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Abstract

The polynomial method and the Ambainis lower boundAds, for short) method are two main
quantum lower bound techniques. While recently Ambainis showed that the polynomial method is
not tight, the present paper aims at studying the power and limitatiéibd. We first use known
Alb's to deriveQ(n1-5) lower bounds for BPARTITENESS BIPARTITENESSMATCHING and GRAPH
MATCHING, in which the lower bound for BARTITENESSimproves the previou€(n) one. We then
show that all the three known Ambainis lower bounds have a limitafi?ddmin{Co(f), C1(/)},
whereCqp(f) andC1(f) are the 0- and 1-certificate complexities, respectively. This implies that for
many problems such aRTANGLE, k-CLIQUE, BIPARTITENESSand BPARTITE/GRAPHMATCHING
which draw wide interest and whose quantum query complexities are still open, the best known lower
bounds cannot be further improved by using Ambainis techniques. Another consequence is that all
the Ambainis lower bounds are not tight. For total functions, this upper bourdifsrcan be further
improved to midy/Co(f)C1(f), /N - CI(f)}, whereCI(f) is the size of max intersection of a
0- and a 1-certificate set. Again this implies tldb’s cannot improve the best known lower bound
for some specific problems such asB-OR TREE, whose precise quantum query complexity is still
open. Finally, we generalize the three knopd's and give a newAlb style lower bound method,
which may be easier to use for some problems.
© 2005 Published by Elsevier B.V.
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1. Introduction

Quantum computing has received a great deal of attention in the last decade because of
the potentially high speedup over classical computation. Among others, the query model
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is extensively studied, partly because it is a natural quantum analog of classical decision tree
complexity, and partly because many known quantum algorithms fall into this framework
[13,14,16,18,19,28,29,32]. In the query model, the input is accessed by querying an oracle,
and the goal is to minimize the number of queries made. We are most interested in double-
side bounded-error computation, where the output is correct with probability at least 2/3
for all inputs. We use>( f) to denote minimal number of queries for computifigvith
double sided bound-error. For more details on the quantum query model, we refer to [6,15]
as excellent surveys.

Two main lower bound techniques f@r(f) are the polynomial method by Beals et al.
[11] and Ambainis lower bounds [4,5], the latter of which is also called quantum adversary
method. Many lower bounds have recently been proven by applying the polynomial method
[1,11,22,24,27] and Ambainis lower bounds [2,4,5,17,31]. Recently, Aaronson even uses
Ambainis lower bound technigue to achieve lower bounds for some classical problems
[2]. Given the usefulness of the two methods, it is interesting to know how tight they are.
In a recent work [5], Ambainis proves that polynomial method is not tight, by showing
a function with polynomial degre#/ and quantum query complexi@(M1321-). So a
natural question is the power of Ambainis lower bounds. We show that all known Ambainis
lower bounds are not tight either, among other results.

There are several known versions of Ambainis lower bounds, among which the three
Ambainis theorems are widely used partly because they have simple forms and are thus
easy to use. The first twhlb’s are given in [4] as follows.

Theorem 1(Ambainis[4]). Let 7 : {0, 1}V — {0, 1} be a function and, ¥ be two sets of
inputss.t. f(x) # f(y)ifx € Xandy € Y.LetR € X x Y be a relations.t.

(1) Vx € X, there are at leasin differenty € Y s.t.(x, y) € R.

(2) Vy € Y, there are at leasin’ differentx € X s.t.(x, y) € R.

(3) Vx € X, Vi € [N], there are at most differenty € Y s.t.(x, y) € R, x; # ;.

(4) Vy € Y, Vi € [N], there are at modl differentx € X s.t.(x, y) € R, x; # y;.
ThenQa(f) = Q(/mm’/1l").

Theorem 2(Ambainis[4]). Let f: IY — {0, 1} be a Boolean function whetkis a finite
set and X, Y be two sets of inputs.t. f(x) # f(y)ifx e Xandy e Y.LetRC X x Y
satisfy

(1) Vx € X, there are at leasin differenty € Y s.t.(x, y) € R.

(2) Vy € Y, there are at least:’ differentx € X s.t.(x, y) € R.

Denote

Li=Hy:x,y)e R xi #yi}l, Lyi=Hx:(x,y) R xi#yll

ZmaX: X ma.X l_x lly,l'
x,y,i:(x,y)eER,i€[N],x;#y;

ThenQz(f) = Q(/mm' [Imax).

