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Abstract

The polynomial method and the Ambainis lower bound (orAlb, for short) method are two main
quantum lower bound techniques. While recently Ambainis showed that the polynomial method is
not tight, the present paper aims at studying the power and limitation ofAlb’s. We first use known
Alb’s to derive�(n1.5) lower bounds for BIPARTITENESS, BIPARTITENESSMATCHING and GRAPH
MATCHING, in which the lower bound for BIPARTITENESSimproves the previous�(n) one. We then
show that all the three known Ambainis lower bounds have a limitation

√
N min{C0(f ), C1(f )},

whereC0(f ) andC1(f ) are the 0- and 1-certificate complexities, respectively. This implies that for
many problems such as TRIANGLE, k-CLIQUE, BIPARTITENESSand BIPARTITE/GRAPHMATCHING
which draw wide interest and whose quantum query complexities are still open, the best known lower
bounds cannot be further improved by using Ambainis techniques. Another consequence is that all
the Ambainis lower bounds are not tight. For total functions, this upper bound forAlb’s can be further
improved to min{√C0(f )C1(f ),

√
N · CI(f )}, whereCI(f ) is the size of max intersection of a

0- and a 1-certificate set. Again this implies thatAlb’s cannot improve the best known lower bound
for some specific problems such as AND-OR TREE, whose precise quantum query complexity is still
open. Finally, we generalize the three knownAlb’s and give a newAlb style lower bound method,
which may be easier to use for some problems.
© 2005 Published by Elsevier B.V.
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1. Introduction

Quantum computing has received a great deal of attention in the last decade because of
the potentially high speedup over classical computation. Among others, the query model

∗ Tel.: +1 6092580419; fax: +1 6092581771.
E-mail address:szhang@cs.princeton.edu.

0304-3975/$ - see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.tcs.2005.01.019

http://www.elsevier.com/locate/tcs
mailto:szhang@cs.princeton.edu


242 S. Zhang / Theoretical Computer Science 339 (2005) 241–256

is extensively studied, partly because it is a natural quantum analog of classical decision tree
complexity, and partly because many known quantum algorithms fall into this framework
[13,14,16,18,19,28,29,32]. In the query model, the input is accessed by querying an oracle,
and the goal is to minimize the number of queries made. We are most interested in double-
side bounded-error computation, where the output is correct with probability at least 2/3
for all inputs. We useQ2(f ) to denote minimal number of queries for computingf with
double sided bound-error. For more details on the quantum query model, we refer to [6,15]
as excellent surveys.

Two main lower bound techniques forQ2(f ) are the polynomial method by Beals et al.
[11] and Ambainis lower bounds [4,5], the latter of which is also called quantum adversary
method. Many lower bounds have recently been proven by applying the polynomial method
[1,11,22,24,27] and Ambainis lower bounds [2,4,5,17,31]. Recently, Aaronson even uses
Ambainis lower bound technique to achieve lower bounds for some classical problems
[2]. Given the usefulness of the two methods, it is interesting to know how tight they are.
In a recent work [5], Ambainis proves that polynomial method is not tight, by showing
a function with polynomial degreeM and quantum query complexity�(M1.321...). So a
natural question is the power of Ambainis lower bounds. We show that all known Ambainis
lower bounds are not tight either, among other results.

There are several known versions of Ambainis lower bounds, among which the three
Ambainis theorems are widely used partly because they have simple forms and are thus
easy to use. The first twoAlb’s are given in [4] as follows.

Theorem 1(Ambainis[4] ). Letf : {0,1}N → {0,1} be a function andX, Y be two sets of
inputss.t.f (x) �= f (y) if x ∈ X andy ∈ Y . LetR ⊆ X × Y be a relations.t.
(1) ∀x ∈ X, there are at leastm differenty ∈ Y s.t.(x, y) ∈ R.
(2) ∀y ∈ Y , there are at leastm′ differentx ∈ X s.t.(x, y) ∈ R.
(3) ∀x ∈ X, ∀i ∈ [N ], there are at mostl differenty ∈ Y s.t.(x, y) ∈ R, xi �= yi .
(4) ∀y ∈ Y , ∀i ∈ [N ], there are at mostl′ differentx ∈ X s.t.(x, y) ∈ R, xi �= yi .
ThenQ2(f ) = �(

√
mm′/ll′).

Theorem 2(Ambainis[4] ). Letf : IN → {0,1} be a Boolean function whereI is a finite
set, andX, Y be two sets of inputss.t.f (x) �= f (y) if x ∈ X andy ∈ Y . LetR ⊆ X × Y

satisfy
(1) ∀x ∈ X, there are at leastm differenty ∈ Y s.t.(x, y) ∈ R.
(2) ∀y ∈ Y , there are at leastm′ differentx ∈ X s.t.(x, y) ∈ R.
Denote

lx,i = |{y : (x, y) ∈ R, xi �= yi}|, ly,i = |{x : (x, y) ∈ R, xi �= yi}|
lmax = max

x,y,i:(x,y)∈R,i∈[N ],xi �=yi
lx,i ly,i .

