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Preceding chapter: Bayesian inference

 Preceding chapter: Bayesian approach to 

inference.

 Unknown parameters are modeled as random 

variables. 

 Work within a single, fully-specified probabilistic 

model. 

 Compute posterior distribution by judicious

application of Bayes' rule.



This chapter: classical inference

 We view the unknown parameter 𝜃 as a 

deterministic (not random!) but unknown 

quantity. 

 The observation 𝑋 is random and its 

distribution 

 𝑝𝑋 𝑥; 𝜃 if 𝑋 is discrete

 𝑓𝑋 𝑥; 𝜃 if 𝑋 is continuous 

depends on the value of 𝜃.



Classical inference

 Deal simultaneously with multiple candidate 

models, one model for each possible value of 

𝜃.

 A ''good" hypothesis testing or estimation 

procedure will be one that possesses certain 

desirable properties under every candidate 

model.

 i.e. for every possible value of 𝜃.



 Bayesian:

 Classical: 



Notation 

 Our notation will generally indicate the 

dependence of probabilities and expected 

values on 𝜃. 

 For example, we will denote by 𝐸𝜃 ℎ 𝑋 the 

expected value of a random variable ℎ 𝑋 as 

a function of 𝜃. 

 Similarly, we will use the notation 𝑃𝜃 𝐴 to 

denote the probability of an event 𝐴. 



Content 

 Classical Parameter Estimation

 Linear Regression

 Binary Hypothesis Testing

 Significance Testing



 Given observations 𝑋 = 𝑋1, … , 𝑋𝑛 , an 

estimator is a random variable of the form 
෡Θ = 𝑔 𝑋 , for some function 𝑔.

 Note that since the distribution of 𝑋 depends 

on 𝜃, the same is true for the distribution of ෡Θ. 

 We use the term estimate to refer to an 

actual realized value of ෡Θ. 



 Sometimes, particularly when we are interested 
in the role of the number of observations 𝑛, we 
use the notation ෡Θ𝑛 for an estimator.

 It is then also appropriate to view ෡Θ𝑛 as a 
sequence of estimators. 
 One for each value of 𝑛.

 The mean and variance of ෡Θ𝑛 are denoted
𝐸𝜃 ෡Θ𝑛 and 𝑣𝑎𝑟𝜃 ෡Θ𝑛 , respectively.

 We sometimes drop this subscript 𝜃 when the context 
is clear.



Terminology regarding estimators 

 Estimator: ෡Θ𝑛, a function of 𝑛 observations  

for an 𝑋1, … , 𝑋𝑛 whose distribution depends 

on 𝜃.

 Estimation error: ෩Θ𝑛 = ෡Θ𝑛 − 𝜃. 

 Bias of the estimator: 𝑏𝜃 ෡Θ𝑛 = 𝐸𝜃 ෡Θ𝑛 − 𝜃, is 

the expected value of the estimation error.



bias


෡Θ𝑛 is unbiased if 𝑏𝜃 ෡Θ𝑛 = 0.

 a desirable property. 


෡Θ𝑛 is asymptotically unbiased if lim

𝑛→∞
𝐸𝜃 ෡Θ𝑛 =

𝜃, for every possible value of 𝜃.


෡Θ𝑛 becomes unbiased as the number 𝑛 of 

observations increases, 

 this is desirable when 𝑛 is large. 



Consistent 


෡Θ𝑛 is consistent if the sequence ෡Θ𝑛
converges to the true value 𝜃, in probability, 
for every possible value of 𝜃.

 Recall:

 𝑋𝑛 converges to 𝑎 in probability if

∀𝜖 > 0, P 𝑋𝑛 − 𝑎 ≥ 𝜖 → 0, as 𝑛 → ∞.

 𝑋𝑛 converges to 𝑎 with probability 1 (or almost 
surely) if

P lim
𝑛→∞

𝑋𝑛 =𝑎 = 1



 Mean squared error: 𝐸𝜃 ෩Θ𝑛
2 .

 This is related to the bias and the variance of 
෡Θ𝑛:  𝐸𝜃 ෩Θ𝑛

2 = 𝑏𝜃
2 ෡Θ𝑛 + 𝑣𝑎𝑟𝜃 ෡Θ𝑛 .

