Quantum Computing 	(Fall 2013) 	Instructor: Shengyu Zhang.
Lecture 3  Hidden Subgroup Problem 1: Group Representations

Studies of Hidden Subgroup Problem for non-Abelian groups often need knowledge of group representations, which is the subject of this lecture. 

1. Linear representation of finite groups
Suppose that  is a vector space over . The general linear group  is the group of invertible linear operators from  to itself. Here we only consider the case . The group  can also be identified with the group of invertible matrices in . 
For a finite group , a linear representation is a homomorphism . The dimension of  is called the degree of , denoted by . (Homomorphism: The map  is a homomorphism if .) Note that this implies that , and  where  is the identify element of the group . 
Example 1. Trivial representation: . Here the degree .
Example 2. Regular representation: . The left regular representation  is defined by , and the right regular representation  is defined by . Here the degree 

Two representations  and  are isomorphic if there is an invertible linear operator  s.t. . Intuitively, it means that the two representations are the same up to a change of basis. 
For a representation , a subspace  of  is called -invariant if

Claim. If  is -invariant, then there is another subspace  s.t. , and  is also -invariant. 
See [Ser77] for two proofs. By this result, we know that if there is a -invariant subspace , then  for a subspace , and the representation can also be decomposed into the direct sum of two subrepresentations, namely . In matrix form,  is a block diagonal matrix . 
If  doesn’t have any nontrivial -invariant subspace, we call  irreducible. We use  to denote the set of irreducible representations of . We sometimes use “irrep” as a shorthand for “irreducible representation”.
Fact. Every representation is isomorphic to a direct sum of irreducible representations. 
An important result about irreducible representations is the following Schur’s lemma. 
Theorem (Schur’s lemma). For two irreducible representations  and  with degree  and , respectively, assume that there is a matrix  s.t. . If  is not isomorphic to , then . If  and , then  for some real number .
Proof. See [Ser77].
This lemma can be used to prove the following fundamental orthogonality theorem. 
Theorem. For any two different irreducible representations  and  in matrix form, and any , , it holds that
When  and  take unitary matrices, then the above equality changes to Proof. See [Ser77]

2. Character theory
For a representation , its character is simply a function  defined by , where  is the trace---sum of eigenvalues. Note that . A character is irreducible if it is the character of an irreducible representation. 
The following theorem is a simple corollary of the orthogonality of irreducible representations. 
Theorem. Different irreducible characters  and  are orthogonal: . 
Two elements  and  are called conjugate if  s.t. . It’s an equivalent relation and thus partitions  into conjugacy classes. Class functions are constant for members of the same conjugacy class. It is not hard to see that characters are class functions. 
For two complex-valued functions  and  on , define two inner products 
 and 
where the superscript * is the complex conjugate. These two inner products are the same if one of the functions is a character, due to the following fact.
Fact. For a character  of , . 
Proof. , where ’s are the eigenvalues of .

3. Regular representation and Fourier transform
Recall the left regular representation  and the right regular representation . The following equalities hold. 
 and . 		(1)
In fact, these hold for the same isomorphism, which is the Fourier transform over . Formally, define the Fourier transform by the following.
, where .
In other words, the Fourier transform is
Note that  depends on the choice of basis for each irrep of dimension greater than 1. 
Theorem. The Fourier transform  simultaneously decomposes the left and right regular representations  and  into their irreducible components. 
Proof. We verify for left regular representation, and the case for  is similar.
[image: ]
The identity Eq.(1) also implies the following basic fact.
Fact. .

4. Abelian groups
For a cyclic group , the irreps are  for . The Fourier transform is  . For a finite Abelian group, suppose it is isomorphic to , then the irreps are  where , and the Fourier transform is

For Abelian groups, all irreps are one-dimensional. The converse is also true: Any non-Abelian group has an irrep with degree strictly larger than 1. 
One can also note that Abelian groups  have the property that , which non-Abelian groups do not enjoy.

Note
A good (and concise) reference for group representation is [Ser77]. [CvD10] also has an appendix for some basic knowledge about group representation, though it takes a matrix (instead of operator) view. For general introduction of algebra, see [Art10]. For more extensive introduction of abstract algebra, a standard textbook is [DF03]. 
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Exercise
1. Prove that characters are class functions, namely . Also prove another property: .
2. Check that the Fourier transform defined is unitary.
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