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Preceding chapter: Bayesian inference

 Preceding chapter: Bayesian approach to 

inference.

 Unknown parameters are modeled as random 

variables. 

 Work within a single, fully-specified probabilistic 

model. 

 Compute posterior distribution by judicious

application of Bayes' rule.



This chapter: classical inference

 We view the unknown parameter 𝜃 as a 

deterministic (not random!) but unknown 

quantity. 

 The observation 𝑋 is random and its 

distribution 

 𝑝𝑋 𝑥; 𝜃 if 𝑋 is discrete

 𝑓𝑋 𝑥; 𝜃 if 𝑋 is continuous 

depends on the value of 𝜃.



Classical inference

 Deal simultaneously with multiple candidate 

models, one model for each possible value of 

𝜃.

 A ''good" hypothesis testing or estimation 

procedure will be one that possesses certain 

desirable properties under every candidate 

model.

 i.e. for every possible value of 𝜃.



 Bayesian:

 Classical: 



Notation 

 Our notation will generally indicate the 

dependence of probabilities and expected 

values on 𝜃. 

 For example, we will denote by 𝐸𝜃 ℎ 𝑋 the 

expected value of a random variable ℎ 𝑋 as 

a function of 𝜃. 

 Similarly, we will use the notation 𝑃𝜃 𝐴 to 

denote the probability of an event 𝐴. 
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 Given observations 𝑋 = 𝑋1, … , 𝑋𝑛 , an 

estimator is a random variable of the form 
Θ = 𝑔 𝑋 , for some function 𝑔.

 Note that since the distribution of 𝑋 depends 

on 𝜃, the same is true for the distribution of Θ. 

 We use the term estimate to refer to an 

actual realized value of Θ. 



 Sometimes, particularly when we are interested 
in the role of the number of observations 𝑛, we 
use the notation Θ𝑛 for an estimator.

 It is then also appropriate to view Θ𝑛 as a 
sequence of estimators. 
 One for each value of 𝑛.

 The mean and variance of Θ𝑛 are denoted
𝐸𝜃 Θ𝑛 and 𝑣𝑎𝑟𝜃 Θ𝑛 , respectively.

 We sometimes drop this subscript 𝜃 when the context 
is clear.



Terminology regarding estimators 

 Estimator: Θ𝑛, a function of 𝑛 observations  

for an 𝑋1, … , 𝑋𝑛 whose distribution depends 

on 𝜃.

 Estimation error: ෩Θ𝑛 = Θ𝑛 − 𝜃. 

 Bias of the estimator: 𝑏𝜃 Θ𝑛 = 𝐸𝜃 Θ𝑛 − 𝜃, is 

the expected value of the estimation error.



bias


Θ𝑛 is unbiased if 𝑏𝜃 Θ𝑛 = 0.

 a desirable property. 


Θ𝑛 is asymptotically unbiased if lim

𝑛→∞
𝐸𝜃 Θ𝑛 =

𝜃, for every possible value of 𝜃.


Θ𝑛 becomes unbiased as the number 𝑛 of 

observations increases, 

 this is desirable when 𝑛 is large. 



Consistent 


Θ𝑛 is consistent if the sequence Θ𝑛
converges to the true value 𝜃, in probability, 
for every possible value of 𝜃.

 Recall:

 𝑋𝑛 converges to 𝑎 in probability if

∀𝜖 > 0, P 𝑋𝑛 − 𝑎 ≥ 𝜖 → 0, as 𝑛 → ∞.

 𝑋𝑛 converges to 𝑎 with probability 1 (or almost 
surely) if

P lim
𝑛→∞

𝑋𝑛 =𝑎 = 1



 Mean squared error: 𝐸𝜃 ෩Θ𝑛
2 .

 This is related to the bias and the variance of 
Θ𝑛:  𝐸𝜃 ෩Θ𝑛

2 = 𝑏𝜃
2 Θ𝑛 + 𝑣𝑎𝑟𝜃 Θ𝑛 .

 Reason: 𝐸 𝑋2 = 𝐸 𝑋 2 + 𝑣𝑎𝑟(𝑋), 𝑋 = ෩Θ𝑛 = Θ𝑛 − 𝜃.