 Reason: 𝐸 𝑋2 = 𝐸 𝑋 2 + 𝑣𝑎𝑟(𝑋), 𝑋 = ෩Θ𝑛 = ෡Θ𝑛 − 𝜃.

 In many statistical problems, there is a  tradeoff
between the two terms on the right-hand-side. 

 Often a reduction in the variance is 
accompanied by an increase in the bias. 

 Of course, a good estimator is one that manages 
to keep both terms small. 



Maximum Likelihood Estimation (MLE)

 Let the vector of observations 𝑋 = 𝑋1, … , 𝑋𝑛
be described by a joint PMF 𝑝𝑋 𝑥; 𝜃

 Note that 𝑝𝑋 𝑥; 𝜃 is PMF for 𝑋 only, not joint 

distribution for 𝑋 and 𝜃. 

 Recall 𝜃 is just a fixed parameter, not a random variable.

 𝑝𝑋 𝑥; 𝜃 depends on 𝜃. 

 Suppose we observe a particular value 𝑥 =
𝑥1, … , 𝑥𝑛 of 𝑋.



 A maximum likelihood estimate (MLE) is a value of 
the parameter that maximizes the numerical function 
𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 over all 𝜃.

መ𝜃𝑛 = argmax
𝜃

𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃

 The above is for the case of discrete 𝑋. If 𝑋 is 
continuous, then MLE is

መ𝜃𝑛 = argmax
𝜃

𝑓𝑋 𝑥1, … , 𝑥𝑛; 𝜃



 In many applications, the observations 𝑋𝑖 are 

assumed to be independent.

 Then 𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 = ς𝑖=1
𝑛 𝑝𝑋𝑖 𝑥𝑖; 𝜃 .

 It is often analytically or computationally  

convenient to maximize its logarithm, called 

the log-likelihood function (over 𝜃)

log 𝑝𝑋 𝑥1, … , 𝑥𝑛; 𝜃 =෍

𝑖=1

𝑛

log 𝑝𝑋𝑖 𝑥𝑖; 𝜃



 The term "likelihood" needs to be interpreted 

properly. 

 Having observed the value 𝑥 of 𝑋, 𝑝𝑋 𝑥, 𝜃 is 

not the probability that the unknown 

parameter is equal to 𝜃. 

 It is the probability that the observed value 𝑥 can 

arise when the parameter is equal to 𝜃. 



 Thus, in maximizing the likelihood, we are 

asking the following question: 

 "What is the value of 𝜃 under which the 

observations we have seen are most likely to 

arise?" 



Comparison with Bayesian MAP

 Recall MAP: max𝜃 𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃 .

 Thus we can interpret MLE as MAP 

estimation with a flat prior.

 i.e., a prior which is the same for all 𝜃, 

 indicating the absence of any useful prior 

knowledge. 

 In the case of continuous 𝜃 with a bounded 

range, MLE is MAP with a uniform prior: 

𝑓Θ 𝜃 = 𝑐 for all 𝜃 and some constant 𝑐. 



Estimating parameter of exponential

 Customers arrive to a facility, with the 𝑖th
customer arriving at time 𝑌𝑖. 

 We assume that the 𝑖th interarrival time, 
𝑋𝑖 = 𝑌𝑖 − 𝑌𝑖−1

is exponentially distributed with parameter 𝜃, 
 with the convention 𝑌0 = 0

 Assume that 𝑋1, … , 𝑋𝑛 are independent. 

 We wish to estimate the value of 𝜃 (interpreted 
as the arrival rate), on the basis of the 
observations 𝑋1, … , 𝑋𝑛.



 The corresponding likelihood function is

𝑓𝑋 𝑥; 𝜃 =ෑ

𝑖=1

𝑛

𝑓𝑋𝑖 𝑥𝑖; 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑒−𝜃𝑥𝑖

 Thus the log-likelihood function is 

log 𝑓𝑋 𝑥; 𝜃 =෍

𝑖

log 𝜃𝑒−𝜃𝑥𝑖 = 𝑛 log 𝜃 − 𝜃𝑦𝑛

where 𝑦𝑛 = σ𝑖=1
𝑛 𝑥𝑖.



