 + Cγn/(λd))

·
(√

d ln[(1 + Cγn/(λd)dn] +
√
λ

)
+ α
√
n

=O

(
d

αf∗

√
nK ln(Cγn)

)
. (12)

Proof. (Sketch) First, we prove the expected reward func-
tion satisfies the properties of monotonicity and Lipschitz
continuity. Then we use the following lemma to replaceAt

with a prefix ofAt.

Lemma 4.7 Suppose 1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0.
Let A = (a1, ..., a|A|). For the time t and the conjunctive
objective, there exists a prefix B of A such that

pt,B ≥
α

2
f∗t − 1 + γ|B|, Rα(t, B) ≥ 1

2
Rα(t, A).

Therefore we can get

E[Rα(t,At)|Ht]

≤ 8

αf∗
E

[
βt−1(δ)

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

∣∣∣∣∣Ht
]
.

Then similar to the proof of Theorem 4.3 and by the Lem-
ma 4.4, we can prove this theorem. �
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4.3. Discussions

In the above, we formulate the general setting of contextu-
al combinatorial cascading bandit with position discounts.
This setting generalizes several existing results.

The combinatorial cascading bandit (Kveton et al., 2015c)
has a setting similar to ours in Section 4.2.3, but theirs has
no contextual information or position discounts (i.e. al-
l γk = 1). So our setting in Section 4.2.3 with regret
bound O

(
d
f∗

√
nK ln(n)

)
, which has an additional term√

d ln(n)
f∗ compared to their result. The loss is because we

use the technique of linear bandits, (Abbasi-Yadkori et al.,
2011), to handle the contextual information for a confi-
dence ellipsoid of θ∗. The regret bound of linear bandits
has an additional term ofO(

√
d ln(n)) than the standard s-

tochastic MAB bound O(
√
nd ln(n)). A similar compari-

son can be made for the disjunctive objective in our Section
4.2.2 and in Section 2.3 of (Kveton et al., 2015c).

We can also compare to the work (Qin et al., 2014), where
there are no triggering and no position discounts, and all
base arms in actionAt can be observed. So in their setting,
our random variableOt becomes a deterministic value |At|
and the probability, pt,At

, is 1. Thus p∗ = 1. Also all posi-
tion discounts γk = 1. Then our regret bound of Theorem
4.3 is of the same order with theirs. Notice that the Lips-
chitz bound C in their setting is

√
K.

Our algorithm also applies to the setting of (Chen et al.,
2013) by allowing contextual information. Note the prob-
ability p∗ in our results should be the probability that all
base arms in S̃ (in their notation) will be triggered.

Our setting generalizes several existing works on cascad-
ing feedback, and actually covers more cases. Consider
in network routing problem, edges have latency following
exponential distribution. The observed latency follows cut-
off exponential distribution(we will not wait edges to re-
act for arbitrary long time) with mean θ>∗ x. Suppose we
treat an edge as blocked if its latency is larger than some
tolerance τ . The edge has reward 1 if it is unblocked; oth-
erwise, the reward is 0. Then the expected reward of an
edge is a function of θ>∗ x, instead of θ>∗ x in the conjunc-
tive case. A path has reward 1 only when all its edges have
rewards 1. Then it can be proved that the resulting expected
reward function, which cannot be represented in conjunc-
tive/disjunctive objectives as in (Kveton et al., 2015a;c), is
monotone and satisfies Lipschitz continuity. Details can be
found in Appendix.

For the p∗ in the result of Theorem 4.3, in our understand-
ing, it is always tied to the reward function. In general,
if the probability of observing a base arm i is very smal-
l causing 1/p∗ large while observing i is not tied to the
reward function, we can ignore arm i so that it does not af-
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(a) Disjunctive, γ = 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time t

0

50

100

150

200

250

300

350

400

450

500

R
e
g
r
e
t

Synthetic Data

C3-UCB
CombCascade

(b) Disjunctive, γ = 0.9
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(c) Conjunctive, γ = 1
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Figure 1. Synthetic Data Set, L = 200, K = 4, d = 20

fect p∗. In the other extreme, when observing arm i indeed
could make a difference in the optimal action selection, one
has to observe arm i, no matter how small its observation
probability, which means in this case a regret with 1/p∗ is
reasonable. In other cases when p∗ is tied with the reward
function but not the optimal reward, one may add some
condition similar to the one in Lemma 4.7 to detach p∗ from
the regret.

In addition, the assumption of monotonici-
ty (together with the offline oracle assumption)
can be removed if the problem can easily find
At = argmaxA,w{f(A,w)|A,w in confidence ellipsoid}.