ThenQ2(f ) = �(
√
mm′/lmax).

Obviously, Theorem 2 generalizes Theorem 1. In[5], Ambainis gives another (weighted)
approach to generalize Theorem 1. We restate it in a form similar to Theorem 1.
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Definition 3. Let f : IN → {0,1} be a Boolean function whereI is a finite set. LetX, Y
be two sets of inputss.t.f (x) �= f (y) if x ∈ X andy ∈ Y . LetR ⊆ X× Y be a relation. A
weight scheme forX, Y,R consists of three weight functionsw(x, y) > 0, u(x, y, i) > 0
andv(x, y, i) > 0 satisfying

u(x, y, i)v(x, y, i)�w2(x, y) (1)

for all (x, y) ∈ R andi ∈ [N ] with xi �= yi . We further denote

wx = ∑
y:(x,y)∈R

w(x, y), wy = ∑
x:(x,y)∈R

w(x, y)

ux,i = ∑
y:(x,y)∈R,xi �=yi

u(x, y, i), vy,i = ∑
x:(x,y)∈R,xi �=yi

v(x, y, i).

Theorem 4(Ambainis[5] ). Letf : IN → {0,1} whereI is a finite set, andX ⊆ f−1(0),
Y ⊆ f−1(1) andR ⊆ X × Y . Letw, u, v be a weight scheme forX, Y,R. Then

Q2(f ) = �
(√

min
x∈X,i∈[N ]

wx

ux,i
· min
y∈Y,j∈[N ]

wy

vy,j

)
.

Denote byAlb1(f ),Alb2(f ) andAlb3(f ) the best lower bound for functionf achieved by
Theorem 1, 2 and 3, respectively.1 Note that in the threeAlb’s, there are many parameters
(X, Y,R, u, v,w) to be set. By setting these parameters in an appropriate way, one can get
good lower bounds for many problems. In particular, we consider the following three graph
properties.2

(1) BIPARTITENESS: Given an undirected graph, decide whether it is a bipartite graph.
(2) GRAPH MATCHING: Given an undirected graph, decide whether it has a perfect match-

ing.
(3) BIPARTITE MATCHING: Given an undirected bipartite graph, decide whether it has a

perfect matching.
We show by usingAlb2 that all these three graph properties have a�(n1.5) lower bound,
wheren is the number of vertices. For BIPARTITENESS, this improves the previous result of
�(n) lower bound (in a preliminary version of[20]).

SinceAlb2 andAlb3 generalizesAlb1 in different ways, it is interesting to compare their
powers. It turns out thatAlb2(f )�Alb3(f ).

However, evenAlb3 has a limitation: we show thatAlb3(f ) is no more than
√
N · C−(f )

whereC−(f ) = min{C0(f ), C1(f )} with C0(f ) andC1(f ) being the 0- and 1-certificate
complexity off , respectively. This has two immediate consequences. First, it gives a neg-
ative answer to the open problem whetherAlb2 or Alb3 is tight, because for ELEMENT

DISTINCTNESS, we know thatQ2(f ) = �(N2/3) by Shi’s result in [27], but
√
N · C−(f )

is only
√

2N .
Second, for some problems whose precise quantum query complexities are still unknown,

our theorem implies that the best known lower bound cannot be further improved by using

1 To make the later results more precise, we actually useAlbi (f ) to denote the value inside the�( ) notation.
For example,Alb1(f ) = max(X,Y,R)

√
mm′/ll′.

2 In this paper, all the graph property problems are given by adjacency matrix input.
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Ambainis lower bound techniques, no matter how we choose the parameters in theAlb

theorems. For example TRIANGLE/k-CLIQUE (k is constant) are the problems to decide
whether ann-node graph contains a triangle/k-node clique. It is easy to get a�(n) lower
bound for both of them. By our theorem, however, we know that this is the best possible by
using Ambainis lower bound techniques. Also the�(n1.5) lower bound for BIPARTITENESS,
BIPARTITE MATCHING and GRAPH MATCHING cannot be further improved byAlb’s either,
becauseC1(f ) = O(n) for all of them.

If f is a total function, the above upper bound ofAlb’s can be further tightened in
two ways. The first one isAlb3(f )�

√
N · CI(f ), whereCI(f ) is the size of the largest

intersection of a 0-certificate set and a 1-certificate set, soCI(f )�C−(f ). The second
approach leads to another resultAlb3(f )�

√
C0(f )C1(f ). Both the results imply that for

AND-OR TREE, a problem whose quantum query complexity is still open[5], the current
best�(

√
N) lower bound [9] cannot be further improved by using Ambainis lower bounds.

The second result also give an positive answer to the open question whetherAlb3(f ) =
O(

√
C0(f )C1(f )).

Finally, it is natural to consider combining the different approaches thatAlb2 andAlb3
use to generalizeAlb1, and get a further generalized one. Based on this idea, we give a new
and more general lower bound theorem, which we callAlb4. Compared withAlb3, this
may be easier to use.