 Setting the derivative (wrt 𝜃) to be 0: 
𝑛/𝜃 − 𝑦𝑛 = 0

 We get ෠𝜃 = 𝑛/𝑦𝑛.

 That is, ෡Θ𝑛 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛

−1

 It is the inverse of the sample mean of the 
interarrival times. 

 Can be interpreted as an empirical arrival 
rate. 



Estimating parameters of normal

 Estimating the mean 𝜇 and variance 𝜎 of a 

normal distribution using 𝑛 independent 

observations 𝑋1, … , 𝑋𝑛. 

 Simple calculation yields that the log

likelihood function is 

log 𝑓𝑋(𝑥; 𝜇, 𝜎) = −
𝑛

2
log 2𝜋𝜎 +

𝑠𝑛
2

𝜎
+

𝑚𝑛−𝜇
2

𝜎



 log 𝑓𝑋(𝑥; 𝜇, 𝜎) = −
𝑛

2
log 2𝜋𝜎 +

𝑠𝑛
2

𝜎
+

𝑚𝑛−𝜇
2

𝜎

 Here 𝑚𝑛 and 𝑠𝑛
2 are the realized values of the 

random variables 

𝑀𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖, ҧ𝑆𝑛

2 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2

 The sample mean and sample variance, resp.

 The maximizer is ෠𝜃 = 𝑚𝑛, 𝑠𝑛
2 .

 “The MLE of normal is just sample mean and
sample variance.” 



Properties of MLE

 Invariance principle: if ෡Θ𝑛 is the ML estimate of 
𝜃, then for any one-to-one function ℎ of 𝜃, the 
MLE of the parameter 𝜉 = ℎ 𝜃 is ℎ ෡Θ𝑛 . 

 Consistency: MLE is consistent for i.i.d. 
observations 
 under some mild assumptions, 

 Asymptotic normality property: When 𝜃 is a 
scalar, the distribution of ෡Θ𝑛 − 𝜃 /𝜎 ෡Θ𝑛
approaches 𝑁 0,1 .
 under some mild conditions



Estimation of the Mean

 Suppose that the observations 𝑋1, … , 𝑋𝑛 are 
i.i.d., with an unknown common mean 𝜇 and 
common variance 𝜎2.

 The sample mean 𝑀𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 is unbiased.

 Its mean squared error is 

𝐸 𝑀𝑛 − 𝜇 2 =
1

𝑛2
𝐸 σ𝑖=1

𝑛 (𝑋𝑖 − 𝜇) 2

=
1

𝑛2
σ𝑖=1
𝑛 𝐸 𝑋𝑖 − 𝜇 2 =

𝑛𝜎2

𝑛2
=

𝜎2

𝑛
.

 Doesn’t depend on 𝜇.



Estimation of the Variance

 Consider the sample variance 
ҧ𝑆𝑛
2 =

1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2

 Let’s compute its bias.

 𝐸 𝑋𝑖
2 = 𝜇2 + 𝜎2, 𝐸 𝑀𝑛

2 = 𝜇2 +
𝜎2

𝑛
. 

 𝐸 ҧ𝑆𝑛
2 = 1/𝑛 𝐸 σ𝑖=1

𝑛 𝑋𝑖
2 − 2𝑀𝑛 σ𝑖=1

𝑛 𝑋𝑖
2 + 𝑛𝑀𝑛

2

= 𝐸 1/𝑛 σ𝑖=1
𝑛 𝑋𝑖

2 − 2𝑀𝑛
2 +𝑀𝑛

2

= 𝐸 1/𝑛 σ𝑖=1
𝑛 𝑋𝑖

2 −𝑀𝑛
2

= 𝜇2 + 𝜎2 − 𝜇2 + 𝜎2/𝑛
=

𝑛−1

𝑛
𝜎2



 Last slide: 𝐸 ҧ𝑆𝑛
2 =

𝑛−1

𝑛
𝜎2

 The sample variance ҧ𝑆𝑛
2 is not an unbiased 

estimator of 𝜎2, although it is asymptotically 

unbiased.

