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Preceding chapter: Bayesian inference

Preceding chapter: Bayesian approach to
iInference.

o Unknown parameters are modeled as random
variables.

o Work within a single, fully-specified probabilistic
model.

o Compute posterior distribution by judicious
application of Bayes' rule.



This chapter: classical inference

We view the unknown parameter 6 as a

deterministic (not random!) but unknown
guantity.

The observation X I1s random and Its
distribution

0 py(x; 0) if X is discrete

0 fx(x; 8) if X is continuous

depends on the value of 4.



Classical inference

Deal simultaneously with multiple candidate
models, one model for each possible value of
6.

A "good" hypothesis testing or estimation
procedure will be one that possesses certain
desirable properties under every candidate
model.

o I.e. for every possible value of 6.
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Notation

Our notation will generally indicate the
dependence of probabilities and expected
values on 6.

For example, we will denote by Eg|h(X)] the
expected value of a random variable h(X) as
a function of 6.

Similarly, we will use the notation P4(A) to
denote the probability of an event A.
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Given observations X = (X4, ..., X,,), an
estimator I1s a random variable of the form
® = g(X), for some function g.

Note that since the distribution of X depends
on @, the same is true for the distribution of ©.

We use the term estimate to refer to an
actual realized value of ©.



Sometimes, particularly when we are interested
In the role of the number of observations n, we
use the notation 0,, for an estimator.

It is then also appropriate to view ©,, as a
seguence of estimators.

2 One for each value of n.
The mean and variance of ®,, are denoted
Eg|©,| and vary|©, |, respectively.

2 We sometimes drop this subscript 8 when the context
IS clear.



Terminology regarding estimators

Estimator: 8,,, a function of n observations
for an (X, ..., X;,) whose distribution depends

on 6.
Estimation error: ©,, = 0,, — 6.

Bias of the estimator: bg(0,,) = E¢|0,] — 9, is
the expected value of the estimation error.



bias

0, is unbiased if bg(®,,) = 0.
o a desirable property.

0, is asymptotically unbiased if lim Eg|0,| =

n—0o

0, for every possible value of 6.

o 0,, becomes unbiased as the number n of
observations increases,

o this is desirable when n is large.



Consistent

0,, is consistent if the sequence 0,
converges to the true value 8, in probability,
for every possible value of 6.

Recall:
o X,, converges to a in probability If
Ve > 0,P(|X,,—al =€) - 0, asn — oo,

o X,, converges to a with probability 1 (or almost
surely) if

P(limX, =a)=1

n—00o



Mean squared error: Eg|02].

This Is related to the bias and the variance of
®,: .

o Reason: E[X?] = (E[X]D? +var(X),X =0, =0, — 6.
In many statistical problems, there is a tradeoff
between the two terms on the right-hand-side.

Often a reduction in the variance Is
accompanied by an increase Iin the bias.

Of course, a good estimator is one that manages
to keep both terms small.



Maximum Likelihood Estimation (MLLE)

Let the vector of observations X = (X4, ..., X;,)
be described by a joint PMF py (x; 6)

o Note that py(x; 8) is PMF for X only, not joint
distribution for X and 6.

Recall 6 is just a fixed parameter, not a random variable.

px(x; ) depends on 6.

Suppose we observe a particular value x =
(%1, ..., x5) Of X.



A maximum likelihood estimate (MLE) Is a value of
the parameter that maximizes the numerical function
px (x4, ..., x,,; 0) over all 6.
0, = argmax py (xy, ..., Xy; )
6
The above is for the case of discrete X. If X Is
continuous, then MLE Is
0,, = argmax fy (x4, ..., X,,; 6)
6
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In many applications, the observations X; are
assumed to be independent.

Then pX(xll oy Xns 0) — ?=1 pXi(xi; H)

It Is often analytically or computationally
convenient to maximize its logarithm, called
the log-likelihood function (over 8)

n
logpy (X1, ..., x,;0) = z log px, (x;; 0)
i=1



The term "likelihood" needs to be interpreted
properly.
Having observed the value x of X, py(x,0) is

not the probability that the unknown
parameter is equal to 6.

It is the probability that the observed value x can
arise when the parameter is equal to 6.



