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12.1 Shannon’s channel coding theorem

A classical (discrete memoryless) channel is described by the transition matrix p(y|x). For such a
channel, if the encoder sends a message xn ∈ Xn, the decoder will then receive the sequence yn ∈ Yn
with probability

∏n
i=1 p(yi|xi). A rate R is achievable if there exists a sequence of encoding and decoding

functions Cn : [2nR] → Xn and Dn : Yn → [2nR] such that the error probability for any message M
tends to 0 as n → ∞. The channel capacity is defined as the maximum achievable rate. A celebrated
result of Shannon gives a complete characterization of channel capacity in terms of mutual information:

Theorem 12.1 (Shannon’s channel coding theorem). Let p(y|x) be a discrete memoryless channel.
Then

C = max
p(x)

I(X;Y ).

Proof sketch of achievability. The proof is by probabilistic method. Fixing p(x), we generate 2nR code-
words independently according to the distribution p(xn) =

∏n
i=1 p(xi). Both the encoder and decoder

knows the codebook. Let ynM be the messaged received by the decoder when xnM is sent. The decoder
output any M ′ such that (xnM ′ , ynM ) are jointly typical. The error occurs only when (xnM , y

n
M ) are not

jointly typical, or there are other M ′ 6= M such that (xnM ′ , ynM ) are jointly typical. The first event hap-
pens with very small probability by the law of large number. The second event also happens with small
probability. It can be shown that for independent X̃n and Ỹ n with the same marginals as p(xn, yn), the
probability that (X̃n, Ỹ n) are jointly typical is roughly 2−nI(X;Y ). Thus a simple union bound argument
works when the number of codeword is smaller than 2nI(X;Y ). It follows that there exists codebook with
small average error probability.

By removing the worst half of the codeword, the maximum error probability would be small as well
and hence the proof is completed.

Proof of converse. Let M be a uniformly random message, let M̂ be the output of the decoder. Let
p = Pr[M 6= M̂ ] be the average error probability. We have

nR = H(M) = H(M |M̂) + I(M ; M̂) ≤ H(M |M̂) + I(Xn;Y n) ≤ H(M |M̂) + nC ≤ H(p) + npR+ nC,

where the first inequality is data processing inequality, the second inequality follows by the fact that the
channel is memoryless and by the definition of C, and the last inequality follows by Fano’s inequality.
Hence if R > C, then p ≥ (R− C)/R−H(p)/n which is bounded away from 0 as n→∞.

12.2 Quantum channel coding theorem

For the quantum analogue, we are given a quantum channel instead of a classical channel so that the
codeword can be a quantum state. The quantum channel is now described by a trace-preserving quantum
operator, namely E defined over some set H. In this case, if the encoder sends ρ = ρ1⊗ · · · ⊗ ρn ∈ H⊗n,
the decoder will receive a state σ = σ1 ⊗ · · · ⊗ σn = E(ρ1) ⊗ · · · ⊗ E(ρn). By abusing notation, we also
write σ = E(ρ). In the quantum case, the decoding is done by performing measurement. A rate R is
achievable if there exists a sequence of product state {ρM}M=1,...,2nR and a measurement described by
POVM elements {EM}M=1,...,2nR such that

lim
n→∞

max
M

(1− Tr(E(ρMEM )) = 0.

The product state capacity of E , denoted by C(1)(E), is defined as the maximum achievable rate of E .
The following theorem is the quantum analogue of Shannon’s channel coding theorem:
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Theorem 12.2 (Holevo-Schumacher-Westmoreland theorem).

C(1)(E) = max
{pj ,ρj}

[
S

(
E

(∑
j

pjρj

))
−
∑
j

pjS(E(ρj))

]
,

where the maximum is over all ensembles {pj , ρj} of possible input state ρj to the channel E.

Proof sketch of acheviability. The proof is to argue randomly generate codeword (note that it is a quan-
tum state now) can achieve small average error probability, then we use the trick in Shannon’s proof to
turn average error probability to maximum error probability by removing bad codes. Note that the rate
is not affected by much in this step.