 Define መ𝑆𝑛
2 =

𝑛

𝑛−1
ҧ𝑆𝑛
2 =

1

𝑛−1
σ𝑖=1
𝑛 𝑋𝑖 −𝑀𝑛

2, 

then መ𝑆𝑛
2 is unbiased.

 For large 𝑛, however, መ𝑆𝑛
2 and ҧ𝑆𝑛

2 are almost the 

same.



Confidence Intervals 

 Consider an estimator ෡Θ𝑛 of an unknown 

parameter 𝜃. 

 Besides the numerical value provided by an 

estimate, we are often interested in 

constructing a so-called confidence interval. 

 Roughly speaking, this is an interval that 

contains 𝜃 with a certain high probability, for 

every possible value of 𝜃. 



 Let us first fix a desired confidence level, 1 −
𝛼, where 𝛼 is typically a small number.

 We then replace the point estimator ෡Θ𝑛 by a 

lower estimator ෡Θ𝑛
− and an upper estimator 

෡Θ𝑛
+, s.t.

𝑃 ෡Θ𝑛
− ≤ 𝜃 ≤ ෡Θ𝑛

+ ≥ 1 − 𝛼

for every possible value of 𝜃. 

 We call ෡Θ𝑛
−, ෡Θ𝑛

+ a 1 − 𝛼 confidence 

interval.



Content 

 Classical Parameter Estimation

 Linear Regression

 Binary Hypothesis Testing

 Significance Testing



 We consider the case of only two variables 

for illustration. 

 We wish to model the relation between two 

variables of interest, 𝑥 and 𝑦

 e.g., years of education and income. 

 based on a collection of data pairs 𝑥𝑖 , 𝑦𝑖 , 

𝑖 = 1,… , 𝑛. 

 e.g. 𝑥𝑖 is the years of education, and 𝑦𝑖 the annual 

income



 Often a two-dimensional plot of these samples 

indicates a systematic, approximately linear 

relation between 𝑥𝑖 and 𝑦𝑖.

 Then, it is natural to attempt to build a linear 

model of the form 𝑦 ≈ 𝜃0 + 𝜃1𝑥.

 𝜃0 and 𝜃1 are unknown parameters to be estimated.

 Given some estimates መ𝜃0 and መ𝜃1 of the resulting 

parameters, the value 𝑦𝑖 corresponding to 𝑥𝑖, as 

predicted by the model, is ො𝑦𝑖 = መ𝜃0 + መ𝜃1𝑥𝑖.



 Generally, ො𝑦𝑖 will be different from the given 

value 𝑦𝑖, and the corresponding difference 

෤𝑦𝑖 = ො𝑦𝑖 − 𝑦𝑖 is called the 𝑖th residual. 

 A choice of estimates that results in small 

residuals is considered to provide a good fit 

to the data.



 The linear regression approach chooses the 

parameter estimates ෠𝜃0 and ෠𝜃1 that minimize 

the sum of the squared residuals
σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2 = σ𝑖=1
𝑛 𝑦𝑖 − 𝜃0 − 𝜃1𝑥𝑖

2



 Note that the postulated linear model may or 

may not be true. 

 The true relation between the two variables 

may be nonlinear. 

 In practice, there is often an additional phase 

where we examine whether the hypothesis of 

a linear model is supported by the data and 

try to validate the estimated model. 



 Given 𝑛 data pairs 𝑥𝑖 , 𝑦𝑖 , the estimates that 

minimize the sum of the squared residuals 

are given by 

෠𝜃1 =
σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

, ෠𝜃0 = ത𝑦 − ෠𝜃1 ҧ𝑥.

where

ҧ𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 , ത𝑦 =

1

𝑛
σ𝑖=1
𝑛 𝑦𝑖.



Content 

 Classical Parameter Estimation

 Linear Regression

 Binary Hypothesis Testing

 Significance Testing



 We revisit the problem of choosing between 
two hypotheses. 

 But unlike the Bayesian formulation, we will 
assume no prior probabilities.

 Two hypotheses: 𝐻0 and 𝐻1.