 In many statistical problems, there is a  tradeoff
between the two terms on the right-hand-side. 

 Often a reduction in the variance is 
accompanied by an increase in the bias. 

 Of course, a good estimator is one that manages 
to keep both terms small. 



Maximum Likelihood Estimation (MLE)

 Let the vector of observations 𝑋 = 𝑋1, … , 𝑋𝑛
be described by a joint PMF 𝑝𝑋 𝑥; 𝜃

 Note that 𝑝𝑋 𝑥; 𝜃 is PMF for 𝑋 only, not joint 

distribution for 𝑋 and 𝜃. 

 Recall 𝜃 is just a fixed parameter, not a random variable.

 𝑝𝑋 𝑥; 𝜃 depends on 𝜃. 

 Suppose we observe a particular value 𝑥 =
𝑥1, … , 𝑥𝑛 of 𝑋.



 A maximum likelihood estimate (MLE) is a value of 
the parameter that maximizes the numerical function 
𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 over all 𝜃.

መ𝜃𝑛 = argmax
𝜃

𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃

 The above is for the case of discrete 𝑋. If 𝑋 is 
continuous, then MLE is

መ𝜃𝑛 = argmax
𝜃

𝑓𝑋 𝑥1, … , 𝑥𝑛; 𝜃



 In many applications, the observations 𝑋𝑖 are 

assumed to be independent.

 Then 𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 = ς𝑖=1
𝑛 𝑝𝑋𝑖 𝑥𝑖; 𝜃 .

 It is often analytically or computationally  

convenient to maximize its logarithm, called 

the log-likelihood function (over 𝜃)

log 𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 =

𝑖=1

𝑛

log 𝑝𝑋𝑖 𝑥𝑖; 𝜃



 The term "likelihood" needs to be interpreted 

properly. 

 Having observed the value 𝑥 of 𝑋, 𝑝𝑋 𝑥, 𝜃 is 

not the probability that the unknown 

parameter is equal to 𝜃. 

 It is the probability that the observed value 𝑥 can 

arise when the parameter is equal to 𝜃. 



 Thus, in maximizing the likelihood, we are 

asking the following question: 

 "What is the value of 𝜃 under which the 

observations we have seen are most likely to 

arise?" 



Comparison with Bayesian MAP

 Recall MAP: max𝜃 𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃 .

 Thus we can interpret MLE as MAP 

estimation with a flat prior.

 i.e., a prior which is the same for all 𝜃, 

 indicating the absence of any useful prior 

knowledge. 

 In the case of continuous 𝜃 with a bounded 

range, MLE is MAP with a uniform prior: 

𝑓Θ 𝜃 = 𝑐 for all 𝜃 and some constant 𝑐. 



Estimating parameter of exponential

 Customers arrive to a facility, with the 𝑖th
customer arriving at time 𝑌𝑖. 

 We assume that the 𝑖th interarrival time, 
𝑋𝑖 = 𝑌𝑖 − 𝑌𝑖−1

is exponentially distributed with parameter 𝜃, 
 with the convention 𝑌0 = 0

 Assume that 𝑋1, … , 𝑋𝑛 are independent. 

 We wish to estimate the value of 𝜃 (interpreted 
as the arrival rate), on the basis of the 
observations 𝑋1, … , 𝑋𝑛.



 The corresponding likelihood function is

𝑓𝑋 𝑥; 𝜃 =ෑ

𝑖=1

𝑛

𝑓𝑋𝑖 𝑥𝑖; 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑒−𝜃𝑥𝑖

 Thus the log-likelihood function is 

log 𝑓𝑋 𝑥; 𝜃 =

𝑖

log 𝜃𝑒−𝜃𝑥𝑖 = 𝑛 log 𝜃 − 𝜃𝑦𝑛

where 𝑦𝑛 = σ𝑖=1
𝑛 𝑥𝑖.



 Setting the derivative (wrt 𝜃) to be 0: 
𝑛/𝜃 − 𝑦𝑛 = 0

 We get 𝜃 = 𝑛/𝑦𝑛.

 That is, Θ𝑛 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛

−1

 It is the inverse of the sample mean of the 
interarrival times. 

 Can be interpreted as an empirical arrival 
rate. 