5. Experiments
We evaluate our algorithm, C3-UCB, in a synthetic setting
and two real applications. The results are compared with
CombCascade, the study most related to ours, and demon-
strate the advantage to involve contextual information and
position discounts. In experiments, we set the position dis-
counts γk to be γk−1 for some γ.

5.1. Synthetic Data

In the first experiment, we compare C3-UCB to CombCas-
cade on synthetic problems. The problem is a contextual
cascading bandit with L = 200 items and K = 4, where
at each time t the agent recommends K items to the user.
At first, we randomly choose a θ ∈ Rd−1 with ‖θ‖2 = 1
and let θ∗ = ( θ2 ,

1
2 ). Then at each time t, we random-

ly assign x′t,a ∈ Rd−1 with ‖x′t,a‖2 = 1 to arm a and
use xt,a = (x′t,a, 1) to be the contextual information for
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Figure 2. Rewards on MovieLens, L = 400, K = 4, d = 400

arm a. This processing will guarantee the inner product
θ>∗ xt,a = 1

2 (θ>x′t,a + 1) ∈ [0, 1]. Next we generate the
weight for arm a at time t by a random sample from the
Bernoulli distribution with mean θ>∗ xt,a.

We conduct experiments in four settings. Under each set-
ting, the learning agent chooses a set of K items out of
L ground items. The first two are of disjunctive objective
where the learning agent observes a prefix of the chosen
K items until the first one with weight 1; the last two are
of conjunctive objective where the learning agent observes
from the first item until the first one with weight 0. No-
tice that with γ ≤ 1, the oracle selects a set of K items
with highest UCBs in their decreasing order. The regrets
are shown in Fig. 1 and our algorithm outperforms Com-
bCascade algorithm because they do not make use of the
contextual information.

5.2. Movie Recommendation

In this experiment, we evaluate C3-UCB on movie rec-
ommendation with data set MovieLens (Lam & Herlocker,
2015) of 2015.

The learning problem is formulated as follows. There is
a big sparse matrix A ∈ {0, 1}N1×N2 where A(i, j) = 1
denotes user i has watched movie j. Next, we split A as
H + F by putting 1-entry in A to H or F according to
a Bernoulli distribution ∼ Ber(p) for some fixed p. We
regard H as known information about history “what users
have watched” and regard F as future criterion. We use H
to derive feature vectors of both users and movies by SVD
decomposition, H = USM> where U = (u1; ...;uN1)
and M = (m1; ...;mN2

). At every time t, we randomly
choose a user It ∈ [N1]. Then in the same spirit of (Li
et al., 2010), we use xt,j = uItm

>
j , the outer product of

uIt andmj , as the contextual information for each movie j.
The real weight of movie j at time t, wt(j), is F (It,mj).

For this experiment, we randomly choose L = 400 movies
and recommend K = 4 movies at each time. We experi-
ment with both γ = 1 (no position discount) and γ = 0.9,
and compare our algorithm with CombCascade. The re-
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Figure 3. Network, d = 5

sults are shown in Fig.2. The rewards of our algorithms are
3.52 and 3.736 times of those of CombCascade (for γ = 1
and 0.9, respectively), which demonstrate the advantage to
involve contextual information in real applications.

5.3. Network Routing Problem

In this experiment, we evaluate C3-UCB on network rout-
ing problem with RocketFuel dataset (Spring et al., 2004).

The ground set E is the set of links in the network. Be-
fore learning, the environment randomly chooses a d-
dimensional vector θ∗ ∈ [0, 1]d. At each time t, a pair
of source and destination nodes are randomly chosen and
the feasible action set St at time t contains all simple path-
s, paths without cycles, between the source and destina-
tion. Any edge a in the set St is assigned with a random
d-dimensional contextual information vector xt,a. No-
tice here both θ and x have been processed like in Sec-
tion 5.1 such that θ>∗ x ∈ [0, 1]. The weight for each
edge a is a sample from Bernoulli distribution with mean
θ>∗ xt,a. Then the learning agent recommends a feasible
path A = (a1, ..., a|A|) between source and destination n-
odes to maximize the expected reward in the conjunctive
objective. We experiment on different position discounts.
The regrets are shown in Fig. 3 (a), (b).

6. Conclusions
In this paper, we propose contextual combinatorial cascad-
ing bandits with position discounts, where each action is
an ordered list and only a prefix of the action is observed
each time. We propose a C3-UCB algorithm and prove a
cumulative regret bound for general reward functions and
two special reward functions. The experiments conducted
demonstrate the advantage to involve contextual informa-
tion and position discounts. In future, we would like to
investigate on lower bounds of the regret and cascading on
general graphs.
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A. Proof of Theorem 4.3
The following lemma provides the important result on the
regret at each time t in terms of feature vectors of base arms
at the time.