Thus, In maximizing the likelihood, we are
asking the following question:

"What is the value of & under which the
observations we have seen are most likely to
arise?"



Comparison with Bayesian MAP

Recall MAP: maxg pg(8) pxje(x]0).

Thus we can interpret MLE as MAP

estimation with a flat prior.

o I.e., a prior which is the same for all 6,

o Indicating the absence of any useful prior
knowledge.

In the case of continuous 6 with a bounded

range, MLE is MAP with a uniform prior:

fo(8) = c for all 8 and some constant c.



Estimating parameter of exponential

Customers arrive to a facility, with the ith
customer arriving at time Y;.
We assume that the ith interarrival time,
Xi =Y, =Y,
IS exponentially distributed with parameter 6,
o with the convention Y, = 0
Assume that X4, ..., X,, are independent.
We wish to estimate the value of 8 (interpreted

as the arrival rate), on the basis of the
observations Xy, ..., X,,.



The corresponding likelihood function is

=1 i=1

Thus the log-likelihood function is
log fx(x;0) = 2 log(@e‘gxi) =nlogf — Oy,
i

where y,, = X)iL x;.



Setting the derivative (wrt 8) to be O:
(n/8) —y, =0
We get 6 = n/y,,.

n

_ Z X —1
Thatis, 0,, = ( =1 ‘)

n

It is the Inverse of the sample mean of the
Interarrival times.

Can be interpreted as an empirical arrival
rate.



Estimating parameters of normal

Estimating the mean u and variance o of a
normal distribution using n independent
observations Xy, ..., X,,.

Simple calculation yields that the log
likelihood function is

log fy (x; 1, 0) = — 2 (log(2m0) + 2

(mn .U)Z)

o



2
log fy(x; 1,0) = — 2 (log(20) + 2 + i)

o)

Here m,, and sZ are the realized values of the
random variables

1 1
M,==Y"1X;, Si= g2?=1(Xi — M,)?

n
o The sample mean and sample variance, resp.
The maximizer is § = (m,, s?).
“The MLE of normal iIs just sample mean and
sample variance.”



Properties of MLLE

Invariance principle: if 8,, is the ML estimate of
8, then for any one-to-one function h of 8, the

MLE of the parameter £ = h(0) is h(0,,).
Consistency: MLE Is consistent for I.1.d.
observations

o under some mild assumptions,

Asymptotic normality property: When 6 is a
scalar, the distribution of (6,, — 6)/d(8,,)
approaches N(0,1).

o under some mild conditions



Estimation of the Mean

Suppose that the observations X4, ..., X,, are
.1.d., with an unknown common mean u and
common variance o*.

1 . :
The sample mean M;, = — * 1 X; is unbiased.

Its mean squared error Is

E[(M,, —w)?] = S E[Qi=1(X; — w)?]
= — YR, E[(X; - u) N="5==
o Doesn’ t depend on wu.



Estimation of the Variance

Consider the salmple variance
S'rzl - = 7iQ=1(Xi o Mn)z

n
Let's compute its bias.

2 o’
E|X?| = u? + 02, E[M?] = u? +—.
E|SZ| = A/n)E|X XE — 2M, X1, X7 + nM2]
= E[(1/n) 31, X7 — 2M2 + M|
El(1/n) ¥, X7 — Mz
u® + 0% — (uz +d?/n
n—1 2

—O0
n



Last slide: E[S?] = "= o2

The sample variance S2 is not an unbiased
estimator of g2, although it is asymptotically

unbiased.

Define $2 = ﬁs}% = " (X; — M,)?,

n—1
then S$2 is unbiased.

o For large n, however, S2 and S2 are almost the
same.



Confidence Intervals

Consider an estimator ©,, of an unknown
parameter 6.

Besides the numerical value provided by an
estimate, we are often interested In
constructing a so-called confidence interval.

Roughly speaking, this is an interval that
contains @ with a certain high probability, for
every possible value of 6.



Let us first fix a desired confidence level, 1 —
a, where «a Is typically a small number.

We then replace the point estimator ©,, by a
lower estimator 0, and an upper estimator

01, s.t.
P(6,<0<06})=1-a
for every possible value of 4.
We call [6;,8;| a (1 — a) confidence
Interval.
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We consider the case of only two variables
for illustration.

