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11.1 Holevo’s bound

Suppose Alice has an information source X that generates symbol x with probability px, her goal is to
send the information to Bob. Classically, what Alice can do is to encode the symbol x as a codeword
of certain length, namely Cx ∈ {0, 1}n, then sends it to Bob and finally Bob decodes it to figure out
what x is. Let Y be the symbol Bob gets after decoding, then I(X;Y ) essentially measures how much
information of X Bob can extract. It is clear that I(X;Y ) ≤ I(CX ;Y ) = H(CX) − H(CX |Y ) where
the first inequality follows by the data processing inequality. It means that if we want Y to contain
many information about X, then we need a long codeword. But what if we have a quantum channel
that allows us to transmit qubits? In this case, Alice can actually encode x using qubits rather than
classical bits, and the codeword she can send is now a quantum state of dimension 2n where n is the
number of qubits. After receiving the quantum state, Bob can perform measurement on the state to
get the variable Y and figure out what X. It is natural to ask whether we can encode X using a small
number of qubits? Again we are interested in the quantity I(X;Y ). From the above discussion, we know
that I(X;Y ) is upper bounded by the number of different states Alice can send. And the issue about
classical bit is that a single bit can only represent 2 different states. However, a qubit is much more
powerful since it can represent infinitely many different states! It seems that we can do much better in
the quantum case. But after a moment of thought, we will realize that encoding X using one qubit does
not solve the problem since Bob cannot distinguish the states perfectly unless the states are orthogonal!
In general, the less qubits Alice uses, the more difficult Bob can distinguish them and hence extracting
the information about X. So, there is a trade-off between the number qubit Alice use and how well Bob
can distinguish the states. And how I(X;Y ) is related to the quantum states is not clear. It turns out
that one can upper bound I(X;Y ) in terms of the von Neumann entropies of the some quantum states.

Theorem 11.1 (Holevo’s bound). Let X be a random variable such that Pr[X = x] = px. Suppose
Alice sends a state ρx to Bob if X = x, then for any measurement described by POVM elements {Ey}
on the state Bob receive and let Y be the measurement outcome,

I(X;Y ) ≤ S(ρ)−
∑

x

pxS(ρx).

This theorem tells us what we can hope for if we want Y to contain much information about X.
Indeed, since S(ρ) is at most the logarithm of the dimension of the quantum state, which is nothing but
the number of qubits sent, it is now clear that quantum does not buy us much.

Proof. The idea is to view everything as a quantum system consisting of three parts P,Q and M , where
Q represents the quantum system ρx Alice sends to Bob, and P,M represent the classical information
X and Y . Then the result will follow by applying suitable inequalities for the von Neumann entropy.

Formally, we consider the quantum state

ρPQM =
∑

x

px |x〉〈x|︸ ︷︷ ︸
P

⊗ ρx︸︷︷︸
Q

⊗ |0〉〈0|︸ ︷︷ ︸
M

.

The joint system PQ corresponds to the situation that Alice prepares the state ρx with probability
px. Then Bob performs a measurement with POVM elements {Ey} on the system Q and stores the
measurement outcome into M without touching P . After this step the state would become

ρP ′Q′M ′ =
∑

x

px |x〉〈x|︸ ︷︷ ︸
P ′

⊗
∑

y

√
Eyρx

√
Ey︸ ︷︷ ︸

Q′

⊗ |y〉〈y|︸ ︷︷ ︸
M ′

.
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Now consider the quantity S(P ;Q). It is clear that S(P ;Q) = S(P ;Q,M) since M is independent
of P and Q. We also have S(P ;Q,M) ≥ S(P ′;Q′,M ′) since the measurement only apply to the
system QM , it does not increase the mutual information between P and QM . Finally observe that
S(P ′;Q′,M ′) ≥ S(P ′;M ′) since discarding system does not increase mutual information. So we have
the inequality

S(P ;Q) ≥ S(P ′;M ′).