1.1. Related work

In the open problems part of [5], Ambainis mentions the
√
C0(f )C1(f ) limitation of

Alb1, and asks for new quantum lower bound techniques higher than
√
C0(f )C1(f ). How-

ever, it is not shown in [5] whetherAlb2 andAlb3 are also bounded by the
√
C0(f )C1(f )

limitation for total functionf , and actually even whetherAlb2(f ) = O(
√
C0(f )C1(f ))

was still open at the time, according to a private communication between Ambainis and us.
Recently Spalek and Szegedy independently show in [30] that the all quantum adversary

methods, includingAlb3 by Ambainis [5],Alb4 in an earlier version of the present paper
[33], and another quantum adversary method proposed in [10], are actually equivalent. Using
this fact, they gave a simple proof that all of them cannot prove quantum lower bounds better
than�(

√
N · C−(f )) for general function and not better than�(

√
C0(f )C1(f )) for total

functions.
The theoremAlb3(f )�

√
N · C−(f ) is also derived by Laplante and Magniez by using

Kolmogorov complexity in [20].And the�(n1.5) lower bound for Matching is independently
obtained by Berzina, Dubrovsky, Freivalds, Lace and Scegulnaja in [12], and the same lower
bound for Bipartiteness is independently obtained by Durr (cited in [20]).

2. Old Ambainis lower bounds

In this section we first useAlb2 to derive�(n1.5) lower bounds for BIPARTITENESS,
BIPARTITE MATCHING and GRAPH MATCHING, then show thatAlb3 has actually at least the
same power asAlb2.
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Fig. 1.X andY .

Theorem 5. All the three graph propertiesBIPARTITENESS, BIPARTITE MATCHING and
GRAPHMATCHING haveQ2(f ) = �(n1.5).

Proof. 1. BIPARTITENESS. The proof is very similar to the one for proving�(n1.5) lower
bound of GRAPH CONNECTIVITY by Durr et al.[17]. Without loss of generality, we assume
n is even, because otherwise we can use the following argument on arbitraryn− 1 (out of
totaln) nodes and leave thenth node isolated. Let
X = {G : G is composed of a singlen-length cycle},
Y = {G : G is composed of two cycles each with length being an odd number between

n/3 and 2n/3}, and
R = {(G,G′) ∈ X × Y : ∃ four nodesv1, v2, v3, v4 s.t. the only difference between

graphsG andG′ is that(v1, v2), (v3, v4) are edges inG but not inG′ and(v1, v3), (v2, v4)

are edges inG′ but not inG}.
Note that a graph is bipartite if and only if it contains no cycle with odd length. Therefore,

any graph inX is a bipartite graph becausen is even, and any graph inY is not bipartite
graph because it contains two odd-length cycles. Then all the remaining analysis is the same
as calculation in the proof for GRAPH CONNECTIVITY (undirected graph and matrix input)
in [17], and finallyAlb2(BIPARTITENESS) = �(n1.5).

2. BIPARTITE MATCHING. Let X be the set of the bipartite graphs like Fig. 1(a) where
� and� are two permutations of{1, . . . , n}, andn/3�k�2n/3. Let Y be the set of the
bipartite graphs like Fig. 1(b), where�′ and�′ are two permutations of{1, . . . , n}, and also
n/3�k′ �2n/3. It is easy to see that all graphs inX have no perfect matching, while all
graphs inY have a perfect matching.

LetR be the set of all pairs of(x, y) ∈ X×Y as in Fig. 2, where graphy is obtained from
x by choosing two horizontal edges(�(i),�(i)), (�(j),�(j)), removing them, and adding
two edges(�(i),�(j)), (�(j),�(i)).

Now it is not hard to calculate them,m′, lmax in Alb2. For example, to getm we study
x in two cases. Whenn/3�k�n/2, any edge(�(i),�(i)) wherei ∈ [k − n/3, k] has
at leastn/6 choices for edge(�(j),�(j)) because the only requirement for choosing is
thatk′ ∈ [n/3,2n/3] andk′ = i + n − j . The case whenn/2�k�2n/3 can be handled
symmetrically. Thusm = �(n2). The same argument yieldsm′ = �(n2). Finally, for lmax,
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we note that if the edgee = (�(i),�(i)) for somei, thenlx,e = O(n) andly,e = 1; if the
edgee = (�(i),�(j)) for somei, j , thenlx,e = 1 andly,e = O(n). For all other edgese,
lx,e = ly,e = 0. Putting all cases together, we havelmax = O(n). Thus by Theorem 2, we
know thatAlb2(BIPARTITE MATCHING) = �(n1.5).