Estimating parameters of normal

 Estimating the mean 𝜇 and variance 𝜎 of a 

normal distribution using 𝑛 independent 

observations 𝑋1, … , 𝑋𝑛. 

 Simple calculation yields that the log

likelihood function is 

log 𝑓𝑋(𝑥; 𝜇, 𝜎) = −
𝑛

2
log 2𝜋𝜎 +

𝑠𝑛
2

𝜎
+

𝑚𝑛−𝜇
2

𝜎



 log 𝑓𝑋(𝑥; 𝜇, 𝜎) = −
𝑛

2
log 2𝜋𝜎 +

𝑠𝑛
2

𝜎
+

𝑚𝑛−𝜇
2

𝜎

 Here 𝑚𝑛 and 𝑠𝑛
2 are the realized values of the 

random variables 

𝑀𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖, ҧ𝑆𝑛

2 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2

 The sample mean and sample variance, resp.

 The maximizer is 𝜃 = 𝑚𝑛, 𝑠𝑛
2 .

 “The MLE of normal is just sample mean and
sample variance.” 



Properties of MLE

 Invariance principle: if Θ𝑛 is the ML estimate of 
𝜃, then for any one-to-one function ℎ of 𝜃, the 
MLE of the parameter 𝜉 = ℎ 𝜃 is ℎ Θ𝑛 . 

 Consistency: MLE is consistent for i.i.d. 
observations 
 under some mild assumptions, 

 Asymptotic normality property: When 𝜃 is a 
scalar, the distribution of Θ𝑛 − 𝜃 /𝜎 Θ𝑛
approaches 𝑁 0,1 .
 under some mild conditions



Estimation of the Mean

 Suppose that the observations 𝑋1, … , 𝑋𝑛 are 
i.i.d., with an unknown common mean 𝜇 and 
common variance 𝜎2.

 The sample mean 𝑀𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 is unbiased.

 Its mean squared error is 

𝐸 𝑀𝑛 − 𝜇 2 =
1

𝑛2
𝐸 σ𝑖=1

𝑛 (𝑋𝑖 − 𝜇) 2

=
1

𝑛2
σ𝑖=1
𝑛 𝐸 𝑋𝑖 − 𝜇 2 =

𝑛𝜎2

𝑛2
=

𝜎2

𝑛
.

 Doesn’t depend on 𝜇.



Estimation of the Variance

 Consider the sample variance 
ҧ𝑆𝑛
2 =

1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2

 Let’s compute its bias.

 𝐸 𝑋𝑖
2 = 𝜇2 + 𝜎2, 𝐸 𝑀𝑛

2 = 𝜇2 +
𝜎2

𝑛
. 

 𝐸 ҧ𝑆𝑛
2 = 1/𝑛 𝐸 σ𝑖=1

𝑛 𝑋𝑖
2 − 2𝑀𝑛 σ𝑖=1

𝑛 𝑋𝑖
2 + 𝑛𝑀𝑛

2

= 𝐸 1/𝑛 σ𝑖=1
𝑛 𝑋𝑖

2 − 2𝑀𝑛
2 +𝑀𝑛

2

= 𝐸 1/𝑛 σ𝑖=1
𝑛 𝑋𝑖

2 −𝑀𝑛
2

= 𝜇2 + 𝜎2 − 𝜇2 + 𝜎2/𝑛
=

𝑛−1

𝑛
𝜎2



 Last slide: 𝐸 ҧ𝑆𝑛
2 =

𝑛−1

𝑛
𝜎2

 The sample variance ҧ𝑆𝑛
2 is not an unbiased 

estimator of 𝜎2, although it is asymptotically 

unbiased.

 Define መ𝑆𝑛
2 =

𝑛

𝑛−1
ҧ𝑆𝑛
2 =

1

𝑛−1
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2, 

then መ𝑆𝑛
2 is unbiased.

 For large 𝑛, however, መ𝑆𝑛
2 and ҧ𝑆𝑛

2 are almost the 

same.



Confidence Intervals 

 Consider an estimator Θ𝑛 of an unknown 

parameter 𝜃. 

 Besides the numerical value provided by an 

estimate, we are often interested in 

constructing a so-called confidence interval. 