Obviously, Theorem 2 generalizes Theorem I5lnAmbainis gives another (weighted)
approach to generalize Theorem 1. We restate it in a form similar to Theorem 1.
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Definition 3. Let f: Y — {0, 1} be a Boolean function whetkis a finite set. Lex, Y
be two sets of inputs.t. f(x) # f(y)if x € Xandy € Y.LetR C X x Y be arelation. A
weight scheme fokK, Y, R consists of three weight functions(x, y) > 0, u(x, y,i) > 0
andv(x, y, i) > 0 satisfying

u(x, y, Hu(x, y, i) =w(x, y) 1)
forall (x, y) € R andi € [N] with x; # y;. We further denote
wy = Yy wkx,y), wy= Yy w,Yy)

yi(x,y)eR x:(x,y)ER
Uy = > u(x,y, i), vy;= > v(x,y, ).
yi(x,y)ER x; #Yi x:(x,y)ER, x; #yi

Theorem 4(Ambainis[5]). Let f: IV — {0, 1} where! is a finite setand X < f~1(0),
Y € f~Y1)andR C X x Y. Letw, u, v be a weight scheme fo¢, Y, R. Then

. w ) w,
02(f)=Q mn ——. min —|.
xeX,ie[N]uy ; yeY,je[N] Uy, j

Denote byAlb1(f), Alba(f) andAlbs( f) the best lower bound for functiofiachieved by

Theorem 1, 2 and 3, respectivelyNote that in the thred/b’s, there are many parameters

(X,Y, R,u, v, w) to be set. By setting these parameters in an appropriate way, one can get

good lower bounds for many problems. In particular, we consider the following three graph

properties?

(1) BIPARTITENESS Given an undirected grapliecide whether it is a bipartite graph.

(2) GrRAPHMATCHING: Given an undirected grapldecide whether it has a perfect match-
ing.

(3) BIPARTITE MATCHING: Given an undirected bipartite grapldecide whether it has a
perfect matching.

We show by usingd/b, that all these three graph properties hav@(al®) lower bound,

wheren is the number of vertices. FONB\RTITENESS this improves the previous result of

Q(n) lower bound (in a preliminary version {20]).

SinceAlb, andAlbz generalizes\lbs in different ways, it is interesting to compare their
powers. It turns out thatlba(f) < Albs(f).

However, evem/bz has a limitation: we show that/bz( f) is no more thag/N - C_(f)
whereC_(f) = min{Co(f), C1(f)} with Co(f) andC1(f) being the 0- and 1-certificate
complexity of f, respectively. This has two immediate consequences. First, it gives a neg-
ative answer to the open problem wheth&b, or Albs is tight, because for IEMENT
DISTINCTNESS we know thatQ»(f) = Q(N?/3) by Shi’s result in [27], but/N - C_(f)
is only v2N.

Second, for some problems whose precise quantum query complexities are still unknown,
our theorem implies that the best known lower bound cannot be further improved by using

170 make the later results more precise, we actuallyAisg( /) to denote the value inside ti§&( ) notation.
For exampleAlb1(f) = maxx,y,g) /mm'/1l'.
2In this paper, all the graph property problems are given by adjacency matrix input.
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Ambainis lower bound techniques, no matter how we choose the parametersAhbthe
theorems. For exampleRIANGLE/k-CLIQUE (k is constant) are the problems to decide
whether am-node graph contains a triangtetode clique. It is easy to get@(n) lower
bound for both of them. By our theorem, however, we know that this is the best possible by
using Ambainis lower bound techniques. Also fb@*-°) lower bound for BPARTITENESS
BIPARTITE MATCHING and GRAPH MATCHING cannot be further improved byib’s either,
becaus&”1(f) = O(n) for all of them.

If f is a total function, the above upper bound Affb’s can be further tightened in
two ways. The first one igdlbs(f) <+/N - CI(f), whereCl(f) is the size of the largest
intersection of a O-certificate set and a 1-certificate se€CIgg) < C_(f). The second
approach leads to another resdilbs3( ) <+/Co(f)C1(f). Both the results imply that for
AND-OR TREE, a problem whose quantum query complexity is still offglp the current
bestQ(+/N) lower bound [9] cannot be further improved by using Ambainis lower bounds.
The second result also give an positive answer to the open question wheébhéf) =
O/ Co(HCL()).