We claim that S(P ′;M ′) = I(X;Y ) and S(P ;Q) = S(ρ)−
∑

x pxS(ρx). The first one follows by the fact

ρP ′M ′ =
∑

x

px|x〉〈x| ⊗
∑

y

py|x|y〉〈y| =
∑
x,y

px,y|x〉〈x| ⊗ |y〉〈y|.

For the second one, by definition we have S(P ;Q) = S(ρP ) + S(ρQ) − S(ρPQ). Observe that S(ρP ) =
H(X), S(ρQ) = S(ρ) and by the inequality for von Neumann entropy, we have S(ρPQ) = H(X) +∑

x pxS(ρx). Putting all together yields the equality S(P ;Q) = S(ρ)−
∑

x pxS(ρx) and hence complete
the proof.

11.2 Application: quantum random access codes

The Holevo’s bound says that sending n bits of classical information requires n qubits. However, in
some cases we are not very interested in knowing every bit of X (for instance when we are querying
some entries in a database). Note that Holeve’s bound does not say we need many qubits as I(X;Yi) is
small (which is at most 1) for each fixed i. Classically, it is known that the codeword must have at least
(1 − H(ε))m bits where m is the length of the original message and ε is the success probability (this
bound is almost tight as there exists classical random access code of length (1 −H(ε))m + O(logm)).
Can we do better using quantum mechanics? It turns out that the answer is no. Nayak gave a very
simple proof using Holevo’s bound. First let us define what a quantum random access code is.

Definition 11.2 (Quantum random access code). Let m,n be positive integers, ε > 0, a (m,n, ε)-
quantum random access code is a function C that maps a m-bit string to a quantum state of
dimension 2n such that for each 1 ≤ i ≤ m, there exists a measurement {M0

i ,M
1
i } such that the

probability that the measurement outcome is b is at least ε when the i-th bit of the string is b.

Theorem 11.3 (Nayak’s bound). Let ε ∈ [1/2, 1], if (m,n, ε)-quantum random access code exists, then
n ≥ (1−H(ε))m.

Proof. We use the following lemma, which follows from Holevo’s bound and Fano’s inequality:

Lemma 11.4. Let ρ = 1
2 (ρ0 + ρ1), if there exists measurement {M0,M1} such that Tr(Mbρb) ≥ ε ∈

[1/2, 1], then

S(ρ) ≥ (1−H(ε)) +
1
2
(
S(ρ0) + S(ρ1)

)
.

Now, suppose we have a (m,n, ε)-quantum random access code. Let ρx be the encoding of x and
ρ =

∑
x

1
2m ρx = 1

2 (ρ0 + ρ1) where ρb =
∑

x:x1=b
1

2m−1 ρx. By the definition of quantum random access
code, there exists measurement {M0

1 ,M
1
1 } such that for every ρx with x1 = b, we have Tr(Mbρx) ≥ ε.

It follows by the linearity of trace that Tr(Mbρb) ≥ ε. So by Lemma 11.4, we have S(ρ) ≥ (1−H(ε)) +
1
2

(
S(ρ0) + S(ρ1)

)
. And it is not difficult to see ρb still satisfy the condition of Lemma 11.4 and we have

S(ρ) ≥ 2(1−H(ε)) +
1
4
(
S(ρ00) + S(ρ01) + S(ρ10) + S(ρ11)

)
,

and by induction we have S(ρ) ≥ m(1−H(ε)) + 1
2m

∑
b S(ρb) ≥ m(1−H(ε)), as desired.
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Proof of Lemma 11.4. Let X be a uniform random bit, and let Y be the measurement outcome after
applying the measurement {M0,M1} to the state ρ = 1

2 (ρ0 + ρ1). Then by Holevo’s bound, we have

S(ρ) ≥ I(X;Y ) +
1
2
(
S(ρ0) + S(ρ1)

)
.