3. GRAPHMATCHING. This can be easily shown either by using the same(X, Y,R) as the
proof for BIPARTITENESS, because a cycle with odd length has no matching, or by noting
that BIPARTITE MATCHING is a special case of GRAPH MATCHING. �

It is interesting to note that we can also prove the above theorem byAlb3. For example,
for BIPARTITE MATCHING, we chooseX, Y,R in the same way, and letw(x, y) = 1 for
all (x, y) ∈ R. Let u(x, y, e) = 1/

√
n if e is a horizontal edge(�(i),�(i)) in x, and

u(x, y, e) = √
n if e = (�(i),�(j)) or e = (�(j),�(i)) in x. Thusux,e = �(

√
n) for

all edgese, it is the same forvy,e, thuswx/ux,e = �(n1.5), wy/vy,e = �(n1.5), and
Q2(f ) = �(n1.5) byAlb3.

This coincidence is not accidental. Actually it turns out that we can always show a lower
bound byAlb3 provided that it can be shown byAlb2.

Theorem 6. Alb2(f )�Alb3(f ).

Proof. For anyX, Y,R in Theorem 2, we set the weight functions in Theorem 3 as follows.
Let w(x, y) = 1, u(x, y, i) = √

lmax/lx,i andv(x, y, i) = √
lmax/ly,i . It’s easy to check

that

u(x, y, i)v(x, y, i) = lmax

lx,i ly,i
�1 = w(x, y).

Now thatu(x, y, i) is independent ony, so we haveux,i = lx,iu(x, y, i) = √
lmax. Sym-

metrically, it follows thatvy,i = √
lmax. Thus, by denotingmx = |{y : (x, y) ∈ R}| and

my = |{x : (x, y) ∈ R}|, we have

min
x,i

wx

ux,i
min
y,i

wy

vy,i
= min

x,i

mx√
lmax

min
y,i

my√
lmax

= m√
lmax

m′
√
lmax

= mm′

lmax

which means that for anyX, Y,R in Theorem 2, the lower bound result can be also achieved
by Theorem 3. �
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3. Limitations of Ambainis lower bounds

In this section, we show some bounds for theAlb’s in terms of certificate complexity.
We consider Boolean functions.

Definition 7. For anN -ary Boolean functionf : IN → {0,1} and an inputx ∈ IN , a
certificate setCSx of f onx is a set of indices such thatf (x) = f (y) wheneveryi = xi for
all i ∈ CSx . The certificate complexityC(f, x) of f onx is the size of a smallest certificate
set off on x. The b-certificate complexity off is Cb(f ) = maxx:f (x)=b C(f, x). The
certificate complexity off is C(f ) = max{C0(f ), C1(f )}. We further denoteC−(f ) =
min{C0(f ), C1(f )}.

3.1. A general limitation for Ambainis lower bounds

In this subsection, we give an upper bound forAlb3(f ), which implies a limitation of all
the three known Ambainis lower bound techniques.

Theorem 8. Alb3(f )�
√
N · C−(f ), for anyN -ary Boolean functionf .

Proof. Actually we prove a stronger result: for any(X, Y,R, u, v,w) as in Theorem 3,

min
(x,y)∈R,i∈[N ]

wxwy

ux,ivy,i
�NC−(f ).

With out loss of generality, we assume thatC−(f ) = C0(f ), andX ⊆ f−1(0) andY ⊆
f−1(1). We can actually further assume thatR = X × Y , because otherwise we just let
R′ = X × Y , and set new weight functions as follows.

u′(x, y, i) =
{
u(x, y, i) (x, y) ∈ R,

0 otherwise,

v′(x, y, i) =
{
v(x, y, i) (x, y) ∈ R,

0 otherwise,

w′(x, y) =
{
w(x, y) (x, y) ∈ R,

0 otherwise.

Then it is easy to see that it satisfies (1) so it is also a weight scheme.And for these new weight
functions, we haveu′

x,i = ∑
y:(x,y)∈R′,xi �=yi

u′(x, y, i) = ∑
y:(x,y)∈R,xi �=yi

u(x, y, i) =
ux,i and similarlyv′

y,i = vy,i andw′
x = wx,w

′
y = wy . 3 It follows thatwxwy/ux,ivy,i =

w′
xw

′
y/u

′
x,iv

′
y,i , thus we can use(X′, Y ′, R′, u′, v′, w′) to derive the same lower bound as

we use(X, Y,R, u, v,w).

3 Note that the function values ofu′, v′, w′ are zero when(x, y) �= R, which does not conform to the definition
of weight scheme. But actually Theorem 3 also holds foru�0, v�0, w�0 as long asux,i , vy,i , wx,wy are all
strictly positive for anyx, y, i. This can be seen from the proof ofAlb4 in Section 4.
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So we now supposeR = X × Y and prove that∃x ∈ X, y ∈ Y, i ∈ [N ], s.t.
wxwy �N · C0(f )ux,ivy,i .