Specifically, let {pj , ρj} be an ensemble. For each message M , we generate a state ρM = ρM1 ⊗ · · · ⊗
ρMn

where Mi are independent and Mi = j with probability pj . It is the codebook we need.
Before defining the measurement, we need to definite several things first. Let σMi

= E(ρMi
), σM =

σM1⊗· · ·⊗σMn
and σ̄ =

∑
j pjσj . Let P be the ε-typical subspace of σ̄⊗n. We know that by the typical

subspace theorem, for any δ > 0 and n sufficiently large,

Tr(σ̄⊗n(I − P )) ≤ δ.

Let σj =
∑
k λ

j
k|e

j
k〉〈e

j
k| be the spectral decomposition. Thus we have

σM =
∑
K

λMK |EMK 〉〈EMK |,

where K = (K1, . . . ,Kn), λMK =
∏n
i=1 λ

Mi

Ki
and |EMK 〉 = |eM1

K1
〉 · · · |eMn

Kn
〉. Let S̄ =

∑
j pjS(σj),

TM =

{
K = (K1, . . . ,Kn) :

∣∣∣∣ 1n log
1
λMK
− S̄

∣∣∣∣
}
,

and PM be the projector to the subspace spanned by {|EMK 〉 : K ∈ TM}. Note that PM are random as
|EMK 〉 = |eM1

K1
〉 · · · |eMn

Kn
〉 are random. It can be shown (by law of large number again) that for any δ > 0

and n large enough, E(Tr(σMPM )) ≥ 1− δ. Moreover, E(Tr(PM )) ≤ 2n(S̄+ε).
Now we define the measurement EM . Let

EM =

(∑
M ′

PPM ′P

)−1/2

PPMP

(∑
M ′

PPM ′P

)−1/2

and E0 = I −
∑
M EM .

For such measurement {EM}, it is possible to show that the average error probability pave, defined
by

pave =
∑
M 1− Tr(σMEM )

2nR
,

can be upper bounded by

pave ≤
1

2nR
∑
M

[
3Tr(σM (I − P )) +

∑
M ′ 6=M

Tr(PσMPPM ′) + Tr(σM (I − PM ))

]
.

Taking expectation over all random codes, since E(σM ) = σ̄ and σM and PM ′ are independent for
M 6= M ′, we have

E(pave) ≤ 3Tr(σ̄(I − P )) + (2nR − 1)Tr(Pσ̄PE(P1)) + E(Tr(σM (I − PM )))
≤ 4δ + (2nR − 1)Tr(Pσ̄PE(P1)).
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Finally, observe that Pσ̄P � 2−n(S(σ̄)−ε)I. Thus we have

Tr(Pσ̄PE(P1)) ≤ 2−n(S(σ̄)−ε)Tr(E(P1)) ≤ 2−n(S(σ̄)−S̄−2ε).

Whenever R < S(σ̄)− S̄, we can choose ε small enough so that E(pave)→ 0 as n→∞.

Proof of converse. Denote χ(E) the quantity at the right-hand side. Let ρM = ρM1 ⊗ · · ·⊗ ρMn be the set
of codewords and σM = E(ρM ) = σM1 ⊗ · · · ⊗σMn . Let {EM} be the POVM measurement. We will show
that even the average error probability is bounded away from 0 when R > χ(E), which will complete
the proof. Note that

pave =
∑
M (1− Tr(σMEM ))

2nR
= Pr[M 6= Y ].

Now, consider the ensemble {1/2nR, σM}, let σ̄ =
∑
M σM/2nR. By Holevo’s bound, we have

S(σ̄)−
∑
M

S(σM )
2nR

≥ I(M ;Y )

= H(M)−H(M |Y )
= nR−H(M |Y )
≥ nR−H(pave)− pave log(2nR − 1)
≥ nR−H(pave)− npaveR.

Since σM are product states, we have S(σM ) =
∑n
j=1 S(σMj ). By the subadditivity of entropy, S(σ̄) ≤∑n

j=1 S(σ̄j) where σ̄j =
∑
M σMj /2

nR. By definition of χ(E), S(σ̄) −
∑
M S(σMj ) ≤ χ(E) for all i and

hence we have
nχ(E) ≥ nR−H(pave)− npaveR.

As n→∞,

pave ≥
R− χ(E)

R
,

which is bounded away from 0 when R > χ(E) and the proof is completed.
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