Finally, it is natural to consider combining the different approachesAiat and Alb3
use to generalizd/b;, and get a further generalized one. Based on this idea, we give a new
and more general lower bound theorem, which we dal;. Compared withAlbs, this
may be easier to use.

1.1. Related work

In the open problems part of [5], Ambainis mentions tf€,(f)C1(f) limitation of
Alby, and asks for new quantum lower bound techniques highenif@st /) C1(f). How-
ever, it is not shown in [5] whethetlb, and Alb3 are also bounded by thgCo(F)C1(f)
limitation for total function £, and actually even whethetlb,(f) = O(/Co(f)C1(f))
was still open at the time, according to a private communication between Ambainis and us.

Recently Spalek and Szegedy independently show in [30] that the all quantum adversary
methods, includingd/b3 by Ambainis [5],Alb4 in an earlier version of the present paper
[33], and another quantum adversary method proposed in [10], are actually equivalent. Using
this fact, they gave a simple proof that all of them cannot prove quantum lower bounds better
thanQ(,/N - C_(f)) for general function and not better th&t./Co( /)C1(f)) for total
functions.

The theoremAlbs(f) < /N - C_(f) is also derived by Laplante and Magniez by using
Kolmogorov complexity in [20]. And th@(n-°) lower bound for Matching is independently
obtained by Berzina, Dubrovsky, Freivalds, Lace and Scegulnajain[12], and the same lower
bound for Bipartiteness is independently obtained by Durr (cited in [20]).

2. Old Ambainis lower bounds

In this section we first use/b> to derive Q(n1°) lower bounds for BPARTITENESS
BIPARTITE MATCHING and QRAPH MATCHING, then show thati/b3 has actually at least the
same power adlb;.
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Fig. 1. X andY.

Theorem 5. All the three graph propertieB1P4RTITENESS, BiPARTITE M ATCHING and
G rarH M arcuING haveQa(f) = Q(n'®).

Proof. 1. BIPARTITENESS The proof is very similar to the one for provin@(n1-°) lower
bound of GRAPH CONNECTIVITY by Durr et al.[17]. Without loss of generality, we assume
n is even, because otherwise we can use the following argument on arhitraty(out of
total n) nodes and leave thé” node isolated. Let

X = {G : G is composed of a singlelength cycle},

Y = {G : G is composed of two cycles each with length being an odd number between
n/3 and 2/3}, and

R = {(G,G") € X x Y : 3 four nodesv1, vz, v3, v4 S.t. the only difference between
graphsG andG’ is that(v1, v2), (v3, v4) are edges il but not inG’ and(v1, v3), (v2, v4)
are edges i’ but not inG}.

Note that a graph is bipartite if and only if it contains no cycle with odd length. Therefore,
any graph inX is a bipartite graph becauges even, and any graph in is not bipartite
graph because it contains two odd-length cycles. Then all the remaining analysis is the same
as calculation in the proof for @&PH CONNECTIVITY (undirected graph and matrix input)
in [17], and finally Alb>(BIPARTITENESS = Q(n®).

2. BIPARTITE MATCHING. Let X be the set of the bipartite graphs like Fig. 1(a) where
7 andg are two permutations dofL, ..., n}, andn/3<k<2n/3. LetY be the set of the
bipartite graphs like Fig. 1(b), wheréands’ are two permutations df., . . ., n}, and also
n/3<k'<2n/3. It is easy to see that all graphsXhhave no perfect matching, while all
graphs inY have a perfect matching.

Let R be the set of all pairs afr, y) € X x Y asin Fig. 2, where graphis obtained from
x by choosing two horizontal edgés(i), o(i)), (z(j), a(j)), removing them, and adding
two edgest(i), a(;)), (z(j), a(i)).

Now it is not hard to calculate the, m’, [nax in Alb,. For example, to getz we study
x in two cases. When/3<k<n/2, any edgez(i), o(i)) wherei € [k — n/3, k] has
at leastn /6 choices for edgét(j), o(j)) because the only requirement for choosing is
thatk’ € [n/3,2n/3] andk’ =i +n — j. The case when/2<k <2rn/3 can be handled
symmetrically. Thus: = @(n2). The same argument yields = ©(rn?). Finally, for/max,
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we note that if the edge = (z(i), o(i)) for somei, thenl, , = O(n) andl, . = 1, if the
edgee = (1(i), a(j)) for somei, j, thenl, ., = 1 andl, ., = O(n). For all other edges,
Iy =1y, = 0. Putting all cases together, we hdygx = O(n). Thus by Theorem 2, we
know thatAlb>(BIPARTITE MATCHING) = Q(nl®).