We wish to model the relation between two
variables of interest, x and y
0 e.g., years of education and income.

based on a collection of data pairs (x;,y;),
(1 =1,..,n.

0 e.g. x; Is the years of education, and y; the annual
Income



Often a two-dimensional plot of these samples
Indicates a systematic, approximately linear
relation between x; and y;.

Then, it is natural to attempt to build a linear
model of the form y = 6, + 6, x.

o 6, and 6, are unknown parameters to be estimated.
Given some estimates 6, and 6, of the resulting

parameters, the value y; corresponding to x;, as
predicted by the model, is 9; = 0, + 6, x;.



Generally, y; will be different from the given
value y;, and the corresponding difference
v; = y; — vy; Is called the ith residual.

A choice of estimates that results in small
residuals is considered to provide a good fit
to the data.




The linear regression approach chooses the
parameter estimates 6, and 8, that minimize
the sum of the squared residuals

?=1(3’i - 371')2 — ?=1(3’i — 0y — 91xi)2

y? Residual x
(@i, vi) yi — 0o — 01 z; X
ol ‘

ed




Note that the postulated linear model may or
may not be true.

The true relation between the two variables
may be nonlinear.

In practice, there is often an additional phase
where we examine whether the hypothesis of
a linear model is supported by the data and
try to validate the estimated model.



Given n data pairs (x;, y;), the estimates that
minimize the sum of the squared residuals
are given by

H — i=1 (i =) (y; — ¥)
! 7iﬂL=1(xi o f)z ’

é\o — }_/_élf

where
_ _1gon 1

_ - _1en
X ="li=1Xi» Y =~ Li=1Yi-
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We revisit the problem of choosing between
two hypotheses.

But unlike the Bayesian formulation, we will
assume no prior probabilities.

Two hypotheses: H, and H,.

In traditional statistical language, hypothesis
H, is often called the null hypothesis and H,
the alternative hypothesis.

o H, plays the role of a default model, to be proved
or disproved on the basis of available data.



The available observation is a vector X =
(X, ..., X,) of random variables whose
distribution depends on the hypothesis.

Note that consistent with the classical
Inference framework, these are not
conditional probabilities, because the true
hypothesis is not treated as a random

variable.



Notation: P(X € A; H;) is the probability that
the observation X belongs to a set A when
hypothesis H; Is true.

Px(x; H-) or fX(x; H-) to denote the PMF or

PDF, respectively, of the vector X, under
hypothesis H;.



Acceptance Region R¢
Accept Hp

Rejection Region R
Reject Hy

Hp True H; True Hy True H, True
No Error Type 11 Error Type I Error No Error

Any decision rule can be represented by a
partition of the set of all possible X =
(X4, ..., X,) into two subsets.

o the rejection region R,
o the acceptance region R°€.

The choice of a decision rule is equivalent to
choosing the rejection region.



Space of Possible Observations z

Acceptance Region R¢
Accept Hp

Rejection Region R
Reject Hy

Hyg True H; True
No Error Type 11 Error

Hy True H, True
Type 1 Error No Error

For a particular choice of t

though H, Is true.

ne rejection region R,

there are two possible types of errors.
'ype | error, or a false rejection: Reject H, even

o This happens with probability a(R) = P(X € R; Hy).
Type Il error, or a false acceptance: Accept H,

even though H, is false.

o This happens with probability S(R) = P(X € R; H,).



To motivate a particular form of rejection
region, we draw an analogy with Bayesian
hypothesis testing.

Two hypotheses ® = 6, and ® = 0, are
iInvolved, with respective prior probabilities

pe(6o) and pe(6,).

The overall probability of error is minimized
by using the MAP rule.



Given the observed value x of X, declare © = 6,
be true if

Pe(00)px0(x|6y) < pe(01)pxje(x]01)
This decision rule can be rewritten as follows.
Define the likelihood ratio L(x) by

x|6
L(x) = PX|@( 1)
PX|@(X 6o)
Declare ® = 6, to be true if the realized value x

of the observation vector X satisfies L(x) > €.