Lemma A.1 For any time t and At = (at1, . . . ,a
t
|A|), if

f satisfies the two assumptions of monotonicity and B-
Lipschitz continuity, then we have

Rα(t,At) ≤ 2B

|At|∑
k=1

γkβt−1(δ)‖xt,ak
‖V −1

t−1
.

Proof. By Lemma 4.2, wt ≤ U t. Then

f(At,U t) ≥ αf(AUt ,U t) ≥ αf(A∗t ,U t) ≥ αf(A∗t , wt),

where AUt = argmaxA∈Sf(A,U t). The first inequali-
ty is because we chooseAt by the α-approximation oracle
with input U t; the second inequality is because the max-
imum of f(AUt ,U t) given U t; the third inequality is by
the monotonicity of f and the property U t ≥ wt. Then

Rα(t,At) =αf(A∗t , wt)− f(At, wt)

≤f(At,U t)− f(At, wt).

By Lipschitz continuity of f and Lemma 4.2,

f(At,U t) ≤ f(At, wt) +B

|At|∑
k=1

γk
∣∣U t(a

t
k)− wt(atk)

∣∣
≤ f(At, wt) + 2B

|At|∑
k=1

γkβt−1(δ)‖xt,at
k
‖V −1

t−1
.

Then we have

Rα(t, A) ≤f(At,U t)− f(At, wt)

≤2B

|At|∑
k=1

γkβt−1(δ)‖xt,at
k
‖V −1

t−1
.

�

Notice that the upper bound of Rα(t,At) is in terms of all
base arms of At. However, it is hard to estimate an upper
bound for

∑T
t=1

∑|At|
k=1 ‖xt,at

k
‖V −1

t−1
because V t only con-

tains information of observed base arms. Thus we need the
following lemma.

Lemma A.2 Suppose the Ineq.(4) holds for time t − 1.
Then

E[Rα(t,At)|Ht] ≤
2B

p∗
E

[
βt−1(δ)

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

∣∣∣∣∣Ht
]
.

Proof.

E[Rα(t,At)|Ht]

=E
[
Rα(t,At)E

[
1

pt,At

1{Ot = |At|}
∣∣∣∣At

]∣∣∣∣Ht] (13)

=E
[
Rα(t,At)

1

pt,At

1{Ot = |At|}
∣∣∣∣Ht] (14)

≤ 1

p∗
E [Rα(t,At)1{Ot = |At|}|Ht] (15)

≤2B

p∗
E

 |At|∑
k=1

γkβt−1(δ)‖xt,ak‖V −1
t−1

1{Ot = |At|}

∣∣∣∣∣∣Ht


(16)

≤2B

p∗
E

[
Ot∑
k=1

γkβt−1(δ)‖xt,ak‖V −1
t−1

∣∣∣∣∣Ht
]
. (17)

Eq.(13) is because whenAt is fixed, pt,At
is the probability

of Ot = |At|, and thus the inner expectation is 1. Eq.(14)
is because when the history Ht is fixed, At is fixed by the
deterministic algorithm C3-UCB, and thus there is no need
to write the conditional expectation. Ineq.(15) is because
pt,At

≥ p∗ by definition. Ineq.(16) is by Lemma A.1 and
the fact f(A∗t ,U t) ≤ f(At,U t), which is true because
algorithm C3-UCB selects actionAt as the best action with
respect to U t. Ineq.(17) is by simply arguing on the two
cases for the indicator function 1{Ot = |At|}. �

From the above lemma, we can bound the regret at time t
in terms of the observed base arms, for which we further
bound in Lemma A.4. But before that, we need the follow-
ing technical lemma.

Lemma A.3 Let xi ∈ Rd×1, 1 ≤ i ≤ n. Then we have

det

(
I +

n∑
i=1

xix
>
i

)
≥ 1 +

n∑
i=1

‖xi‖22.

Proof. Denote the eigenvalues of I +
∑n
i=1 xix

>
i by 1 +

α1, ..., 1 + αd with αj ≥ 0, 1 ≤ j ≤ d. Then

det(I +

n∑
i=1

xix
>
i ) =

d∏
j=1

(1 + αj)

≥1 +

d∑
j=1

αj = 1− d+

d∑
i=1

(1 + αi)

=1− d+ trace(I +

n∑
i=1

xix
>
i ) = 1− d+ d+

n∑
i=1

‖xi‖22

=1 +

n∑
i=1

‖xi‖22.

�
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Lemma A.4 If λ ≥ Cγ , then

t∑
s=1

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

≤ 2 ln

(
det(V t)

λd

)
.