3. GRAPHMATCHING. This can be easily shown either by using the sémeY, R) as the
proof for BIPARTITENESS because a cycle with odd length has no matching, or by noting
that BPARTITE MATCHING is a special case of @PHMATCHING. [

It is interesting to note that we can also prove the above theoresaifizy For example,
for BIPARTITE MATCHING, we chooseX, Y, R in the same way, and leb(x, y) = 1 for
all (x,y) € R. Letu(x,y,e) = 1/+/n if e is a horizontal edgéz(i), o(i)) in x, and
u(x,y,e) = J/nif e = (z(i), 6(j)) ore = (z(j), o)) in x. Thusu, , = O(/n) for
all edgese, it is the same fow, ., thusw, /u,, = O®*®), w,/vy, = O®*®), and
Q2(f) = Q(n'>) by Albz.

This coincidence is not accidental. Actually it turns out that we can always show a lower
bound byAlb3 provided that it can be shown byib;.

Theorem 6. Alba(f) < Albs(f).

Proof. ForanyX, Y, Rin Theorem 2, we set the weight functions in Theorem 3 as follows.

Letw(x,y) = 1,u(x,y,i) = /Imax/Ix,i andv(x, y, i) = «/Imax/ly,;. It's easy to check
that

lmax

ulx,y,vx,y,i)= ] >1=w(x,y).

x,ily,i
Now thatu(x, y, ) is independent om, so we have:, ; = [, ju(x, y,i) = /Imax. Sym-
metrically, it follows thatv, ; = +/Imax. Thus, by denoting:, = [{y : (x,y) € R}| and
my = |{x : (x,y) € R}|, we have

min 2 min 2% = min 42 min 2 ™ m’__ mm

X0 Uy yio Uy X, A/lmax ¥ ~/Imax VImax /Imax Imax
which means that for any, Y, R in Theorem 2, the lower bound result can be also achieved
by Theorem 3. O
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3. Limitations of Ambainis lower bounds

In this section, we show some bounds for thi's in terms of certificate complexity.
We consider Boolean functions.

Definition 7. For anN-ary Boolean functionf : IV — {0, 1} and an inputx € IV, a
certificate se€CS, of f onx is a set of indices such th@tx) = f(y) wheneven; = x; for
alli € CS;. The certificate complexitg (£, x) of f onx is the size of a smallest certificate
set of f on x. The b-certificate complexity off is C;,(f) = max. rx=» C(f, x). The
certificate complexity off is C(f) = maxX{Co(f), C1(f)}. We further denot& _( f) =
min{Co(f), C1(f)}-

3.1. A general limitation for Ambainis lower bounds

In this subsection, we give an upper boundAdbz( 1), which implies a limitation of all
the three known Ambainis lower bound techniques.

Theorem 8. Alb3(f)</N - C_(f), for any N-ary Boolean functiory.
Proof. Actually we prove a stronger result: for aqy, Y, R, u, v, w) as in Theorem 3,

. Wy W
min  —— <NC_(f).
(x,))ERIEIN] Uy jVy |

With out loss of generality, we assume ti@at(f) = Co(f), andX < f~1(0) andY C
f~1(1). We can actually further assume that= X x Y, because otherwise we just let
R’ = X x Y, and set new weight functions as follows.

/ . _ M(X,J’vi) (-xay)eRa
wix,y, i) = {O otherwise

!/ N v(xvyvi) (xay)eRv
vix,y, i) = { 0 otherwise

/ _Jwx,y) (x,y) €R,
wix, y) = { 0 otherwise

Thenitis easyto see thatit satisfi@¢¥go itis also a weight scheme. And for these new weight

) ;L | N N
functions, we haver ; = > 0 ey WOV ) = D00 peRon 2y WX Yo 1) =
uy,; and S|m|Iarva/yi = v,,; andw, = wy, w’y = wy.3 It follows thatw,wy /u, ;vy,; =

wiws/u' ;v thus we can useX’, Y', R, u’, v/, w’) to derive the same lower bound as
we use(X,Y, R, u, v, w).