Suppose the claim is not true. Then for allx ∈ X, y ∈ Y, i ∈ [N ], we have

wxwy > N · C0(f )ux,ivy,i . (2)

We first fix i for the moment. And for eachx ∈ X, we fix a smallest certificate setCSx of
f onx. Clearly|CSx |�C0(f ). We sum (2) over{x ∈ X : i ∈ CSx} and{y ∈ Y }. Then we
get ( ∑

x∈X: i∈CSx
wx

)(∑
y∈Y

wy

)
> N · C0(f )

( ∑
x∈X: i∈CSx

ux,i

)(∑
y∈Y

vy,i

)
. (3)

Note that
∑

y∈Y wy = ∑
x∈X,y∈Y w(x, y) = ∑

x∈X wx , and that
∑

y∈Y vy,i =∑
x∈X,y∈Y :xi �=yi

v(x, y, i) = ∑
x∈X vx,i wherevx,i = ∑

y∈Y :xi �=yi
v(x, y, i). Inequality

(3) now turns to( ∑
x∈X: i∈CSx

wx

)(∑
x∈X

wx

)
> N · C0(f )

( ∑
x∈X: i∈CSx

ux,i

)(∑
x∈X

vx,i

)

� N · C0(f )

( ∑
x∈X: i∈CSx

ux,i

)( ∑
x∈X: i∈CSx

vx,i

)

� N · C0(f )

( ∑
x∈X: i∈CSx

√
ux,ivx,i

)2

by the Cauchy–Schwartz Inequality. We further note that

ux,ivx,i =
( ∑
y∈Y :xi �=yi

u(x, y, i)

)( ∑
y∈Y :xi �=yi

v(x, y, i)

)

�
( ∑
y∈Y :xi �=yi

√
u(x, y, i)v(x, y, i)

)2

�
( ∑
y∈Y :xi �=yi

w(x, y)

)2

= (wx,i)
2

where we definewx,i = ∑
y∈Y :xi �=yi

w(x, y). Thus( ∑
x∈X: i∈CSx

wx

)(∑
x∈X

wx

)
> N · C0(f )

( ∑
x∈X: i∈CSx

wx,i

)2

. (4)

Now we sum (4) overi = 1, . . . , N , and note that∑
i

∑
x∈X: i∈CSx

wx = ∑
x∈X

∑
i:i∈CSx

wx �C0(f )
∑
x∈X

wx
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because|CSx |�C0(f ) for eachx. We have(∑
x∈X

wx

)2

> N
N∑
i=1

( ∑
x∈X: i∈CSx

wx,i

)2

.

By the arithmetic-square average inequality (or by Cauchy–Schwartz Inequality)

N(a2
1 + · · · + a2

N)�(a1 + · · · + aN)
2,

we have(∑
x∈X

wx

)2

>

( ∑
x∈X,i∈[N ]: i∈CSx

wx,i

)2

=
( ∑
x∈X,i∈[N ],y∈Y : i∈CSx ,xi �=yi

w(x, y)

)2

=
( ∑
x∈X,y∈Y

∑
i∈[N ]: i∈CSx ,xi �=yi

w(x, y)

)2

.

But by the definition of certificate, we know that for anyx andy there is at least one index
i ∈ CSx s.t.xi �= yi . Therefore, we derive an inequality(∑

x∈X
wx

)2

>

( ∑
x∈X,y∈Y

w(x, y)

)2

=
(∑
x∈X

wx

)2

which is a contradiction, as desired.�

We add some comments about this upper bound ofAlb3. First, this bound looks weak
at first glance because the

√
N factor seems too large. But in fact it is necessary. Consider

the problem of INVERT A PERMUTATION [4], 4 whereC0(f ) = C1(f ) = 1 but even the
Alb2(f ) = �(

√
N).

Second, the quantum query complexity of ELEMENT DISTINCTNESS is known to be
�(N2/3). The lower bound part is obtained by Shi [27] (for large range) and Ambainis
[7] (for small range); the upper bound part is obtained by Ambainis [8]. Observe that
C1(f ) = 2 thus

√
NC1(f ) = �(N), we derive the following interesting corollary from

the above theorem.

Corollary 9. Alb3 is not tight.

We make some remarks on the quantity
√
N · C−(f ) to end this subsection. A functionf

is symmetric iff (x1 . . . xN) = f (x�(1) . . . x�(n)) for any inputx and any permutation�
on [N ]. In [11], Beals et al. prove thatQ2(f ) = �(

√
N(N − �(f ))) by using Paturi’s

result d̃eg(f ) = �(
√
N(N − �(f ))) [23], where�(f ) = min{|2k − n + 1| : fk �=

kk+1,0�k�n − 1}. It is not hard to show that�(f ) = N − �(C−(f )) for symmetric
functionf . Thus we know that both̃deg(f ) andQ2(f ) are�(

√
N · C−(f )) for symmetric

functionf .

4 The original problem is not a Boolean function, but we can define a Boolean-valued version of it. Instead of
finding the positioni with xi = 1, we are to decide whetheri is odd or even. The original proof of the�(

√
N)

lower bound still holds.
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3.2. Two better upper bounds for total functions

It turns out that if the function is total, then the upper bound can be further tightened. We
introduce a new measure which basically characterizes the size of intersection of a 0 and
1-certificate sets.