Proof.

det(V t) = det

(
V t−1 +

Ot∑
k=1

(γkxt,at
k
)(γkx

>
t,at

k
)

)
= det(V t−1)

· det

(
I +

Ot∑
k=1

γkV
−1/2
t−1 xt,at

k
(γkV

−1/2
t−1 xt,at

k
)>

)
(18)

≥det(V t−1)

(
1 +

Ot∑
k=1

‖γkxt,at
k
‖2
V −1

t−1

)
(19)

≥det(λI)

t∏
s=1

(
1 +

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

)
, (20)

where Eq.(18) is by the fact that V + U = V 1/2(I +
V −1/2UV −1/2)V 1/2 for a symmetric positive definite ma-
trix V , Ineq.(19) is due to Lemma A.3, and Ineq.(20) is by
repeatedly applying Ineq.(19).

Because

‖γkxs,as
k
‖2
V −1

s−1

≤ ‖γkxs,as
k
‖22/λmin(V s−1) ≤ γ2k/λ,

where λmin(V s−1) is the minimum eigenvalue of V s−1,
we have

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

≤ 1

λ

K∑
k=1

γ2k = Cγ/λ ≤ 1

Using the fact that 2 ln(1 + u) ≥ u for any u ∈ [0, 1], we
get

t∑
s=1

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

≤2

t∑
s=1

ln

(
1 +

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

)

=2 ln

t∏
s=1

(
1 +

Os∑
k=1

‖γkxs,as
k
‖2
V −1

s−1

)

≤2 ln

(
det(V t)

det(λI)

)
,

where the last inequality is from Ineq.(20). �

Finally the last lemma bounds det(V t).

Lemma A.5 det(V t) is increasing with respect to t and

det(V t) ≤ (λ+ Cγt/d)d.

Proof. To prove det(V t) is increasing with respect to t, it
is enough to prove that

det(V + xx>) ≥ det(V ),

for any symmetric positive definite matrix V ∈ Rd×d and
column vector x ∈ Rd×1. In fact,

det(V + xx>)

= det(V ) det(I + V −1/2xx>V −1/2)

= det(V ) det(1 + ‖V −1/2x‖2)

≥det(V ).

The second equality above is due to Sylvester’s determinant
theorem, which states that det(I +AB) = det(I +BA).

Let the eigenvalues of V t be λ1, . . . , λd > 0. Then

det(V t) = λ1 · · · · · λd

≤
(
λ1 + . . .+ λd

d

)d
= (trace(V t)/d)d.

Also,

trace(V t)

=trace(λI) +

t∑
s=1

Os∑
k=1

γ2ktrace(xs,as
k
x>s,as

k
)

=dλ+

t∑
s=1

Os∑
k=1

γ2k‖xs,as
k
‖22

≤dλ+

t∑
s=1

K∑
k=1

γ2k = dλ+ tCγ .

Thus we have det(V t) ≤ (λ+ Cγt/d)d. �

Lemma A.4 and Lemma A.5 combined imply Lemma 4.4.
Now we are ready to prove the main theorem.

Proof. [ of Theorem 4.3] Suppose Ineq.(4) holds for all
time t, which is true with probability 1 − δ. Then with
probability 1− δ, we have

Rα(n) = E

[
n∑
t=1

E[Rα(t,At)|Ht]

]

≤ E

[
n∑
t=1

2B

p∗
E

[
βt−1(δ)

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

∣∣∣∣∣Ht
]]

(21)



Contextual Combinatorial Cascading Bandits

≤ E

[
n∑
t=1

2B

p∗
βn(δ)E

[
Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

∣∣∣∣∣Ht
]]

(22)

≤ E

2B

p∗
βn(δ)

√√√√( n∑
t=1

Ot

)(
n∑
t=1

Ot∑
k=1

‖γkxt,at
k
‖2
V −1

t−1

)
(23)

≤ E

[
2B

p∗

(
R

√
ln

(
det(V n)

λd/n

)
+
√
λ

)

·

√
nK · 2 ln

(
det(V n)

λd

)]
(24)

≤ 2
√

2B

p∗

(
R
√

ln[(1 + Cγn/(λd))dn] +
√
λ

)
·
√
nKd ln(1 + Cγn/(λd)). (25)

Ineq.(21) is by Lemma A.2. Ineq.(22) is because βt(δ) is
increasing with respect to t, derived by the definition of
βt(δ) (Eq.(3)) and Lemma A.5. Ineq.(23) is by the mean
inequality. Ineq.(24) is because of the definition of βt(δ)
(Eq.(3)) and Lemma A.4. And the last Ineq.(25) is because
estimate of det(V t) by Lemma A.5.

Also Rα(n) ≤ αn and δ = 1√
n

. We have

Rα(n) ≤ 2
√

2B

p∗

(
R
√

ln[(1 + Cγn/(λd))dn] +
√
λ

)
·
√
nKd ln(1 + Cγn/(λd)) + α

√
n.