3 Note that the function values of, v/, w’ are zero whelix, y) # R, which does not conform to the definition
of weight scheme. But actually Theorem 3 also holdsfor0, v >0, w >0 as long as, ;, vy ;, wx, wy are all
strictly positive for anyx, y, i. This can be seen from the proof &fb4 in Section 4.
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So we now suppose = X x Y and prove thalix € X,y € Y,i € [N], s.t.
wywy KN - Co(futy,ivy,;.
Suppose the claim is not true. Then foralE X,y € Y,i € [N], we have
wywy > N - Co(f)uy,ivy,i. (2)

We first fix i for the moment. And for each € X, we fix a smallest certificate s€iS, of
fonx. Clearly|CS;|<Co(f). We sumR) over{x € X :i € CS;}and{y € Y}. Then we
get

( Z wx) (Z wy) > N -Co(f) ( Z Mx,i) (Z Uy,i) . (3
xeX: ieCS, yey xeX: ieCS, yeyY

Note that Zyey wy = erx,yey wx,y) = Y .xWws, and thatzyey Vyi =
DoxeX,yeripy VY1) = D cx vxi Wherevy; = 3 oy, v(x, y, ). Inequality
(3) now turns to

( Z wx) <Z wx) > N-Co(f) ( Z ux,i) < Ux,i)
xeX: ieCS; xeX xeX: ieCS; xeX

= N - Co(f) ( > ux,i) ( > Ux,i)
xeX: ieCS; xeX: ieCS,

2
= N - Co(f) ( > \/ux,ivx,i)

xeX: ieCS,

by the Cauchy—Schwartz Inequality. We further note that

Ux,iVx,i = ( Z u(x, y,l)) ( Z U()C,y,i))
yEY:ix; #yi YeYixi £y

2
< > w(x,y,i)v(x,y,i))

YEYixi#yi

2
>< > w(x,y))
YEY X £Yi

= (wy,)?

where we definey, ; = Zyey:x#y[w(x, y). Thus

2
< > wx) <Z wx) >N - Co(f)( > wx,i> . (4)
xeX: ieCS, xeX xeX: ieCS,

Now we sum ) overi =1, ..., N, and note that

Z Wy = Z Z wxch(f)wa

i xeX:ieCS, xeX i:ieCS; xeX

WV
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becausgCS;| < Co(f) for eachx. We have

2 N 2
(Z wx> >Ny ( > wx,i) .
xeX i=1 \xeX: ieCS,

By the arithmetic-square average inequality (or by Cauchy—Schwartz Inequality)
N@f+ - +ag) > (a1 + - +ay)?,

we have

2 2
(So) > ( > wx,,») - ( > w(x,y>)
xeX xeX,i€[N]: ieCS; xeX,i€[N],yeY: ieCS x;#yi

2
= ( 3 > w(x, y)) :
xeX,yeY i€[N]: ieCS,x;#£y;

But by the definition of certificate, we know that for anyandy there is at least one index
i € CS s.t.x; # y;. Therefore, we derive an inequality

2 2 2
(50) - (3 e) ~(50)
xeX xeX,yeY xeX

which is a contradiction, as desired]

2

We add some comments about this upper boundiég. First, this bound looks weak
at first glance because thRéN factor seems too large. But in fact it is necessary. Consider
the problem of NVERT A PERMUTATION [4], *whereCo(f) = C1(f) = 1 but even the
Alby(f) = Q(W/N).

Second, the quantum query complexity ofERMENT DISTINCTNESSis known to be
O(N?/3). The lower bound part is obtained by Shi [27] (for large range) and Ambainis
[7] (for small range); the upper bound part is obtained by Ambainis [8]. Observe that
C1(f) = 2 thus/NC1(f) = @(N), we derive the following interesting corollary from
the above theorem.

Corollary 9. Alb3 is not tight.

We make some remarks on the quantjtyv - C_(f) to end this subsection. A functiof

is symmetric if f(x1...xny) = f(xe) - --Xo) fOr any inputx and any permutation

on[N]. In[11], Beals et al. prove tha®2(f) = O(/N(N —I'(f))) by using Paturi’s
resultdeg(f) = OG/NN —T(f))) [23], whereI'(f) = min{|2k —n + 1| : fi #

ki1, 0<k<n — 1}. Itis not hard to show thaf'(f) = N — @(C_(f)) for symmetric
function f. Thus we know that bottieg ( ) andQ2(f) are®@ (/N - C_(f)) for symmetric
function 1.