Definition 10. For any functionf , if there is a certificate set assignmentCS : {0,1}N →
2[N ] such that for any inputsx, y with f (x) �= f (y), |CSx ∩ CSy |�k, thenk is called a
candidate certificate intersection complexity off . The minimal candidate certificate inter-
section complexity off is called the certificate intersection complexity off , denoted by
CI(f ). In other words,

CI(f ) = min
CS

max
x,y:f (x)�=f (y)

|CSx ∩ CSy |.

Now we give the following theorem which improves Theorem8 for total functions. Note
thatCI(f )�C−(f ) by the definition ofCI(f ).

Theorem 11. Alb3(f )�
√
N · CI(f ), for anyN -ary total Boolean functionf .

Proof. Again, we prove a stronger result that for any(X, Y,R, u, v,w) in Theorem 3,

min
(x,y)∈R,i∈[N ]

wxwy

ux,ivy,i
�N · CI(f ).

Similar to the proof for Theorem8, we assume without loss of generality thatR = X × Y

and for allx ∈ X, y ∈ Y , we have

wxwy > N · CI(f ) ux,ivy,i . (5)

We shall show a contradiction as follows. Fixi and sum (5) over{x ∈ X : i ∈ CSx} and
{y ∈ Y : i ∈ CSy}, we get∑

x∈X,y∈Y : i∈CSx∩CSy
wxwy

> N · CI(f )
( ∑
x∈X: i∈CSx

ux,i

)( ∑
y∈Y : i∈CSy

vy,i

)

= N · CI(f )
( ∑
x∈X,y∈Y : i∈CSx ,xi �=yi

u(x, y, i)

)

·
( ∑
x∈X,y∈Y : i∈CSy ,xi �=yi

v(x, y, i)

)

�N · CI(f )
( ∑
x∈X,y∈Y : i∈CSx∩CSy ,xi �=yi

u(x, y, i)

)

×
( ∑
x∈X,y∈Y : i∈CSx∩CSy ,xi �=yi

v(x, y, i)

)
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�N · CI(f )
( ∑
x∈X,y∈Y : i∈CSx∩CSy ,xi �=yi

√
u(x, y, i)v(x, y, i)

)2

�N · CI(f )
( ∑
x∈X,y∈Y : i∈CSx∩CSy ,xi �=yi

w(x, y)

)2

.

Now sum overi = 1, . . . , N , we get∑
x∈X,y∈Y,i∈[N ]: i∈CSx∩CSy

wxwy

> N · CI(f )
N∑
i=1

( ∑
x∈X,y∈Y : i∈CSx∩CSy ,xi �=yi

w(x, y)

)2

�CI(f )

( ∑
x∈X,y∈Y,i∈[N ]: i∈CSx∩CSy ,xi �=yi

w(x, y)

)2

.

Note that for total functionf , if f (x) �= f (y), there is at least one positioni ∈ CSx ∩CSy
s.t.xi �= yi . Thus ∑

x∈X,y∈Y,i∈[N ]: i∈CSx∩CSy ,xi �=yi

w(x, y)� ∑
x∈X,y∈Y

w(x, y).

On the other hand, by the definition ofCI(f ), we have∑
x∈X,y∈Y,i∈[N ]: i∈CSx∩CSy

wxwy � CI(f )
∑

x∈X,y∈Y
wxwy

= CI(f )

( ∑
x∈X,y∈Y

w(x, y)

)2

.

Therefore we get a contradiction

CI(f )

( ∑
x∈X,y∈Y

w(x, y)

)2

> CI(f )

( ∑
x∈X,y∈Y

w(x, y)

)2

as desired. �

AND-OR TREE is a famous problem in both classical and quantum computation. In the
problem, there is a complete binary tree with height 2n. Any node in odd levels is labeled
with AND and any node in even levels is labeled with OR. TheN = 4n leaves are the
input variables, and the value of the function is the value that we get at the root, with
value of each internal node calculated from the values of its two children in the common
AND/OR interpretation. The classical randomized decision tree complexity for AND-OR

TREE is known to be�((1+√
33

4 )n) = �(N0.753...) by Saks and Wigderson in[25] and
Santha in [26]. The best known quantum lower bound is�(

√
N) by Barnum and Saks in

[9] and best known quantum upper bound is the same as the best classical randomized one.
Note thatC−(AND-OR TREE) = 2n = √

N and thus
√
NC−(f ) = N3/4. So if we only use



252 S. Zhang / Theoretical Computer Science 339 (2005) 241–256

Theorem8, it seems that we still have chances to improve the known�(
√
N) lower bound

byAlb3. But by Theorem 11 we know that actually it is impossible.

Corollary 12. Alb3(AND-OR TREE)�
√
N .

