Quantum Computing 	(Fall 2013) 	Instructor: Shengyu Zhang.
Lecture 8 Quantum communication complexity: A recent protocol

The original plan was to talk about lower bounds on quantum communication complexity, but it may again well fall into the category of being “too difficult”. So after some reflections, I decided to change to something lighter but probably with a broader range of applications. 

1. Fourier analysis over 
In computer science, we often run into real-valued functions defined on . (Name some examples yourself; you’d find that actually it’s even hard to think of any common function we studied that doesn’t fall into this category.) These functions form a linear space

It is easily seen that the addition of any two real-valued functions on the same domain gives another real-valued function on the domain.
A standard set of basis of this space contains the following ones: 
 where .
Actually these basis functions, when scaled up by a factor of , are orthonormal under the inner product defined by 

where all expectations in this note are over uniform distribution unless stated otherwise. Namely, we have that . There is actually another orthonormal basis defined by characters. 
 where 
Exercise. Verify that these character functions form an orthonormal basis.
The new basis is usually called the Fourier basis. Any real-valued function can be written in the Fourier basis: 

and the coefficients  are called Fourier coefficients, computed by

One useful fact about Fourier transform is that the multiplication in one domain becomes the convolution in the other. For , their convolution  is defined by

In the Fourier domain, the definition is similar except for a normalization factor. 

Fact. ,  . 
One can define the -norm for  as usual: 

When , the quantity is the Fourier sparsity of , i.e. the number of nonzero Fourier coefficients.
Similarly, we can define an -norm for  but note that it’s more convenient to use the expectation instead of summation.

An elegant fact is that 
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In computer science, we run into Boolean functions a lot. There are two ways of writing expressing a Boolean value--- or . Note that the group , where  and  are the XOR and multiplication, respectively. These two ways of representing a Boolean value can be exchanged easily as follows. Suppose that we use  for -valued function and  for the same function but with range , then 
, and .
For Boolean functions with range , we have the following fact.
Parseval Identity. For any function , we have . 
So one can view  as a distribution over all .

2. -degree, discrete derivatives
For Boolean functions , we can either view them as a polynomial over  or a polynomial over . 
Exercise. For the Parity function of 2 bits, write down it as a polynomial  and . 
Whenever we have a polynomial, we can talk about its degree. Note from the above example that the degree of  as a polynomial over  or that over  are different. We denote by  and  the degrees  as a polynomial over  and that over , respectively.
One interesting operator on functions is the derivative. For any  and any direction vector , the discrete derivative of  along the direction  is another function
 defined by 
Note that when we talk about polynomials over , all additions in the above equation are also over . 
Just as derivatives for polynomials over , the discrete derivative also decrease the degree of a polynomial. That is,  

When we use  as the range, then the derivative changes to . 

3. Quantum Fourier transform
For a function , one can define an n-qubit quantum state 

If one applies Hadamard gates, one on each qubit, then the state becomes

Verify this!

4. XOR functions
XOR functions are the class of functions  for some -bit function . We sometimes denote such function  by  The class contains interesting functions such as Equality and Hamming Distance. It also has an intimate connection to Fourier analysis because the rank of the communication matrix  is nothing but the Fourier sparsity of , i.e. the number of nonzero Fourier coefficients. 
Exercise. . 
A lower bound for the quantum communication complexity for XOR functions is the following. First, let’s define a variant of the Fourier 1-norm. 
Theorem ([LS09]). .
It was considered to be pretty tight, but it has lacked rigorous argument. Recently, the following bound was shown, which implies that the above lower bound is tight for low degree polynomials.
Theorem ([Z14])  where . 
Next we give a protocol for a simpler case of exact communication, namely protocols without error. The communication cost is at most . The main idea is degree reduction. You’ll see how log naturally comes into the picture when using quantum protocols. 
The analysis of the protocol needs the following fact.
Fact. For any , . 
Proof. Let’s see what the Fourier coefficients of  are. Define . Then 

Thus,

Therefore, if , then there isn’ t with both  and  being nonzero. So  for those . 

Notation in the protocol: , , , . 

To see why the protocol works, consider the second round. If  is a constant, then  is known; else, repeat the above procedure for . Let , and use  to encode Fourier coefficients of . Note that though Alice doesn’t know  and thus the Fourier coefficients of , she can still do that because for any , the Fourier support of  is within .
Complexity: Stage  takes  communication qubits, and there is at most  stages. Thus the total complexity is .


Protocol:Bob
Alice

 A random  and the corresponding 
Apply Hadamard on C, then measure M
 
 
 	  
	  
Apply FT on M: 
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Note
See [LS09] for a survey of classical and quantum lower bounds using norm-based methods. The protocol is from [Z14].
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