4The original problem is not a Boolean function, but we can define a Boolean-valued version of it. Instead of
finding the position with x; = 1, we are to decide whetheis odd or even. The original proof of tHe(v/N)
lower bound still holds.
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3.2. Two better upper bounds for total functions

It turns out that if the function is total, then the upper bound can be further tightened. We
introduce a new measure which basically characterizes the size of intersectidénamd
1-certificate sets.

Definition 10. For any functionf, if there is a certificate set assignmens : {0, 1}V —
2N such that for any inputs, y with f(x) # f(y), |ICS; N CS;| <k, thenk is called a
candidate certificate intersection complexityfofThe minimal candidate certificate inter-
section complexity off is called the certificate intersection complexity ff denoted by
CI(f). In other words,

Cl = min max CS. NCs,|.
) CS x,y:f()AS() ICS Sy'

Now we give the following theorem which improves Theor@ifor total functions. Note
thatCI(f) < C_(f) by the definition ofCI(f).

Theorem 11. Alb3(f) <+/N - CI(f), for any N-ary total Boolean functiory.

Proof. Again, we prove a stronger result that for ai¥/, Y, R, u, v, w) in Theorem 3,

Wy Wy

min <N -CI(f).
(x,y)ER,i€[N] Ux,iVy,i

Similar to the proof for Theorer@, we assume without loss of generality tiRat X x Y
and forallx € X, y € Y, we have

wywy > N - CI(f) ux ivy,;. (5)

We shall show a contradiction as follows. Fiand sum %) over{x € X : i € CS;} and
{yeY:ieCS}, weget

Wy Wy
xeX,yeY:ieCS,NCS,

> N -CI(f) < > ux,i) < > Uy,i)
xeX: ieCS, yeY:ieCS,

= N-CI(f) ( » u(x,y,i))

xeX,yeY: ieCS,x;#yi

) ( 3 v(x,y, i))
xeX,yel:ieCS, x;#y;

>N - CI(f) > u(x,y, i
xeX,yeY:ieCS.NCS),x; #y;

X Z U(X, y,l)
xeX,yeY: ieCSNCS),x; #y;
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2
>N-CI(f) Vulx,y, v(x, y, i)
xeX,yeY:ieCS.NCS;,x; #y;
2
>N -CI(f) ( > w(x,y)> .
xeX,yeY: ieCS.NCS;,x; #y;
Now sumoveri =1,..., N, we get
WxWy

xeX,yeY,ie[N]: ieCSNCS,

2
N
>N~C|(f)2< > w(x,y))
i=1 \xeX,yeY: ieCS,NCS, x; #y;

2
=CI(f) ( > w(x,y)) :
xeX,yeY,ie[N]: ieCSNCS,,x; #y;

Note that for total functiory’, if f(x) # f(y), there is at least one positiere CS, N CS;
s.t.x; # y;. Thus

wx,y)= Y wx,y).
xeX,yeY,i€[N]: ieCSNCS),x; #yi xeX,yeY

On the other hand, by the definition ©f( /), we have

wywy < CI(f) Y wew,
xeX,yeY,ie[N]: ieCSNCS, xeX,yeY

xeX,yeY

2
=C|(f)< > w(x,y)>.

Therefore we get a contradiction

2 2
Cl(f)( > w(x,y)> >C|(f)< > w(x,y))

xeX,yeY xeX,yeY

as desired. O

AND-OR TREE is a famous problem in both classical and quantum computation. In the
problem, there is a complete binary tree with height®ny node in odd levels is labeled
with AND and any node in even levels is labeled with OR. THe= 4" leaves are the
input variables, and the value of the function is the value that we get at the root, with
value of each internal node calculated from the values of its two children in the common
AND/OR interpretation. The classical randomized decision tree complexity fior@rR

TREE is known to be@((”Tm)") = O(N®7%3-) by Saks and Wigderson if25] and
Santha in [26]. The best known quantum lower boun®(s/N) by Barnum and Saks in

[9] and best known quantum upper bound is the same as the best classical randomized one.
Note thatC_ (AND-OR TREE) = 2" = /N and thus,/NC_(f) = N34. So if we only use
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Theoren8, it seems that we still have chances to improve the kn@wiN) lower bound
by Albs. But by Theorem 11 we know that actually it is impossible.