Proof. It is sufficient to prove that there is a certificate assignmentCS s.t.|CSx ∩CSy | = 1
for anyf (x) �= f (y). In fact, by a simple induction, we can prove that the standard certificate
assignment satisfies this property. The base case is trivial. For the induction step, we note
that for an AND connection of two subtrees, the 0-certificate set of the new larger tree can
be chosen as any one of the two 0-certificate sets of the two subtrees, and the 1-certificate
set of the new larger tree can be chosen as the union of the two 1-certificate sets of the two
subtrees. As a result, the intersection of the two new certificate sets is not enlarged. The OR
connection of two subtrees is analyzed in the same way. Thus the intersection of the final
0- and 1-certificate sets is of size 1.�

We can tighten the
√
N · C−(f ) upper bound in another way and get the following result

which also implies Corollary12.

Theorem 13. Alb3(f )�
√
C0(f )C1(f ), for any total Boolean functionf .

Proof. For any (X, Y,R, u, v,w) in Theorem 3, we assume without loss of general-
ity that X ⊆ f−1(0), Y ⊆ f−1(1) andR = X × Y . We are to prove∃x, y, i, j s.t.
wxwy �C0(f )C1(f )ux,ivy,j . Suppose this is not true, i.e. for allx ∈ X, y ∈ Y, i, j ∈ [N ],
wxwy > C0(f )C1(f )ux,ivy,j . First fix x, y and sum overi ∈ CSx andj ∈ CSy . Since
|CSx |�C0(f ), |CSy |�C1(f ), we have

wxwy >
∑

i∈CSx
ux,i

∑
j∈CSy

vy,j .

Now we sum overx ∈ X andy ∈ Y ,(∑
x∈X

wx

)(∑
y∈Y

wy

)
>

( ∑
x∈X,i∈CSx

ux,i

)( ∑
y∈Y,j∈CSy

vy,j

)

=
( ∑
x∈X,y∈Y,i∈[N ]:xi �=yi ,i∈CSx

u(x, y, i)

)

×
( ∑
x∈X,y∈Y,j∈[N ]:xj �=yj ,j∈CSy

v(x, y, j)

)
.

Sincef is total, there is at least onei0 ∈ CSx ∩ CSy s.t.xi0 �= yi0.(∑
x∈X

wx

)(∑
y∈Y

wy

)
>

( ∑
x∈X,y∈Y

u(x, y, i0)

)( ∑
x∈X,y∈Y

v(x, y, i0)

)

�
( ∑
x∈X,y∈Y

√
u(x, y, i0)v(x, y, i0)

)2
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�
( ∑
x∈X,y∈Y

w(x, y)

)2

=
(∑
x∈X

wx

)(∑
y∈Y

wy

)
which is a contradiction. �

Finally, we remark that even these two improved upper bounds ofAlb3(f ) are not al-
ways tight. For example, Sun, Yao and Zhang prove[31] that graph property SCORPION,
directed graph property SINK and a circular function all haveQ2(f ) = �̃(

√
n), but both√

C0(f )C1(f ) and
√
N · CI(f ) are�(n).

4. A further generalized Ambainis lower bound

WhileAlb2 andAlb3 use different ideas to generalizeAlb1, it is natural to combine both
and get a further generalization. The following theorem is a result in this direction. This
theorem is to Theorem 3 is as Theorem 2 is to Theorem 1. The proof is similar to the ones
in [4,5], with inner products substituted for density operators to make it look easier.5

Theorem 14. Let f : IN → {0,1} whereI is a finite set, andX, Y be two sets of inputs
s.t.f (x) �= f (y) if x ∈ X andy ∈ Y . LetR ⊆ X × Y . Letw, u, v be a weight scheme for
X, Y,R. Then

Q2(f ) = �
(√

min
(x,y)∈R,i∈[N ],xi �=yi

wxwy

ux,ivy,i

)
.

Proof. The query computation is a sequence of operationsU0 → Ox → U1 → · · · → UT

on some fixed initial state, say|0〉. Note that hereT is the number of queries. Denote|�k
x〉 =

Uk−1Ox . . . U1OxU0|0〉. Note that|�0
x〉 = |0〉 for all input x. Because the computation is

correct with high probability (1− �), for any(x, y) ∈ R, the two final states have to have
some distance to let the measurement distinguish them. In other words, we can assume that
|〈�T

x |�T
y 〉|�c for some constantc < 1. Now suppose that

|�k−1
x 〉 = ∑

i,a,z

�i,a,z|i, a, z〉, |�k−1
y 〉 = ∑

i,a,z

	i,a,z|i, a, z〉,

wherei is for the index address,a is for the answer, andz is the workspace. Then the oracle
works as follows.

Ox |�k−1
x 〉 = ∑

i,a,z

�i,a,z|i, a ⊕ xi, z〉 = ∑
i,a,z

�i,a⊕xi ,z|i, a, z〉,

Oy |�k−1
y 〉 = ∑

i,a,z

	i,a,z|i, a ⊕ yi, z〉 = ∑
i,a,z

	i,a⊕yi ,z
|i, a, z〉.