 Roughly speaking, this is an interval that 

contains 𝜃 with a certain high probability, for 

every possible value of 𝜃. 



 Let us first fix a desired confidence level, 1 −
𝛼, where 𝛼 is typically a small number.

 We then replace the point estimator Θ𝑛 by a 

lower estimator Θ𝑛
− and an upper estimator 

Θ𝑛
+, s.t.

𝑃 Θ𝑛
− ≤ 𝜃 ≤ Θ𝑛

+ ≥ 1 − 𝛼

for every possible value of 𝜃. 

 We call Θ𝑛
−, Θ𝑛

+ a 1 − 𝛼 confidence 

interval.
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 We consider the case of only two variables 

for illustration. 

 We wish to model the relation between two 

variables of interest, 𝑥 and 𝑦

 e.g., years of education and income. 

 based on a collection of data pairs 𝑥𝑖 , 𝑦𝑖 , 

𝑖 = 1,… , 𝑛. 

 e.g. 𝑥𝑖 is the years of education, and 𝑦𝑖 the annual 

income



 Often a two-dimensional plot of these samples 

indicates a systematic, approximately linear 

relation between 𝑥𝑖 and 𝑦𝑖.

 Then, it is natural to attempt to build a linear 

model of the form 𝑦 ≈ 𝜃0 + 𝜃1𝑥.

 𝜃0 and 𝜃1 are unknown parameters to be estimated.

 Given some estimates መ𝜃0 and መ𝜃1 of the resulting 

parameters, the value 𝑦𝑖 corresponding to 𝑥𝑖, as 

predicted by the model, is ො𝑦𝑖 = መ𝜃0 + መ𝜃1𝑥𝑖.



 Generally, ො𝑦𝑖 will be different from the given 

value 𝑦𝑖, and the corresponding difference 

𝑦𝑖 = ො𝑦𝑖 − 𝑦𝑖 is called the 𝑖th residual. 

 A choice of estimates that results in small 

residuals is considered to provide a good fit 

to the data.



 The linear regression approach chooses the 

parameter estimates 𝜃0 and 𝜃1 that minimize 

the sum of the squared residuals
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2 = σ𝑖=1
𝑛 𝑦𝑖 − 𝜃0 − 𝜃1𝑥𝑖

2



 Note that the postulated linear model may or 

may not be true. 

 The true relation between the two variables 

may be nonlinear. 

 In practice, there is often an additional phase 

where we examine whether the hypothesis of 

a linear model is supported by the data and 

try to validate the estimated model. 



 Given 𝑛 data pairs 𝑥𝑖 , 𝑦𝑖 , the estimates that 

minimize the sum of the squared residuals 

are given by 

𝜃1 =
σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

, 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥.

where

ҧ𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 , ത𝑦 =

1

𝑛
σ𝑖=1
𝑛 𝑦𝑖.
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 We revisit the problem of choosing between 
two hypotheses. 

 But unlike the Bayesian formulation, we will 
assume no prior probabilities.

 Two hypotheses: 𝐻0 and 𝐻1.

 In traditional statistical language, hypothesis 
𝐻0 is often called the null hypothesis and 𝐻1
the alternative hypothesis. 

 𝐻0 plays the role of a default model, to be proved 
or disproved on the basis of available data.



 The available observation is a vector 𝑋 =
𝑋1, … , 𝑋𝑛 of random variables whose 

distribution depends on the hypothesis.

 Note that consistent with the classical 

inference framework, these are not 

conditional probabilities, because the true 

hypothesis is not treated as a random 

variable. 



 Notation: 𝑃 𝑋 ∈ 𝐴;𝐻𝑗 is the probability that 

the observation 𝑋 belongs to a set 𝐴 when 

hypothesis 𝐻𝑗 is true. 

 𝑝𝑋 𝑥;𝐻𝑗 or 𝑓𝑋 𝑥;𝐻𝑗 to denote the PMF or 

PDF, respectively, of the vector 𝑋, under 

hypothesis 𝐻𝑗. 



 Any decision rule can be represented by a 
partition of the set of all possible 𝑋 =
𝑋1, … , 𝑋𝑛 into two subsets.

 the rejection region 𝑅,

 the acceptance region 𝑅𝑐. 