Corollary 12. Alb3(AND-OR TREE) <+/N.

Proof. Itis sufficient to prove that there is a certificate assignn@®5.t|CS, NCS,| = 1
foranyf(x) # f(y).Infact, by asimple induction, we can prove thatthe standard certificate
assignment satisfies this property. The base case is trivial. For the induction step, we note
that for an AND connection of two subtrees, the O-certificate set of the new larger tree can
be chosen as any one of the two O-certificate sets of the two subtrees, and the 1-certificate
set of the new larger tree can be chosen as the union of the two 1-certificate sets of the two
subtrees. As a result, the intersection of the two new certificate sets is not enlarged. The OR
connection of two subtrees is analyzed in the same way. Thus the intersection of the final
0- and 1-certificate sets is of size 1[]

We can tighten thg/N - C_(f) upper bound in another way and get the following result
which also implies Corollart2.

Theorem 13. Alb3(f) <+/Co(f)C1(f), for any total Boolean functiorf.

Proof. For any (X, Y, R,u,v, w) in Theorem 3, we assume without loss of general-
itythat X € £~10),Y € f 1) andR = X x Y. We are to provélx, y, i, j S.t.
wywy < Co(f)C1(fuy vy, j. Suppose thisis nottrue, i.e.foralle X,y € Y, i, j € [N],
wywy > Co(f)C1(f)ux,ivy, . Firstfix x, y and sum ovef € CS,; andj e CS,. Since
ICS < Co(f), ICS)|<C1(f), we have

WxWy > D Uxi D, Uy
ieCS, jeCSs,

Now we sum over € X andy € Y,
(Z wx> > owy ] > > Uk vy
xeX yey xeX,ieCS, veY,jeCs,
= ( > u(x,y, i))
xeX,yeY,ie[N]:x;#y;,ieCS,

X > v(x,y, j) |-
xeX,yeY,je[N]x;#y;.jeCS,

Sincef is total, there is at least orig € CS, N CS, s.t.x;; # yi,.

(Z wx> (Z u)y) > ( » u(x,y,io)> ( > v(x,y,io)>
xeX yeyY xeX,yeY xeX,yeY

2
>< > ¢u<x,y,io>v(x,y,io)>

xeX,yeY
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2
(o)

xeX,yeY

~(52) (5 )

which is a contradiction. OJ

Finally, we remark that even these two improved upper bound&&f( /) are not al-
ways tight. For example, Sun, Yao and Zhang prf84 that graph property G&RPION
directed graph propertyi$k and a circular function all hav@»(f) = ©(/n), but both

JCo(HHC1(f) and/N - CI(f) are@(n).

4. A further generalized Ambainis lower bound

While Alb, andAlb3 use different ideas to generaliZéb, it is natural to combine both
and get a further generalization. The following theorem is a result in this direction. This
theorem is to Theorem 3 is as Theorem 2 is to Theorem 1. The proof is similar to the ones
in [4,5], with inner products substituted for density operators to make it look easier.

Theorem 14. Let f: IN — {0, 1} where[ is a finite setand X, Y be two sets of inputs
st.f(x)# f(y)ifxe Xandy e Y.LetR C X x Y. Letw, u, v be a weight scheme for
X,Y,R.Then

. Wy W
Qz(f)=9< min - y).
(x.)ERIE[N].x;i#yi Ux iVy,i

Proof. The query computation is a sequence of operattgns> O, — Uy — --- — Uy

on some fixed initial state, sé@). Note that herd is the number of queries. DethAéi) =

Ur_10y ...U10,Up|0). Note that|1p2) = |0) for all input x. Because the computation is
correct with high probability (- ¢), for any (x, y) € R, the two final states have to have
some distance to let the measurement distinguish them. In other words, we can assume that
|1 [ ])|<c for some constant < 1. Now suppose that

-1 . -1 .
Wih =Y wacliaz), WA =X Bigliia.z),

i,a,z i,a,z

wherei is for the index address,is for the answer, angis the workspace. Then the oracle
works as follows.

k—1 . .
O ) =3 tiazli,a®xi,2) = Y %iaex.zli,a,z),

i,a,z i,a,z

O = 3 Brali:a ®i,2) = X B gy, oli-a, 2).

