Quantum Computing 	(Fall 2013) 	Instructor: Shengyu Zhang.
Lecture 6  Quantum query complexity: Upper bound.

In this lecture, we’ll first finish the proof for the quantum adversary method as a lower bound of quantum query complexity. Then we show a matching upper bound, by which we prove the result that the quantum adversary method is in the same order of the quantum query complexity. 
1. Lower bound: Quantum adversary method
Recall that the quantum query complexity  is defined as the minimum number of queries needed for an -error quantum query algorithm to solve a computational problem on the worst case input. The best lower bound by the quantum adversary method is
where . We’ll first finish the proof of the following theorem.


2. Upper bound: 
It turns out that the above lower bound is tight. In this section, we’ll show an even strong result, a quantum query algorithm solving a more general computational task of quantum state conversion [LMR+11]. Suppose we have a set of pure quantum states  and we’d like to convert them to another set of pure quantum states . (Usually the Greek letters  and  are for mixed states, but somehow they are used in [LMR+11] to denote pure states, and we just respect their notation here.) The conversion need to be correct for every , namely we need to use one universal algorithm to convert  to  for all  simultaneously. In general this is not doable without the knowledge of , as shown by the following basic result. 
Exercise. There is a unitary operation  that converts the states  to  if and only if  for all . 
Since this condition doesn’t hold for general  and . So we need to get some knowledge of the index . (In the extreme case, consider that we have the full knowledge of . Then we don’t even need the given state ---we can generate  by ourselves.) We access  by queries as usual. The question is what the minimum number of queries to  is needed. We of course allow the algorithm to take ancilla, so the algorithm takes as input  and generates a state close to  for some . This generalizes the function evaluation setting, where all , and target states is  for some ancilla . 
The result is the following: 
Theorem. The query complexity of the above state conversion problem is at most

where
· , ,  
·  with ,
· 
For Boolean function evaluation, note that all  and , thus  and . It turns out that 

by SDP duality. Thus the above theorem does implies the tightness of  as a lower bound of the quantum query complexity. 
Let . An optimum solution ,  in the definition of  has the following properties by definition
   , ,     							(1)
    ( for Boolean )		(2) 

Instead of repeating the proof in the usual way, let me try to extract the line of main ideas. 
· We actually only need to deal with the case , since otherwise we can first attach a  to , and then transfer it to , and then discard the .
· To transfer  to , it suffices to keep  unchanged and flipping  to , where 	
 	, and . 
(Indeed, .) So it’s enough to find a  s.t.  is close to the 1-eigenspace and  is close to the -eigenspace.
· [bookmark: _GoBack]Actually  doesn’t need to be close to -eigenspace. As long as  doesn’t have a large support on eigenspace of  corresponding to eigenvalue with small phases, a tool called Phase Detection can move  to close to . (Namely, as long as  moves most of ’s components, with respect to ’s eigenvectors, away in phase, not necessarily to the same far, the Phase Detection works.) More specifically, , , there is a circuit  which, on any -eigenvector  of  where , has
		(3)
Here the number of extra qubits needed is , and number of queries of controlled- and controlled- is .
· The paper finds such a , which consists of repeated applications of two reflections. 
In what follows, we only consider the Boolean-function evaluation case for simplicity.
Algorithm: Run Phase Detection on unitary  and state , with precision  and error . 
· Suppose that , and  is an optimal solution in the definition of . 
·  is the projection onto , where
 	. 
Note that here we attached another space  to  (where  originally is), s.t.  in the specification of the algorithm lives in the  part of . So are states . But  is in the whole space , with the first term in  and second in . Note that  is the direct sum, not product.
·  requires that when the first register of  is , the second register of  be .

Query complexity:  . Each  takes one query, and  doesn’t need any query. 

Correctness: 
(Notation:  is the projection onto the eigenspace of  with eigenphase , and similarly for . That is, if  is the spectral decomposition of , then 
 		 	and 	. )
·  is close to a -eigenvector of . More precisely, . 
Fact 1. .
[Proof] Actually  is in the subspace  and almost in the subspace . For the former, note that  is in , while  only has requirement on . For the latter, directly bounding  is not that obvious: , but there are many ’s with . Fortunately, one can add a little bit to  to cancel out the annoying factor: Define , then  by Eq.(2). And note that the extra term in  is of -small norm because of Eq.(1). (Also note that  is still in the subspace  because the extra term exactly satisfies the requirement of .) 	□
·  has a small support on small-eigenvectors of .
Fact 2. , .
[Proof] We’ll use a spectral gap lemma that is frequently used in one form or another. 
Lemma. Suppose  and  are two projections, and . Suppose that  is a complete orthonormal set of eigenvectors of , with the respective eigenvalues . For any vector , if , then for any , .	
We’ll skip the proof of the lemma, and state how to use it to prove Fact 2. The application is very straightforward by setting . Note that  and  by definition of  and , respectively. □

Now putting the above two together, we can show the correctness of the algorithm. 
 
 
 

We use Fact 1 to bound the item 1, and use Eq.(3) and Fact 2 to bound item 2. 
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