5 This idea was mentioned in Ambainis’ original paper[4] and was also used in some other papers such as[19].
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So we have

〈�k
x |�k

y〉 = ∑
i,a,z

�∗
i,a⊕xi ,z

	i,a⊕yi ,z

= ∑
i,a,z:xi=yi

�∗
i,a⊕xi ,z

	i,a⊕yi ,z
+ ∑

i,a,z:xi �=yi

�∗
i,a⊕xi ,z

	i,a⊕yi ,z

= 〈�k−1
x |�k−1

y 〉 + ∑
i,a,z:xi �=yi

�∗
i,a⊕xi ,z

	i,a⊕yi ,z
− ∑

i,a,z:xi �=yi

�∗
i,a,z	i,a,z.

Thus

1 − c = 1 − |〈�T
x |�T

y 〉| =
T∑
k=1

(|〈�k−1
x |�k−1

y 〉| − |〈�k
x |�k

y〉|)

�
T∑
k=1

|〈�k−1
x |�k−1

y 〉 − 〈�k
x |�k

y〉|

=
T∑
k=1

∣∣∣∣∣ ∑
i,a,z:xi �=yi

(�∗
i,a⊕xi ,z

	i,a⊕yi ,z
− �∗

i,a,z	i,a,z)

∣∣∣∣∣
�

T∑
k=1

∑
i,a,z:xi �=yi

(|�i,a⊕xi ,z||	i,a⊕yi ,z
| + |�i,a,z||	i,a,z|).

Summing up the inequalities for all(x, y) ∈ R, with weightw(x, y) multiplied, yields

(1 − c)
∑

(x,y)∈R
w(x, y)

�
T∑
k=1

∑
(x,y)∈R

∑
i,a,z:xi �=yi

w(x, y)(|�i,a⊕xi ,z||	i,a⊕yi ,z
| + |�i,a,z||	i,a,z|)

�
T∑
k=1

∑
(x,y)∈R

∑
i,a,z:xi �=yi

√
u(x, y, i)v(x, y, i)(|�i,a⊕xi ,z||	i,a⊕yi ,z

|
+|�i,a,z||	i,a,z|)

=
T∑
k=1

∑
i,a,z

∑
(x,y)∈R:xi �=yi

√
u(x, y, i)v(x, y, i)(|�i,a⊕xi ,z||	i,a⊕yi ,z

|
+|�i,a,z||	i,a,z|)

by (1). We then use inequality 2AB�A2 + B2 to get√
u(x, y, i)v(x, y, i)|�i,a⊕xi ,z||	i,a⊕yi ,z

|
� 1

2

(
u(x, y, i)

√
vy,i

ux,i

wx

wy

|�i,a⊕xi ,z|2 + v(x, y, i)

√
ux,i

vy,i

wy

wx

|	i,a⊕yi ,z
|2
)
,

and √
u(x, y, i)v(x, y, i)|�i,a,z||	i,a,z|
� 1

2

(
u(x, y, i)

√
vy,i

ux,i

wx

wy

|�i,a,z|2 + v(x, y, i)

√
ux,i

vy,i

wy

wx

|	i,a,z|2
)
.
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DenoteA = minx,y,i:(x,y)∈R,xi �=yi wxwy/ux,ivy,i . Note that∑
y:(x,y)∈R,xi �=yi

u(x, y, i) = ux,i ,
∑

x:(x,y)∈R,xi �=yi

v(x, y, i) = vy,i

by the definition ofux,i andvy,i , we have

(1 − c)
∑

(x,y)∈R
w(x, y) � 1

2

T∑
k=1

∑
i,a,z

[∑
x∈X

√
ux,ivy,i

wxwy

wx(|�i,a⊕xi ,z|2 + |�i,a,z|2)

+∑
y∈Y

√
ux,ivy,i

wxwy

wy(|	i,a⊕yi ,z
|2 + |	i,a,z|2)

]

� 1

2

T∑
k=1

[∑
x∈X

√
1/Awx

∑
i,a,z

(|�i,a⊕xi ,z|2 + |�i,a,z|2)

+∑
y∈Y

√
1/Awy

∑
i,a,z

(|	i,a⊕yi ,z
|2 + |	i,a,z|2)

]

= √
1/A

T∑
k=1

(∑
x∈X

wx + ∑
y∈Y

wy

)
= 2T

√
1/A

∑
(x,y)∈R

w(x, y)

by noting that
∑

xwx = ∑
ywy = ∑

(x,y)∈Rw(x, y). Therefore,T = �(
√
A). �

We denote byAlb4(f ) the best possible lower bound for functionf achieved by this
theorem. It is easy to see thatAlb4 generalizesAlb3. However, according to a recent result
by Spalek and Szegedy[30], Alb3, Alb4 and the quantum adversary method proposed by
Barnum, Saks and Szegedy in [10] are all equivalent. Thus we cannot useAlb4 to get better
lower bounds than usingAlb3. However,Alb4 may be easier to use in some cases.
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