1,a,z ,a,z

5 This idea was mentioned in Ambainis’ original papgrand was also used in some other papers sufths
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So we have
k1 k *
(l//xw/y) = Z ai,a@xi,zﬁi,u@)’i‘z
i,a,z
* *
= Z ai,a@xi,zﬁi,aeayi,z + Z ai,a@xi,zﬁi,aeay,-,z
i,a,2:X;=Yy; i,a,2:x; i
k=1, k=1 * %
= <l//x |l,0‘ )+ Z O(i,aeax,-,zﬁi,aeayi,z - Z OCi,a,zﬁi,a,z'
i,a,7:x; £V i,a,2:X; #Yyi
Thus

T
1—c=1-|Wlyh = k;1(|<d/§*1|w’;*l>| — WA

T
1 1
< Y IWAATh = Wi
k=1
4 o *
=X > (x i,a@xi,zﬁi,aﬂwi,z - O‘i,a,zﬁi,a,z)
k=1 |i,a,z:x; #yi
T
g Z Z (|ai,a®xi,z||ﬁi,a@y,-,z| + |(xi,a,z||ﬂi,a,z|)
k=1 X FEYi

Summing up the inequalities for alt, y) € R, with weightw (x, y) multiplied, yields
A-c > wk,y)

(x,y)eR

T
< Z Z Z w(x, y)(|ai,a€Bxi,z||ﬁi,a63y,-,z| + |(xi,a,z||ﬁi,a,z|)

k=1 (x,y)eR i,a,z:x; #Yy;

T
< Z Z Z \/M(x, y,i)U(X, y’i)(l“i,a@x,~,z||ﬁi,a@y,—,z|

k=1 (x,y)eR i,a,z:x;i #y;
+ti az] |ﬂi,a,z )

T
=YY X Vuby. vy D) (%aen.: B aey, <

k=1i,a,z (x,y)eR:x;#y;
+|fxi,a,z | |ﬂi,a,z D

by (1). We then use inequality2B < AZ + B2 to get

Vule, y, v, v, D)1%a@x.2|Bi gy |

Uy, Wy

1 vy w )
gé (u(-x’ yal) Ll__xlfxi,a@x,‘,zlz_kv(xa yal)

x,i Wy

2
|.Bt ,ady;,z | >,

Uy,i
and

\/M(X, y, Dvu(x, y, i)|ai,a,z||ﬂi,a,z|

1 Uy W Uy W
. y,i Wx 2 . x,i Wy 2
g_ u(-x9 ysl) |(xi,a,Z| +U(x, yvl) |ﬁi,a,z| .
2 i Wy i Wy

Ux,i Vy,i
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DenoteA = Min, y i:(x,y)eR,x £y; WxWy/Ux iUy ;. NOte that

> u(x,y, i) =uy;, > v(x, y,i) = vy,

Yi(x,y)ER x; #Yi x:(xX,Y)ER,X; #Yi

by the definition ofx, ; andv, ;, we have

1T Uy iUy
1-0) ¥ waen<s;Y Y| % [ 0 (10 a2+ 1% 212
(x,y)ER k=li,a,z [ xex V WxWy

Ux,iVy,i 2 2
+ wy(mi,a@y,',z' + |ﬁ1az| ):|

yey V. WxWy

1T
< E Z |:Z 1/wa Z (|ai,a®xi,z|2+ |(xi,a,z|2)

k=1| xeX i,a,z

+ 3 VAW Y (1B aey . + |ﬁi,a,z|2>}

yeY i,a,z

=¢1/—A£(2wx+2wy)

k=1 \xeX yey
=2T1/A > w(x,y)
(x,y)ER

by noting that)" w, = 3" w, =3, ,)cgw(x, y). ThereforeT = Q(VA). O

We denote byAlb4(f) the best possible lower bound for functighachieved by this
theorem. It is easy to see th&tb4 generalizesilbs. However, according to a recent result
by Spalek and Szeged$0], Albs, Albs and the quantum adversary method proposed by
Barnum, Saks and Szegedy in [10] are all equivalent. Thus we cannaf bisto get better
lower bounds than usingl/b3. However,Alb4 may be easier to use in some cases.
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