�

B. Proof of Corollary 4.5
In this section, we prove the expected reward function

f(A,w) =

|A|∑
k=1

γk

k−1∏
i=1

(1− w(ai))w(ak),

where A = (a1, . . . , a|A|), defined in Eq.(9), satisfies the
properties of monotonicity and 1-Lipschitz continuity.

Lemma B.1 (monotonicity) Suppose 1 ≥ γ1 ≥ · · · ≥
γK ≥ 0. Then f(A,w) is increasing with respect to w,
that is, if w ≤ w′ ∈ [0, 1]E , then for any A ∈

∏≤K , it
holds that

f(A,w) ≤ f(A,w′).

Proof. Without the loss of generality, we prove for the
case of A = (1, . . . ,m), where 1 ≤ m ≤ K. Denote
w = (wa)a∈E and w′ = (w′a)a∈E . First, for 1 ≤ k ≤ m,

we have

γk −
m∑

i=k+1

γi

i−1∏
j=k+1

(1− w′j)w′i

≥ γk[1−
m∑

i=k+1

i−1∏
j=k+1

(1− w′j)w′i]

≥ γk · 0 = 0.

Then it implies that

γkwk + (1− wk)

m∑
i=k+1

γi

i−1∏
j=k+1

(1− w′j)w′i

≤γkw′k + (1− w′k)

m∑
i=k+1

γi

i−1∏
j=k+1

(1− w′j)w′i.

Therefore,

f(A;w1, . . . , wk, w
′
k+1, . . . , w

′
m)

=

k−1∑
i=1

γi

i−1∏
j=1

(1− wj)wi +

k−1∏
j=1

(1− wj)

· [γkwk + (1− wk)

m∑
i=k+1

γi

i−1∏
j=k+1

(1− w′j)w′i]

≤
k−1∑
i=1

γi

i−1∏
j=1

(1− wj)wi +

k−1∏
j=1

(1− wj)

· [γkw′k + (1− w′k)

m∑
i=k+1

γi

i−1∏
j=k+1

(1− w′j)w′i]

=f(A;w1, . . . , wk−1, w
′
k, . . . , w

′
m).

�

Lemma B.2 (Lipschitz continuity) Suppose 0 ≤ γk ≤
1, k ≤ K. Let w,w′ ∈ [0, 1]E . Then

|f(A,w)− f(A,w′)| ≤
|A|∑
k=1

γk|w(ak)− w′(ak)|,

where A = (a1, . . . , a|A|).

Proof. Without the loss of generality, we prove for the
case of A = (1, . . . ,m), where 1 ≤ m ≤ K. Denote
w = (wa)a∈E and w′ = (w′a)a∈E . First, suppose w ≤ w′

and w′ = w + v.

We prove this by induction. It holds obviously for m = 1.
Suppose it holds for m. Then

f(A(m+1), w′)
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=f(A(m), w′) + γm+1

m∏
k=1

(1− w′k)w′m+1

≤f(A(m), w′) + γm+1

m∏
k=1

(1− wk)(wm+1 + vm+1)

≤f(A(m), w) +

m∑
k=1

γkvk

+ γm+1

m∏
k=1

(1− wk)wm+1 + γm+1vm+1

=f(A(m+1), w) +

m+1∑
k=1

γkvk.

So it holds for m+ 1.

For general w,w′ ∈ [0, 1]L, by Lemma B.1, we have

f(A,w ∧ w′) ≤ {f(A,w), f(A,w′)} ≤ f(A,w ∨ w′),

where

(w ∧ w′)k = min{wk, w′k}, (w ∨ w′)k = max{wk, w′k}.

Then

|f(A,w)− f(A,w′)| ≤ f(A,w ∨ w′)− f(A,w ∧ w′)

≤
|A|∑
k=1

γk[(w ∨ w′)(ak)− (w ∧ w′)(ak)]

=

|A|∑
k=1

γk|w(ak)− w′(ak)|

�

We have proved the monotonicity and Lipschitz continuity
of expected reward function f . Then the corollary follows
Theorem 4.3.

C. Proof of Theorem 4.6
In this section, we prove Theorem 4.6. Recall the expected
reward function is

f(A,w) =

|A|∑
k=1

(1−γk)

k−1∏
i=1

w(ai)(1−w(ak))+

|A|∏
i=1

w(ai),

where A = (a1, . . . , a|A|), as defined in Eq.(11). First,
similar to last section, we prove this reward function satis-
fies the properties of monotonicity and 1-Lipschitz conti-
nuity.

Lemma C.1 (monotonicity) Suppose 1 ≥ γ1 ≥ · · · ≥
γK ≥ 0. Then f(A,w) is increasing with respect to w;
that is, if w ≤ w′ ∈ [0, 1]E , then for any A ∈

∏≤K , it
holds that

f(A,w) ≤ f(A,w′).