Here ¢ Is the critical value defined by
£ = pe(6o)
pe(61)

If X Is continuous, the approach is the same,
except that the likelihood ratio is defined as a

: . ~ fxje(x]61)
ratio of PDFs: L(x) = 10100’




Motivated by the preceding form of the MAP
rule, we are led to consider rejection regions

of the form

R = {x|L(x) > ¢},
where the likelihood ratio L(x) is denned
similar to the Bayesian case:

__ px(x;Hq) fx(x;Hp)
L(x) = px(x;Hg)' or  L(x) = fx(x;Hg)

The critical value ¢ remains free to be chosen
on the basis of other considerations.




Likelthood Ratio Test (I.LRT)

Start with a target value «a for the false
rejection probabillity.
Choose a value for & such that the false
rejection probabillity is equal to «:

P(L(X) > ¢ Hy) = a
Once the value x of X Is observed, reject H, If
L(x) > €.
Typical choices for a are a = 0.1, a = 0.05,

or a = 0.01, depending on the degree of
undesirability of false rejection.



Note that to be able to apply the LRT to a
given problem, the following are required.

We must be able to compute L(x) for any
given observation value x, so that we can
compare it with the critical value €.

o Fortunately, this is the case when the underlying
PMFs or PDFs are given in closed form.



We must either have a closed form

expression for the distribution of L(X)

o or of a related random variable such as log L(X)

o or we must be able to approximate it analytically,
computationally, or through simulation.

This Is needed to determine the critical value

¢ that corresponds to a given false rejection
probabillity a.
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When L(X) is a continuous random variable,
the probability P(L(X) > &; Hy) moves
continuously from 1 to O as ¢ increases.
Thus, we can find a value of ¢ for which the
requirement P(L(X) > &; Hy) = a is satisfied.
If, however, L(X) is a discrete random
variable, it may be impossible to satisfy the
equality P(L(X) > &; Hy) = a exactly, no
matter how ¢ Is chosen.



In such cases, there are several possibllities:
Strive for approximate equality.

Choose the smallest value of ¢ that satisfies
P(L(X)>&Hy) <a



We have motivated so far the use of a LRT
through an analogy with Bayesian inference.

However, it also has a stronger justification.

~or a given false rejection probability, the
_RT offers the smallest possible false
acceptance probabillity.




Neyman-Pearson l.emma

Consider a particular choice of ¢ in the LRT,
which results in error probabilities

P(L(X) >¢;Hy) = a, P(L(X) <& Hyp) = .
Suppose that some other test, with rejection
region R, achieves a smaller or equal false
rejection probabillity:

P(XER;H) <a (1)

Then, PX€&€R;H)=p(. (2)
In addition, if (1) Is strict, so IS (2).



A

7
Efficient Frontier

False Acceptance
Probability

Set € of pairs (a(R), B(R))

(«(R), B(R))

-

1 False Rejection
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Hypothesis testing problems encountered In
realistic settings do not always involve two
well-specified alternatives.

So the methodology in the preceding section
cannot be applied.

This section introduces an approach to this
more general class of problems.

Note: a unigue or universal methodology is
not available. There is a significant element
of judgment and art that comes into play.



Motivation

Consider problems such as the following:

o A coin is tossed repeatedly and independently. Is
the coin fair?

2 We observe a sequence of I.1.d. normal random
variables Xj, ..., X,,. Are they standard normal?

o Two different drug treatments are delivered to two
different groups of patients with the same
disease. Is the first treatment more effective than
the second?




o On the basis of historical data (say, based on the
last year), is the daily change of the Dow Jones
Industrial Average normally distributed?

o On the basis of several sample pairs (x;, y;) of two
random variables X and Y, can we determine
whether the two random variables are
Independent?



In all of the above cases, we are dealing with
a phenomenon that involves uncertainty,

o presumably governed by a probabilistic model.

We have a default hypothesis, usually called
the null hypothesis, denoted by H,,

We wish to determine on the basis of the
observations X = (X4, ..., X,;), whether the null
hypothesis should be rejected or not.