 The choice of a decision rule is equivalent to 
choosing the rejection region. 



 For a particular choice of the rejection region 𝑅, 
there are two possible types of errors. 

 Type I error, or a false rejection: Reject 𝐻0 even 
though 𝐻0 is true. 
 This happens with probability 𝛼 𝑅 = 𝑃 𝑋 ∈ 𝑅;𝐻0 .

 Type II error, or a false acceptance: Accept 𝐻0
even though 𝐻0 is false. 
 This happens with probability 𝛽 𝑅 = 𝑃 𝑋 ∉ 𝑅;𝐻1 .



 To motivate a particular form of rejection 

region, we draw an analogy with Bayesian 

hypothesis testing. 

 Two hypotheses Θ = 𝜃0 and Θ = 𝜃1 are 

involved, with respective prior probabilities 

𝑝Θ 𝜃0 and 𝑝Θ 𝜃1 .

 The overall probability of error is minimized 

by using the MAP rule. 



 Given the observed value 𝑥 of 𝑋, declare Θ = 𝜃1
be true if 

𝑝Θ 𝜃0 𝑝𝑋|Θ 𝑥|𝜃0 < 𝑝Θ 𝜃1 𝑝𝑋|Θ 𝑥|𝜃1

 This decision rule can be rewritten as follows.

 Define the likelihood ratio 𝐿 𝑥 by 

𝐿 𝑥 =
𝑝𝑋|Θ 𝑥|𝜃1

𝑝𝑋|Θ 𝑥|𝜃0

 Declare Θ = 𝜃1 to be true if the realized value 𝑥
of the observation vector 𝑋 satisfies 𝐿 𝑥 ≥ 𝜉.



 Here 𝜉 is the critical value defined by 

𝜉 =
𝑝Θ 𝜃0
𝑝Θ 𝜃1

 If X is continuous, the approach is the same, 

except that the likelihood ratio is defined as a 

ratio of PDFs: 𝐿 𝑥 =
𝑓𝑋|Θ 𝑥|𝜃1

𝑓𝑋|Θ 𝑥|𝜃0
.



 Motivated by the preceding form of the MAP 
rule, we are led to consider rejection regions 
of the form 

𝑅 = 𝑥 𝐿 𝑥 > 𝜉 ,
where the likelihood ratio 𝐿 𝑥 is denned 
similar to the Bayesian case:

𝐿 𝑥 =
𝑝𝑋 𝑥;𝐻1

𝑝𝑋 𝑥;𝐻0
,     or     𝐿 𝑥 =

𝑓𝑋 𝑥;𝐻1

𝑓𝑋 𝑥;𝐻0
.

 The critical value 𝜉 remains free to be chosen 
on the basis of other considerations. 



Likelihood Ratio Test (LRT)

 Start with a target value 𝛼 for the false 
rejection probability. 

 Choose a value for 𝜉 such that the false 
rejection probability is equal to 𝛼: 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼

 Once the value 𝑥 of 𝑋 is observed, reject 𝐻0 if 
𝐿 𝑥 > 𝜉.

 Typical choices for 𝛼 are 𝛼 = 0.1, 𝛼 = 0.05, 
or 𝛼 = 0.01, depending on the degree of 
undesirability of false rejection.



 Note that to be able to apply the LRT to a 

given problem, the following are required.

 We must be able to compute 𝐿 𝑥 for any 

given observation value 𝑥, so that we can 

compare it with the critical value 𝜉. 

 Fortunately, this is the case when the underlying 

PMFs or PDFs are given in closed form.



 We must either have a closed form 

expression for the distribution of 𝐿 𝑋

 or of a related random variable such as log 𝐿 𝑋

 or we must be able to approximate it analytically, 

computationally, or through simulation. 

 This is needed to determine the critical value 

𝜉 that corresponds to a given false rejection 

probability 𝛼.





 When 𝐿 𝑋 is a continuous random variable, 

the probability 𝑃 𝐿 𝑋 > 𝜉;𝐻0 moves 

continuously from 1 to 0 as 𝜉 increases. 

