Tutorial 10: Limit Theorems

Weiwen LIU wwliu@cse.cuhk.edu.hk April 3, 2017

1

Markov and Chebyshev Inequalities

- These inequalities use the mean and possibly the variance of a random variable to draw conclusions on the probabilities of certain events.
- primarily useful in situations
 - exact values or bounds for the mean and variance of a random variable X are easily computable.
 - but the distribution of X is either unavailable or hard to calculate.

Markov inequality

• If a random variable X can only take nonnegative values, then

$$P(X \ge a) \le \frac{E[X]}{a}$$
, for all $a > 0$

Loosely speaking, it asserts that

• if a nonnegative random variable has a small mean, then the probability that it takes a large value must also be small.

- Let X be uniformly distributed in the interval [0,4] and note that E[X] = 2.
- Then, the Markov inequality asserts that

$$P(X \ge 2) \le \frac{2}{2} = 1.$$

$$P(X \ge 3) \le \frac{2}{3} = 0.67.$$

$$P(X \ge 4) \le \frac{2}{4} = 0.5.$$

• By comparing with the exact probabilities $P(X \ge 2) = 0.5.$ $P(X \ge 3) = 0.25.$ $P(X \ge 4) = 0.$

• We see that the **bounds** provided by the Markov inequality can be quite loose.

Chebyshev inequality

• If X is a random variable with mean μ and variance σ^2 , then

$$P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$
, for all $c > 0$

Example 2: Uninformative case

- Let *X* be uniformly distributed in [0,4].
- Let us use the Chebyshev inequality to bound the probability that $|X 2| \ge 1$.
- We have $\sigma^2 = 16/12 = 4/3$, and

 $P(|X-2| \ge 1) \le 4/3$

Which is uninformative.

Example 2: Uninformative case

- let X be exponentially distributed with parameter $\lambda = 1$, so that E[X] = var(X) = 1.
- For c > 1, using the Chebyshev inequality, we obtain $P(x \ge c) = P(X 1 \ge c 1)$ $\leq P(|X - 1| \ge c - 1)$ $\leq \frac{1}{(c-1)^2}$

Example 2: Uninformative case

• $\frac{1}{(c-1)^2}$ is again conservative compared to the exact answer $P(X \ge C) = e^{-C}$



• The law asserts that the sample mean of a large number of independent identically distributed random variables is very close to the true mean, with high probability.

- Consider a sequence X_1, X_2, \dots of independent identically distributed random variables with mean μ and variance σ^2 ,
- and define the sample mean by

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

• We have $E[M_n] = \frac{E[X_1] + \dots + E[X_n]}{n} = \frac{n\mu}{n} = \mu$ and, using independence, $\operatorname{var}(M_n) = \frac{\operatorname{var}(X_1 + \dots + X_n)}{\underset{-}{n^2}}$ $\frac{\operatorname{var}(X_1) + \dots + \underset{-}{n^2}}{\operatorname{var}(X_n)}$ $n\sigma^2 \sigma^2$ $\frac{1}{n^2} = \frac{1}{n}$

• Let $X_1, X_2, ...$ be independent identically distributed random variables with mean μ .

• For every $\epsilon > 0$, we have

$$\begin{split} & P(|M_n - \mu| \ge \epsilon) \\ &= P(\left|\frac{X_1 + \dots + X_n}{n} - \mu\right| \ge \epsilon) \\ &\to 0, \qquad as \ n \to \infty \end{split}$$

Convergence in Probability

- Let $Y_1, Y_2, ...$ be a sequence of random variables, and let a be a real number.
- We say that the sequence Y_n converges to a in probability, if for every $\epsilon > 0$, we have

$$\lim_{n\to\infty} \mathbb{P}(|Y_n-a|\geq\epsilon)=0.$$

• Consider a sequence of independent random variables X_n that are uniformly distributed in the interval [0,1],

and let

$$Y_n = \min\{X_1, \dots X_n\}.$$

- The sequence of values of Y_n cannot increase as n increases,
- and it will occasionally decrease
- whenever a value of X_n that is smaller than the preceding values is obtained.

• Thus, we expect that Y_n converges to zero. Indeed, for $\epsilon > 0$, we have using the independence of the X_n ,

$$P(|Y_n - 0| \ge \epsilon) = P(X_1 \ge \epsilon, \dots X_n \ge \epsilon)$$

= $P(X_1 \ge \epsilon), \dots P(X_n \ge \epsilon)$
= $(1 - \epsilon)^n$

• In particular,

$$\lim_{n \to \infty} P(|Y_n - 0| \ge \epsilon) = \lim_{n \to \infty} (1 - \epsilon)^n = 0$$

Since this is true for every $\epsilon > 0$, we conclude that Y_n converges to zero, in probability.

• In order to estimate f. the true fraction of smokers in a large population, Alvin selects n people at random. His estimator M_n is obtained by dividing S_n , the number of smokers in his sample, by n, i.e. $M_n = \frac{S_n}{n}$. Alvin Chooses the sample size n to be the smallest possible number for which the Chebyshev inequality yields a guarantee that,

 $P(|M_n - f| \ge \epsilon) \le \delta,$

- where ϵ and δ are some pre-specified tolerances. Determine how the value of n recommended by the Chevyshev inequality changes in the following cases.
- A) The value of epsilon is reduced to half its original value.
- B) The probability delta is reduced to half its original value.

• Hint:

$$P(|M_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$
, for any $\epsilon > 0$

• A)
$$n' = 4n$$

• B)n' = 2n