Proof. Denote A = (a1, . . . , a|A|). Because

1− f(A, 1− w)

=1−
|A|∑
k=1

(1− γk)

k−1∏
i=1

(1− w(ai))w(ak)−
|A|∏
i=1

(1− w(ai))

=

|A|∑
k=1

γk

k−1∏
i=1

(1− w(ai))w(ak),

then by the proof of Lemma B.1 and 1 − f(A, 1 − w) is
increasing in w, we can get f is increasing in w. �

Lemma C.2 (Lipschitz continuity) Suppose 0 ≤ γk ≤
1, k ≤ K. Let w,w′ ∈ [0, 1]L. Then

|f(A,w)− f(A,w′)| ≤
|A|∑
k=1

γk|w(ak)− w′(ak)|,

where A = (a1, . . . , a|A|).

Proof. Denote w = (wa)a∈E and w′ = (w′a)a∈E . Similar
to the proof of Lemma B.2. It is enough to prove when
w ≤ w′, w′ = w + v and A = (1, . . . ,m),m ≤ K.

We prove this by induction. It holds obviously for m = 1.
Suppose it holds for m. Then

f(A(m+1), w′)

=f(A(m), w′)−
m∏
k=1

w′k

+ (1− γm+1)(

m∏
k=1

w′k)(1− w′m+1) +

m+1∏
k=1

w′k

=f(A(m), w′)− γm+1(

m∏
k=1

w′k)(1− w′m+1)

≤f(A(m), w′)− γm+1(

m∏
k=1

wk)(1− w′m+1)

≤f(A(m), w′)− γm+1(

m∏
k=1

wk)(1− wm+1 − vm+1)

≤(f(A(m), w) +

m∑
k=1

γkvk)

− γm+1(

m∏
k=1

wk)(1− wm+1) + γm+1vm+1

≤(A(m+1), w) +

m+1∑
k=1

γkvk.

�

The next lemma provides some properties about a prefix of
action A in the conjunctive case, which leads to the finding
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of a prefixB ofAwith similar regret and probability of full
observation as those of A, as given in Lemma C.4.

Lemma C.3 Suppose 1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0. Let
A = (a1, ..., a|A|). Let Bk = (a1, ..., ak), k ≤ |A| be a
prefix of A. The expected weights are denoted by w. The
probability of full observation of A, pA, can be formulated
as

pA =

|A|−1∏
k=1

wak .

Then for the problem with conjunctive objective and k <
|A|, we have the following properties:

(1) f(A,w) ≤ (1− γ|A|) + γ|A|pA;

(2) f(Bk+1, w) ≤ f(Bk, w);

(3) pBk+1
≤ pBk

;

(4) f(Bk, w) ≤ (1− γk+1) + γk+1pBk+1
.

Proof. Let m = |A|. By the definition of f(A,w) in
Eq. (11), we have

(1)

f(A,w)

=

|A|∑
k=1

(1− γk)

k−1∏
i=1

w(ai)(1− w(ak)) +

|A|∏
i=1

w(ai)

≤(1− γm)(1− pAwm) + pAwm

≤(1− γm) + γmpA;

(2)

f(Bk, w)− f(Bk+1, w)

=

k∏
i=1

wi − (1− γk+1)(

k∏
i=1

wi)(1− wk+1)

− (

k∏
i=1

wi)wk+1

=γk+1(

k∏
i=1

wi)(1− wk+1) ≥ 0;

(3) pBk+1
=
∏k
i=1 wi ≤

∏k−1
i=1 wi = pBk

;

(4)

f(Bk, w) ≤ (1− γk)(1− pBk+1
) + pBk+1

≤ (1− γk+1)(1− pBk+1
) + pBk+1

= (1− γk+1) + γk+1pBk+1

�

Lemma C.4 Suppose 1 = γ1 ≥ γ2 ≥ · · · ≥ γK ≥ 0.
Let A = (a1, ..., a|A|). For the time t and the conjunctive
objective, there exists a prefix B of A such that

pt,B ≥
α

2
f∗t − 1 + γ|B|, Rα(t, B) ≥ 1

2
Rα(t, A).

Proof. Recall wt = θ>∗ xt. If f(A,wt) ≥ α
2 f
∗
t , then by

Lemma C.3 (1),

pt,A ≥
α

2
f∗t − 1 + γ|A|.

In this case, we set prefix B = A.