 Thus, we can find a value of 𝜉 for which the 

requirement 𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼 is satisfied. 

 If, however, 𝐿 𝑋 is a discrete random 

variable, it may be impossible to satisfy the 

equality 𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼 exactly, no 

matter how 𝜉 is chosen. 



 In such cases, there are several possibilities: 

 Strive for approximate equality. 

 Choose the smallest value of 𝜉 that satisfies 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 ≤ 𝛼



 We have motivated so far the use of a LRT 

through an analogy with Bayesian inference. 

 However, it also has a stronger justification. 

 For a given false rejection probability, the 

LRT offers the smallest possible false  

acceptance probability.



Neyman-Pearson Lemma

 Consider a particular choice of 𝜉 in the LRT, 

which results in error probabilities 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼, 𝑃 𝐿 𝑋 ≤ 𝜉;𝐻1 = 𝛽.

 Suppose that some other test, with rejection 

region 𝑅, achieves a smaller or equal false 

rejection probability: 

𝑃 𝑋 ∈ 𝑅;𝐻0 ≤ 𝛼 (1)

 Then,     𝑃 𝑋 ∉ 𝑅;𝐻1 ≥ 𝛽. (2)

 In addition, if (1) is strict, so is (2).
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 Hypothesis testing problems encountered in 
realistic settings do not always involve two 
well-specified alternatives. 

 So the methodology in the preceding section 
cannot be applied.

 This section introduces an approach to this 
more general class of problems. 

 Note: a unique or universal methodology is 
not available. There is a significant element 
of judgment and art that comes into play.



Motivation

 Consider problems such as the following:

 A coin is tossed repeatedly and independently. Is 

the coin fair?

 We observe a sequence of i.i.d. normal random 

variables 𝑋1, … , 𝑋𝑛. Are they standard normal?

 Two different drug treatments are delivered to two 

different groups of  patients with the same 

disease. Is the first treatment more effective than 

the second?



 On the basis of historical data (say, based on the 

last year), is the daily change of the Dow Jones 

Industrial Average normally distributed?

 On the basis of several sample pairs 𝑥𝑖 , 𝑦𝑖 of two 

random variables 𝑋 and 𝑌, can we determine 

whether the two random variables are 

independent?

 …



 In all of the above cases, we are dealing with 

a phenomenon that involves uncertainty, 

 presumably governed by a probabilistic model. 

 We have a default hypothesis, usually called 

the null hypothesis, denoted by 𝐻0, 

 We wish to determine on the basis of the 

observations 𝑋 = 𝑋1, … , 𝑋𝑛 , whether the null 

hypothesis should be rejected or not. 



 In order to avoid obscuring the key ideas, we 

will mostly restrict the scope of our discussion 

to situations with the following characteristics.

 Parametric models: We assume that the 

observations 𝑋1, … , 𝑋𝑛 have a distribution 

governed by a joint PMF/PDF, which is completely 

determined by an unknown parameter 𝜃 (scalar or 

vector), belonging to a given set 𝑀 of possible 

parameters.



 Simple null hypothesis: The null hypothesis 

asserts that the true value of 𝜃 is equal to a given 

element 𝜃0 of 𝑀. 

 Alternative hypothesis: The alternative hypothesis, 

denoted by 𝐻1, is just the statement that 𝐻0 is not 

true, i.e., that 𝜃 ≠ 𝜃0. 



The General Approach 

 We introduce the general approach through a 

concrete example. 

 We then summarize and comment on the 

various steps involved. 



Example: Is my coin fair?

 A coin is tossed independently 𝑛 = 1000
times. 

 Let 𝜃 be the unknown probability of heads at 

each toss. 

 The set of all possible parameters is 𝑀 =
0,1 . 

 The null hypothesis 𝐻0 ("the coin is fair") is of 

the form 𝜃 = 1/2. The alternative hypothesis 

is that 𝜃 ≠ 1/2. 



 The observed data is a sequence 𝑋1, … , 𝑋𝑛
 where 𝑋𝑖 equals 1 or 0, depending on whether the 
𝑖th toss resulted in heads or tails. 