 In traditional statistical language, hypothesis 
𝐻0 is often called the null hypothesis and 𝐻1
the alternative hypothesis. 

 𝐻0 plays the role of a default model, to be proved 
or disproved on the basis of available data.



 The available observation is a vector 𝑋 =
𝑋1, … , 𝑋𝑛 of random variables whose 

distribution depends on the hypothesis.

 Note that consistent with the classical 

inference framework, these are not 

conditional probabilities, because the true 

hypothesis is not treated as a random 

variable. 



 Notation: 𝑃 𝑋 ∈ 𝐴;𝐻𝑗 is the probability that 

the observation 𝑋 belongs to a set 𝐴 when 

hypothesis 𝐻𝑗 is true. 

 𝑝𝑋 𝑥;𝐻𝑗 or 𝑓𝑋 𝑥;𝐻𝑗 to denote the PMF or 

PDF, respectively, of the vector 𝑋, under 

hypothesis 𝐻𝑗. 



 Any decision rule can be represented by a 
partition of the set of all possible 𝑋 =
𝑋1, … , 𝑋𝑛 into two subsets.

 the rejection region 𝑅,

 the acceptance region 𝑅𝑐. 

 The choice of a decision rule is equivalent to 
choosing the rejection region. 



 For a particular choice of the rejection region 𝑅, 
there are two possible types of errors. 

 Type I error, or a false rejection: Reject 𝐻0 even 
though 𝐻0 is true. 
 This happens with probability 𝛼 𝑅 = 𝑃 𝑋 ∈ 𝑅;𝐻0 .

 Type II error, or a false acceptance: Accept 𝐻0
even though 𝐻0 is false. 
 This happens with probability 𝛽 𝑅 = 𝑃 𝑋 ∉ 𝑅;𝐻1 .



 To motivate a particular form of rejection 

region, we draw an analogy with Bayesian 

hypothesis testing. 

 Two hypotheses Θ = 𝜃0 and Θ = 𝜃1 are 

involved, with respective prior probabilities 

𝑝Θ 𝜃0 and 𝑝Θ 𝜃1 .

 The overall probability of error is minimized 

by using the MAP rule. 



 Given the observed value 𝑥 of 𝑋, declare Θ = 𝜃1
be true if 

𝑝Θ 𝜃0 𝑝𝑋|Θ 𝑥|𝜃0 < 𝑝Θ 𝜃1 𝑝𝑋|Θ 𝑥|𝜃1

 This decision rule can be rewritten as follows.

 Define the likelihood ratio 𝐿 𝑥 by 

𝐿 𝑥 =
𝑝𝑋|Θ 𝑥|𝜃1

𝑝𝑋|Θ 𝑥|𝜃0

 Declare Θ = 𝜃1 to be true if the realized value 𝑥
of the observation vector 𝑋 satisfies 𝐿 𝑥 ≥ 𝜉.



 Here 𝜉 is the critical value defined by 

𝜉 =
𝑝Θ 𝜃0
𝑝Θ 𝜃1

 If X is continuous, the approach is the same, 

except that the likelihood ratio is defined as a 

ratio of PDFs: 𝐿 𝑥 =
𝑓𝑋|Θ 𝑥|𝜃1

𝑓𝑋|Θ 𝑥|𝜃0
.



 Motivated by the preceding form of the MAP 
rule, we are led to consider rejection regions 
of the form 

𝑅 = 𝑥 𝐿 𝑥 > 𝜉 ,
where the likelihood ratio 𝐿 𝑥 is denned 
similar to the Bayesian case:

𝐿 𝑥 =
𝑝𝑋 𝑥;𝐻1

𝑝𝑋 𝑥;𝐻0
,     or     𝐿 𝑥 =

𝑓𝑋 𝑥;𝐻1

𝑓𝑋 𝑥;𝐻0
.

 The critical value 𝜉 remains free to be chosen 
on the basis of other considerations. 



Likelihood Ratio Test (LRT)

 Start with a target value 𝛼 for the false 
rejection probability. 

 Choose a value for 𝜉 such that the false 
rejection probability is equal to 𝛼: 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼

 Once the value 𝑥 of 𝑋 is observed, reject 𝐻0 if 
𝐿 𝑥 > 𝜉.