Since we have Tr(Mbρb) ≥ ε, Pr[X = Y ] ≥ ε and hence I(X;Y ) = H(X)−H(X|Y ) = 1−H(X|Y ). By
Fano’s inequality, let p = Pr[X 6= Y ], we have H(X|Y ) ≤ H(p) + p log2(|X | − 1) ≤ H(ε) since X = 2
and p ≥ ε ≥ 1/2. It follows that I(X;Y ) ≥ 1−H(ε) and the proof is completed.

For completeness, we also give a proof of Fano’s inequality. The following proof is quite standard
that can be found in many textbooks on information theory such as [?].

Lemma 11.5 (Fano’s inequality). Let X,Y be random variables with support X , if Pr[X 6= Y ] = p,
then

H(X|Y ) ≤ H(p) + p log2(|X | − 1).

Proof. Let Z be a random variable that

Z =

{
1, if X = Y,

0, if X 6= Y.

Now, let us consider H(X|Y ). Since H(Z|X,Y ) = 0, we have

H(X|Y ) = H(X,Z|Y )
= H(Z|Y ) +H(X|Y,Z)
≤ H(Z) +H(X|Y,Z)
= H(p) + pH(X|Y,Z = 0) + (1− p)H(X|Y, Z = 1)
= H(p) + pH(X|Y,Z = 0)
≤ H(p) + p log2(|X | − 1)

where the first inequality follows since conditioning does not increase entropy, and the second inequality
follows by the fact that if X 6= Y then the number of possible outcomes of X is at most |X | − 1.

11.3 Source coding theorems

11.3.1 Classical source coding theorem

Suppose Alice have an information source (a random variable) X that generates symbol x with proba-
bility px. For the purpose of efficient storage or transmission, she would want to encode the information
using some short codes. So that when she sends the codeword to Bob, Bob can decode it and extract
the information back. Ideally, Alice would want to have such a encoding and decoding scheme so that
the probability that Bob can get back the symbol x is arbitrarily close to 1. Intuitively, H(X) bits seem
to be sufficient since the entropy of X is just H(X). However, for any fix X, it is impossible to achieve
arbitrarily small error probability if the codeword is shorter than log2 |X |. Nevertheless, if we consider
the asymptotic version of this problem, i.e. Alice has n independent copies of X, namely Xn, whose
generates symbol xn = x1 . . . xn with probability

∏n
i=1 pxi

, and she want to assign a codeword for each
xn so that Bob can decode the codeword to get back xn with probability tends to 1 as n→∞. It turns
out that we can achieve it with rate (defined by the length of the codeword divided by n) arbitrarily
close to H(X). And moreover, it is also necessary.

Theorem 11.6 (Shannon’s source coding theorem). Let Xn be n i.i.d. copies of X. Then the following
holds:
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1. If R > H(X), there exist Cn : Xn → {0, 1}nR and Dn : {0, 1}nR → Xn such that

lim
n→∞

Pr
xn∼Xn

[Dn(Cn(xn)) = xn] = 1.

2. If R < H(X), for any Cn : Xn → {0, 1}nR and Dn : {0, 1}nR → Xn, we have

lim
n→∞

Pr
xn∼Xn

[Dn(Cn(xn)) = xn] < 1.

The proof of this theorem uses a notion called typicality. The idea is that, if we look at the sequence
xn = x1 . . . xn generated by Xn, since each xi is an independent copy of X, with very high probability
(when n sufficiently large) the number of i such that xi = x for each x ∈ X is roughly px. Sequences
with such property is said to be typical. The main observation is that actually the set of typical sequence
is roughly 2nH(X). Thus we can simply encode all the typical sequences into distinct codewords, which
takes around nH(X) bits, and encode all the other sequences into arbitrary codewords. Then the decoder
can successfully decode the message if it is typical, which happens with very high probability.