In order to avoid obscuring the key ideas, we
will mostly restrict the scope of our discussion
to situations with the following characteristics.

o Parametric models: We assume that the
observations X,, ..., X,, have a distribution
governed by a joint PMF/PDF, which is completely
determined by an unknown parameter 6 (scalar or
vector), belonging to a given set M of possible
parameters.



o Simple null hypothesis: The null hypothesis
asserts that the true value of 6 is equal to a given
element 6, of M.

o Alternative hypothesis: The alternative hypothesis,
denoted by H,, Is just the statement that H, IS not
true, I.e., that 8 # 6,.



The General Approach

We introduce the general approach through a
concrete example.

We then summarize and comment on the
various steps involved.



Example: Is my coin fair?

A coin Is tossed independently n = 1000
times.

Let 8 be the unknown probability of heads at
each toss.

The set of all possible parametersis M =
10,1].

The null hypothesis H, ("the coin is fair") is of
the form 6 = 1/2. The alternative hypothesis
Isthat 8 + 1/2.



The observed data Is a sequence X, ..., X,

o where X; equals 1 or 0, depending on whether the
ith toss resulted in heads or tails.

We choose to address the problem by

considering the value of S = X; + --- + X,,, the

number of heads observed, and using a

decision rule of the form:

reject H, if ‘S - g‘ > &

where £ Is a suitable critical value, to be
determined.




We finally choose the critical value ¢ so that
the probabillity of false rejection is equal to a
given value «a:

P(reject Hy; Hy) = «
Typically, a, called the significance level, is a
small number:

o In this example, we use a = 0.05.

Some probabilistic calculations are now
needed to determine the critical value ¢.



Some probabillistic calculations are now
needed to determine the critical value ¢.

Under the null hypothesis, the random
variable S is binomial with parameters n =
1000 and p = 1/2.

Using the normal approximation to the
binomial and the normal tables, we find that
an appropriate choice is ¢ = 31.



If, for example, the observed value of S turns out

to be s =472, we have
|s — 500| = [472 — 500| = 28 < 31.

And the hypothesis H, Is not rejected at the 5%

significance level.

2 "not rejected"” (as opposed to "accepted”): We do not
have any firm grounds to assert that 8 equals 2, as
opposed to, say, 0.51.

o We can only assert that the observed value of S does
not provide strong evidence against hypothesis H,.



Significance Testing Methodology

A statistical test of a hypothesis "Hy: 60 = 6*"
IS to be performed, based on the
observations X = (X4, ..., X;,).

1. The following steps are carried out before
the data are observed.

o 1.1 Choose a statistic S, that Is, a scalar random
variable that will summarize the data X. This
Involves the choice of a function h: R™ - R,
resulting in the statistic S = h(X).



o 1.2 Determine the shape of the rejection region by
specifying the set of values of S for which H, will
be rejected as a function of a yet undetermined
critical value €.

o 1.3 Choose the significance level, i.e., the desired
probabllity a of a false rejection of H,.

o 1.4 Choose the critical value ¢ so that the
probability of false rejection is equal (or
approximately equal) to a. (At this point, the
rejection region is completely determined.)



2. Once the values xq, ..., x, of X4, ..., X,, are
observed:

o 2.1 Calculate the value s = h(x4, ..., x,,) of the
statistic S.

o 2.2 Reject the hypothesis H, if s belongs to the
rejection region.



Comments and interpretation

"here Is no universal method for choosing
the "right" statistic S.

The set of values of S under which H, Is not
rejected Is usually an interval surrounding the
peak of the distribution of S under H,.

Typical choices for the false rejection
probability a range between a = 0.10 and a =
0.01.

Step 1.4 is the only place where probabilistic
calculations are used.




Given the value of «a, If the hypothesis H,
ends up being rejected, one says that H, Is
rejected at the a significance level.

Note: It does not mean that the probability of
H, being true is less than «.

Instead, it means that when this particular
methodology Is used, we will have false
rejections a fraction a of the time.



Quite often, statisticians skip steps 1.3 and
1.4 in the above described methodology.

Instead, once they calculate the realized
value s of S, they determine and report an
associated p-value defined by

{min a| H, would be rejected at the a significance level}



Equivalently, the p-value Is the value of a for
which s would be exactly at the threshold
between rejection and non-rejection.

Thus, for example, the null hypothesis would
be rejected at the 5% significance level if and
only If the p-value Is smaller than 0.05.