 We choose to address the problem by 
considering the value of 𝑆 = 𝑋1 +⋯+ 𝑋𝑛, the 
number of heads observed, and using a 
decision rule of the form:

reject 𝐻0 if 𝑆 −
𝑛

2
> 𝜉

where 𝜉 is a suitable critical value, to be 
determined.



 We finally choose the critical value 𝜉 so that 

the probability of false rejection is equal to a 

given value 𝛼:

𝑃 reject 𝐻0; 𝐻0 = 𝛼

 Typically, 𝛼, called the significance level, is a 

small number: 

 In this example, we use 𝛼 = 0.05.

 Some probabilistic calculations are now 

needed to determine the critical value 𝜉.



 Some probabilistic calculations are now 

needed to determine the critical value 𝜉.

 Under the null hypothesis, the random 

variable 𝑆 is binomial with parameters 𝑛 =
1000 and 𝑝 = 1/2. 

 Using the normal approximation to the 

binomial and the normal tables, we find that 

an appropriate choice is 𝜉 = 31.



 If, for example, the observed value of 𝑆 turns out 

to be 𝑠 = 472, we have 

𝑠 − 500 = 472 − 500 = 28 ≤ 31.

 And the hypothesis 𝐻0 is not rejected at the 5% 

significance level.

 "not rejected'' (as opposed to "accepted“): We do not 

have any firm grounds to assert that 𝜃 equals ½, as 

opposed to, say, 0.51. 

 We can only assert that the observed value of 𝑆 does 

not provide strong evidence against hypothesis 𝐻0.



Significance Testing Methodology

 A statistical test of a hypothesis "𝐻0: 𝜃 = 𝜃∗" 
is to be performed, based on the 

observations 𝑋 = 𝑋1, … , 𝑋𝑛 .

 1. The following steps are carried out before 

the data are observed.

 1.1 Choose a statistic 𝑆, that is, a scalar random 

variable that will summarize the data 𝑋. This 

involves the choice of a function ℎ: 𝑅𝑛 → 𝑅, 

resulting in the statistic 𝑆 = ℎ 𝑋 .



 1.2 Determine the shape of the rejection region by 

specifying the set of values of 𝑆 for which 𝐻0 will 

be rejected as a function of a yet undetermined 

critical value 𝜉.

 1.3 Choose the significance level, i.e., the desired 

probability 𝛼 of a false rejection of 𝐻0.

 1.4 Choose the critical value 𝜉 so that the 

probability of false rejection is equal (or 

approximately equal) to 𝛼. (At this point, the 

rejection region is completely determined.)



 2. Once the values 𝑥1, … , 𝑥𝑛 of 𝑋1, … , 𝑋𝑛 are 

observed: 

 2.1 Calculate the value 𝑠 = ℎ 𝑥1, … , 𝑥𝑛 of the 

statistic 𝑆. 

 2.2 Reject the hypothesis 𝐻0 if 𝑠 belongs to the 

rejection region.



Comments and interpretation

 There is no universal method for choosing 
the "right'' statistic 𝑆.

 The set of values of 𝑆 under which 𝐻0 is not 
rejected is usually an interval surrounding the 
peak of the distribution of 𝑆 under 𝐻0.

 Typical choices for the false rejection 
probability a range between 𝛼 = 0.10 and 𝛼 =
0.01.

 Step 1.4 is the only place where probabilistic 
calculations are used.



 Given the value of 𝛼, if the hypothesis 𝐻0
ends up being rejected, one says that 𝐻0 is 

rejected at the a significance level. 

 Note: It does not mean that the probability of 

𝐻0 being true is less than 𝛼. 

 Instead, it means that when this particular 

methodology is used, we will have false 

rejections a fraction 𝛼 of the time.



 Quite often, statisticians skip steps 1.3 and 

1.4 in the above described methodology. 

 Instead, once they calculate the realized 

value 𝑠 of 𝑆, they determine and report an 

associated 𝑝-value defined by 

min𝛼| 𝐻0 would be rejected at the 𝛼 significance level



 Equivalently, the 𝑝-value is the value of 𝛼 for 

which 𝑠 would be exactly at the threshold 

between rejection and non-rejection. 

 Thus, for example, the null hypothesis would 

be rejected at the 5% significance level if and 

only if the 𝑝-value is smaller than 0.05.