Now suppose f(A,wt) ≤ α
2 f
∗
t . Let

xk = f(Bk, w), yk = 1− γk + γkpt,Bk
, Ik = [xk, yk]

Then by Lemma C.3, we have xk ≤ yk, xk+1 ≤ xk ≤
yk+1. Therefore, Ik is indeed an interval and Ik∩Ik+1 6= ∅.
Also, x|A| = f(A,w) and y1 = 1. Thus

[f(A,w), 1] =

|A|⋃
k=1

Ik.

Then there exists a k such that α2 f
∗
t ∈ Ik:

f(Bk, w) ≤ α

2
f∗t ≤ 1− γk + γkpt,Bk

Then

Rα(t, Bk) = αf∗t − f(Bk, wt) ≥
α

2
f∗t ≥

1

2
Rα(A,wt),

and
pt,Bk

≥ α

2
f∗t − 1 + γ|Bk|.

�

The key difference from the proof of Theorem 4.3 is the
following lemma. This lemma corresponds to Lemma A.2
and uses f∗ to replace p∗.

Lemma C.5 If we have γK ≥ 1 − α
4 f
∗, where f∗ =

min1≤t≤T f
∗
t , then

E[Rα(t,At)|Ht]

≤ 8

αf∗
E

[
βt−1(δ)

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

∣∣∣∣∣Ht
]
.

Proof. By Lemma C.4 there exists a prefixBt ofAt such
that pt,Bt ≥ α

2 f
∗
t − 1 + γ|Bt| and R(t,Bt) ≥ 1

2R(t,At).
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By the assumption that 1−γ|Bt| ≤ 1−γK ≤ α
4 f
∗ ≤ α

4 f
∗
t ,

we have pt,Bt ≥ α
4 f
∗
t .

Then, similar to the derivation from Eq.(13) to Eq.(15), we
have

E[Rα(t,At)|Ht] ≤ 2E[Rα(t,Bt) |Ht]

=2E
[
Rα(t,Bt)E

[
1

pt,Bt

1{Ot ≥ |Bt|}
∣∣∣∣Bt

]∣∣∣∣Ht]
=2E

[
Rα(t,Bt)

1

pt,Bt

1{Ot ≥ |Bt|}
∣∣∣∣Ht]

≤ 8

αf∗t
E [Rα(t,Bt)1{Ot ≥ |Bt|}|Ht] . (26)

Next, we have

f(A∗t , wt) ≤ f(A∗t ,U t) ≤ f(At,U t) ≤ f(Bt,U t),
(27)

where the first inequality is by Lemmas 4.2 and C.1, the
second inequality is by the C3-UCB algorithm, in which
the best action At is selected with respect to U t, and the
last inequality is by Lemma C.3 (2).

Then by Lemma C.2,

f(Bt,U t) ≤ f(Bt, wt) +

|Bt|∑
k=1

γkβt−1(δ)‖xt,at
k
‖V −1

t−1
.

(28)
Therefore, combining Eq.(27) and (28), we have

Rα(t,Bt) = f∗t − f(Bt, θ
>
∗ xt)

≤
|Bt|∑
k=1

βt−1(δ)‖γkxt,at
k
‖V −1

t−1
. (29)

Finally from Ineq. (26) and (29) we can derive the result

Et[Rα(t,At)]

≤ 8

αf∗t
E

1{Ot ≥ |Bt|}
|Bt|∑
k=1

βt−1(δ)‖γkxt,at
k
‖V −1

t−1


≤ 8

αf∗
E

[
Ot∑
k=1

βt−1(δ)‖γkxt,at
k
‖V −1

t−1

]
.

�

Then we have the proof of Theorem 4.6.

Proof. [of Theorem 4.6] Similar to the proof of Theorem
4.3, we have the following derivation. Suppose Ineq.(4)
holds for all time t, then

Rα(n) = E

[
n∑
t=1

Et[Rα(t,At)]

]

≤E

[
n∑
t=1

8

αf∗
Et

[
βt−1(δ)

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

]]
(30)

≤E

[
8

αf∗
βn(δ)

n∑
t=1

Ot∑
k=1

‖γkxt,at
k
‖V −1

t−1

]
(31)

≤E

 8

αf∗
βn(δ)

√√√√( n∑
t=1

Ot

)
Et

[
n∑
t=1

Ot∑
k=1

‖γkxt,at
k
‖2
V −1

t−1

]
(32)

≤E

[√
128

αf∗

(√
ln

(
det(V n)

λd/n

)
+
√
λ

)

·

√
nK · 2 ln

(
det(V n)

λd

)]
(33)

≤
√

128

αf∗

(√
ln[(1 + Cγn/(λd))dn] +

√
λ

)
·
√
nKd ln(1 + Cγn/(λd)). (34)

By Lemma 4.1, Rα(n) ≤ αn and δ = 1√
n

, we have

Rα(n) ≤
√

128

αf∗

(√
ln[(1 + Cγn/(λd))dn] +

√
λ

)
·
√
nKd ln(1 + Cγn/(λd)) + α

√
n.

