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Lecture 4  Hidden Subgroup Problem 2: Fourier sampling and query-efficient algorithms.

1. HSP: What and why.
Suppose that  is a group and  is a subgroup. Recall that cosets of  partition the group . A function  hides a subgroup  if  for  and  in the same coset and  for  and  in different cosets.
Definition. Given a black box function  (for some finite set ) that hides a subgroup , the Hidden Subgroup Problem (HSP) asks to find .
Two important special cases: symmetric group and dihedral group. 
Symmetric group : the set of permutations on  elements. An efficient algorithm for HSP for symmetric group can be used to solve Graph Isomorphism in  time. 
Graph Isomorphism (GI): Given two -node graphs  and , decide whether they are isomorphic, i.e. whether there exists a permutation  s.t. . 
Here for a graph   where . Thus the two graphs are isomorphic if the following holds:  iff .
Graph Isomorphism is known to be equivalent to the following variants: Graph Isomorphism Finding (given two isomorphic graphs, find an isomorphism), Graph Isomorphism Counting (given two isomorphic graphs, count the number of isomorphisms), Graph Automorphism Finding (given a graph , find its automorphism group ). The decision version of Graph Automorphism (just to decide whether ) is a clearly no harder, and possibly easier task. 
Graph Isomorphism is a fundamental problem that appears in many disciplines, and it’s one of the few problems whose complexity isn’t pinned down: It’s not known to be in P, but it’s also not known to be NP-complete either. Actually, most people believe that it is not NP-complete. It may be well in P and we just haven’t found an algorithm yet. 
Given the equivalence between GI and Graph Automorphism Finding (GA), we can see why GI reduces to HSP for symmetric group. First reduce GI to GA. Now for GA, given a graph , define  on  by . We claim that  hides . Actually,
 
 

The second major application of HSP for non-Abelian groups is the (Approximate) Shortest Vector problem, which reduces to HSP for dihedral group. We’ll define (Approximate) Shortest Vector problem and dihedral group next. 
Consider  and a set of basis, namely  linearly independent vectors in it. An -dimensional lattice is the set of all integer linear combinations of  basis vectors. In the Shortest Vector problem, we want to find a shortest (but nonzero) vector in the lattice. That is, we want to use integer linear combination of basis vectors to get a vector that is very close to the origin. This problem itself is NP-hard, and we consider a relaxed version, that the input is promised to have only one (up to its sign) vector that achieves the minimum length; all the other vectors are at least  times longer. Of course, the larger  is, the stronger the promise and thus the easier the problem. It is known that if  then the problem is still NP-hard, and if , then the problem becomes in P. The question is what the complexity is for . It is conjectured to be hard, and actually cryptosystems are built based on this computational assumption. What can a quantum computer do? If HSP for dihedral group is easy, then there is an efficient quantum algorithm to solve the (Approximate) Shortest Vector problem. The reduction is nontrivial, and we won’t do it here. (It’s actually one of the reading projects.) We’ll just introduce what a dihedral group is. 
Consider a regular -gon on a 2D plane. A symmetry is a rotation or a reflection which keeps the -gon unchanged. A regular -gon has  symmetries:  rotational ones and  reflection ones, the collection of which form the dihedral group . So

( is generated by elements  and  satisfying the relations .) 

2. Detour: density matrices.
Mixed states: Pure states with probabilities. 
· , rank-1 positive semi-definite (psd) matrix
· , trace-1 psd matrices. 
Fact: Any trace-1 psd matrix also corresponds to an ensemble  of quantum pure states.
Proof. Do the spectral decomposition and use the fact that the trace is 1 to conclude that the sum of eigenvalues is 1. 
· Unitary transform: . 
· Measurement:  with . Then , and the post-measurement state is . 
Why use density matrices: Because only those matter---The exact ensemble of pure states doesn’t since we can’t distinguish different ensembles with the same density matrix. 
· Composition: . 

3. Standard approach, weak and strong Fourier sampling
Standard approach:
 
 
 for a random 
Writing this in the density matrix form, we have the following

where  is a set of representatives.
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 observe  w.p. 
Question: Does  samples of  contain enough info to determine ?
For Abelian groups: Yes, as previously discussed. 
Another class of subgroups that weak Fourier sampling suffices: normal subgroups. 
Definition. A subgroup  is normal if , for all . 
So if  is normal subgroup, then for any ,  for some . And if  runs over , then so does .
Theorem. If  is a normal subgroup of , then the weak Fourier sampling gives  with probability  if , and 0 otherwise. 
Proof. If , then one observes  w.p. . 
If  is not contained in , then  s.t. . Now note that 
thus by Schur’s lemma,  for some . But 

Thus  So one observes  w.p. 0. 	
The algorithm for HSP for normal subgroup is very similar to that for Abelian HSP. 
· Use weak Fourier sampling to get  for .
· Output 
Theorem.  with high probability.
Proof. If , we claim that  Indeed, 

Here we used a fact that for any normal subgroup  of , . 

Strong Fourier sampling: 
Weak Fourier sampling fails to provide sufficient information for HSP for  and . So people resort to strong Fourier sampling, which uses the remaining state . 
Question: What basis to use to measure this state?
It turns out that even random basis can already solve some cases, such as HSP for Heisenberg Group 

However, for symmetric group, even strong Fourier sampling fails. Multi-register measurement is needed.

4. Query efficient algorithm
When multi-register measurement is used, we can solve HSP using only  queries to , though the computational time is still exponential. 
Recall that the standard approach gives . Our task is just to identify  from a collection . In general, mixed state identification is known to have the following bound.
Theorem. There exists a quantum measurement that identifies  with probability at least . 
Here  is a measure of how close two mixed states  and  are. The  value is always between 0 and 1, and the closer to 1, then closer the two states. So to identify  (namely to identify ), it is enough if ’s for different  are far from each other. It turns out that this is more or less true.
Theorem. .
We will not prove this result, but only explain how to use it. It is not hard to verify that

By the above results, we know that if we want the error probability to be , then we need to use  copies of , satisfying

Solving this gives . How large is ? It’s just the number of subgroups. 
Fact. Any group  has at most  subgroups.
Proof. Each subgroup has a generating set of size at most , because adding one more generator at least double the size of the subgroup. Therefore, the number of subgroups is at most . 	
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