Lemma 11.7 (Typical sequence theorem). Let Xn be i.i.d. copies of X with support X . Let ε, δ > 0,
and Tn

ε = {xn ∈ Xn : 2−n(H(X)+ε) ≤ p(xn) ≤ 2−n(H(X)−ε)}, then for n sufficiently large, the following
holds:

1.
Pr[Xn ∈ Tn

ε ] ≥ 1− δ, (1)

2.
(1− δ)2H(X)−ε) ≤ |Tn

ε | ≤ 2n(H(X)+ε) (2)

Proof. For the first item, by the definition of Tn
ε , we have

Pr[Xn ∈ Tn
ε ] = Pr[2−n(H(X)−ε) ≤ p(Xn) ≤ 2−n(H(X)+ε)]

= Pr
[∣∣∣ 1
n

n∑
i=1

log
1

p(Xi)
−H(X)

∣∣∣ ≤ ε]

= Pr
[∣∣∣ 1
n

n∑
i=1

log
1

p(Xi)
− E

[
log

1
p(X)

]∣∣∣ ≤ ε]
≥ 1− δ

for sufficiently large n, where the inequality follows by the weak law of large number and the fact that
− log p(Xi) are i.i.d.

For the second item, by (1), we have

1− δ ≤ Pr[Xn ∈ Tn
ε ] ≤ 1,

which implies
1− δ ≤

∑
xn∈T n

ε

p(xn) ≤ 1.

Now, it is immediate from the definition of Tn
ε that

1− δ ≤ |Tn
ε |2−n(H(X)−ε)

and
|Tn

ε |2−n(H(X)+ε) ≤ 1,

as desired.
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Proof of Theorem 11.6. For the first item, let ε > 0 such that R − ε > H(X), the Cn simply assign
each sequence x ∈ Tn

ε a distinct nR bit-string other sequences an arbitrary nR bit-string. The decoder
output the typical sequence in C−1

n (yn). If x is typical, there is no error. So, the error probability is at
most the probability that x /∈ Tn

ε , which can be made to be arbitrary small by (1).
For the second item, let An = {xn ∈ Xn : Dn(Cn(xn)) = xn}. It is clear that |An| ≤ 2nR since

An ⊆ Dn({0, 1}nR). It suffices to show Pr[Xn ∈ An] is small. Now, take ε > 0 such that R+ ε < H(X).
Consider Pr[Xn ∈ An] = Pr[Xn ∈ An∩Tn

ε ]+Pr[Xn ∈ An \Tn
ε ]. Take δ > 0 small, then for n sufficiently

large, the second term is at most δ by (1), and the first term can be upper bounded by

Pr[Xn ∈ An ∩ Tn
ε ] ≤ |An| · 2−n(H(X)−ε) ≤ 2−n(H(X)−R−ε)

which tends to 0 as n→∞. It follows that the error probability does not tends to 1 as n→∞, and the
proof is completed.

11.3.2 Quantum source coding theorem

In the quantum case, Alice are given a state ρ⊗n, which is a product of n copies of ρ. And her goal is
to encode it using as less qubits as possible while at the same Bob are able to get back a state which
is close to ρ⊗ after performing measurement. Here the closeness is measured by fidelity. We have the
following theorem:

Theorem 11.8 (Schumacher’s quantum source coding theorem). Let ρ ∈ H be an i.i.d. quantum source.
Then the following holds:

1. If R > S(ρ), there exist Cn : H⊗n → C2nR

and Dn : C2nR → H⊗n such that

lim
n→∞

F (ρ⊗n, Dn(Cn(ρ⊗n)) = 1

2. If R < S(ρ), for any Cn : H⊗n → C2nR

and Dn : C2nR → H⊗n, we have

lim
n→∞

F (ρ⊗n, Dn(Cn(ρ⊗n)) < 1

Its proof is similar to the proof of Theorem 11.6. The main difference is that we use the typical
subspace theorem, which is an analogue of the typical sequence theorem.
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