�

D. The Network Delay Example
In this section, we will give a network with delay example
which is an example of general reward function and can-
not be covered by the disjunctive objective and conjunctive
objective. We also conduct an experiment on this problem.

Suppose there is a network and the latency on each edge of
a network is a random variable of an exponential distribu-
tion. If the latency is larger than some tolerance τ , then the
edge is regarded as blocked; if the latency is less than the
tolerance τ , then the edge is regarded as unblocked. For a
path, only when all edges on it are unblocked, the path is
unblocked and has reward 1. We want to find the path with
largest probability of being unblocked. In addition, since
we will only record latency up to some bound b, the ob-
served latency is a random variable of a cut-off exponential
distribution. Obviously, we have τ ≤ b.

Recall the probability density function (PDF) of an expo-
nential random variable X with parameter λ is

f(x;λ) =

{
λe−λx, x ≥ 0

0, x < 0
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Then the cut-off random variable Xb of X with boundary b
is

Xb =

{
X, 0 ≤ X ≤ b
b, X > b.

Then

P(Xb = b) =

∫ ∞
b

λe−λxdx = −e−λx
∣∣∞
b

= e−λb

and the mean of the cut-off exponential distribution is∫ b

0

xλe−λxdx+ be−λb

=

∫ b

0

xd(−e−λx) + τ1e
−λb

= −xe−λx
∣∣b
0

+

∫ b

0

−e−λxdx+ be−λb

=− be−λb + (− 1

λ
e−λx

∣∣b
0
) + τ1e

−λb

=
1

λ
− 1

λ
e−λb.

If we denote the mean of X by w0, then λ = 1
w0

the mean
of cut-off exponential distribution is

g(w0) = w0(1− e−b/w0).

And the probability of an edge being blocked is∫ ∞
τ

1

w0
e−x/w0dx = e−τ/w0 .

So the probability of an edge being unblocked is 1 −
e−τ/w0 . Therefore, the expected reward of an edge is

h(w0) = 1− e−τ/w0 .

Denote the mean of the observed latency, Xb, by w. We
assume w ∈ (0, 1). Then the probability of an edge being
unblocked is

h ◦ g−1(w).

First,

g′(w0) = 1−e−b/w0+w(−e−b/w0
b

w2
0

) = 1−(
b

w0
+1)e−b/w0 .

Let x = b
w0
∈ (b,∞), then

g′(w0) = 1− (x+ 1)e−x := g1(x) > 0,

And

g′1(x) = −e−x + (x+ 1)e−x = xe−x > 0.
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So g is an increasing function and satisfies

g′(w0) ∈ (1− (b+ 1)e−b, 1). (35)

Second,

h′(w0) = −e−τ/w0
τ

w2
0

= −e−τxτx2 := h1(x) < 0,

if we denote x = 1
w0
∈ (1,∞). Also

h′1(x) = −(−τ)e−τxτx2 − e−τxτ2x = e−τxτx(τx− 2).

If in addition we assume τ < 1, then h is a decreasing
function and satisfies

−e−2 4

τ
≤ h′(w0) ≤ 0.

Therefore, h ◦ g−1 is monotone decreasing and satisfies
Lipschitz continuity with bound

B =
4eb

e2(eb − b− 1)τ
.

Then for each path A, the expected reward of A under
weights w, which is the mean of observed latency in this
example, is

f(A,w) =
∏
a∈A

(h ◦ g−1)(wa). (36)

Then it is easy to prove that f is monotone decreasing and
satisfies Lipschitz continuity with bound B.

Next is the experiment conducted on the network with la-
tency, where the latency on an edge is a cut-off exponential
random variable with mean θ>∗ x and the reward is 1 if the
latency is less than a tolerance τ = 0.8. The comparison
of the cumulative rewards of our algorithm with CombCas-
cade is shown in Fig. 4 (a).

In addition, we also conduct an experiment on the influ-
ence of γ to the regret. In recommendations, the position
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discounts represent users’ satisfaction and the learning a-
gent may not know its true value. Suppose the true posi-
tion discount γ∗ = 0.9, which is used to evaluating reward
and regret, and the learning agent sets γ by her experience,
which is used to select actions. We experiment on differ-
ent γ ∈ {0.8, 0.82, . . . , 0.98, 1.0} with the true criterion
γ∗ = 0.9. The regrets with different γ’s are illustrated in
Fig. 4(b), from which it can be seen that the regret is min-
imized around the true γ∗. The big gap between the regret
at γ = 1 and γ∗ = 0.9 shows that it significantly benefit-
s by exploiting position discounts in the model when such
discounts indeed exist in applications.