 Typical choices for 𝛼 are 𝛼 = 0.1, 𝛼 = 0.05, 
or 𝛼 = 0.01, depending on the degree of 
undesirability of false rejection.



 Note that to be able to apply the LRT to a 

given problem, the following are required.

 We must be able to compute 𝐿 𝑥 for any 

given observation value 𝑥, so that we can 

compare it with the critical value 𝜉. 

 Fortunately, this is the case when the underlying 

PMFs or PDFs are given in closed form.



 We must either have a closed form 

expression for the distribution of 𝐿 𝑋

 or of a related random variable such as log 𝐿 𝑋

 or we must be able to approximate it analytically, 

computationally, or through simulation. 

 This is needed to determine the critical value 

𝜉 that corresponds to a given false rejection 

probability 𝛼.





 When 𝐿 𝑋 is a continuous random variable, 

the probability 𝑃 𝐿 𝑋 > 𝜉;𝐻0 moves 

continuously from 1 to 0 as 𝜉 increases. 

 Thus, we can find a value of 𝜉 for which the 

requirement 𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼 is satisfied. 

 If, however, 𝐿 𝑋 is a discrete random 

variable, it may be impossible to satisfy the 

equality 𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼 exactly, no 

matter how 𝜉 is chosen. 



 In such cases, there are several possibilities: 

 Strive for approximate equality. 

 Choose the smallest value of 𝜉 that satisfies 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 ≤ 𝛼



 We have motivated so far the use of a LRT 

through an analogy with Bayesian inference. 

 However, it also has a stronger justification. 

 For a given false rejection probability, the 

LRT offers the smallest possible false  

acceptance probability.



Neyman-Pearson Lemma

 Consider a particular choice of 𝜉 in the LRT, 

which results in error probabilities 

𝑃 𝐿 𝑋 > 𝜉;𝐻0 = 𝛼, 𝑃 𝐿 𝑋 ≤ 𝜉;𝐻1 = 𝛽.

 Suppose that some other test, with rejection 

region 𝑅, achieves a smaller or equal false 

rejection probability: 

𝑃 𝑋 ∈ 𝑅;𝐻0 ≤ 𝛼 (1)

 Then,     𝑃 𝑋 ∉ 𝑅;𝐻1 ≥ 𝛽. (2)

 In addition, if (1) is strict, so is (2).





Content 

 Classical Parameter Estimation

 Linear Regression

 Binary Hypothesis Testing

 Significance Testing



 Hypothesis testing problems encountered in 
realistic settings do not always involve two 
well-specified alternatives. 

 So the methodology in the preceding section 
cannot be applied.

 This section introduces an approach to this 
more general class of problems. 

 Note: a unique or universal methodology is 
not available. There is a significant element 
of judgment and art that comes into play.



Motivation

 Consider problems such as the following:

 A coin is tossed repeatedly and independently. Is 

the coin fair?

 We observe a sequence of i.i.d. normal random 

variables 𝑋1, … , 𝑋𝑛. Are they standard normal?

 Two different drug treatments are delivered to two 

different groups of  patients with the same 

disease. Is the first treatment more effective than 

the second?



 On the basis of historical data (say, based on the 

last year), is the daily change of the Dow Jones 

Industrial Average normally distributed?

 On the basis of several sample pairs 𝑥𝑖 , 𝑦𝑖 of two 

random variables 𝑋 and 𝑌, can we determine 

whether the two random variables are 

independent?

 …



 In all of the above cases, we are dealing with 

a phenomenon that involves uncertainty, 

 presumably governed by a probabilistic model. 

 We have a default hypothesis, usually called 

the null hypothesis, denoted by 𝐻0, 

 We wish to determine on the basis of the 

observations 𝑋 = 𝑋1, … , 𝑋𝑛 , whether the null 

hypothesis should be rejected or not. 



 In order to avoid obscuring the key ideas, we 

will mostly restrict the scope of our discussion 

to situations with the following characteristics.

 Parametric models: We assume that the 

observations 𝑋1, … , 𝑋𝑛 have a distribution 

governed by a joint PMF/PDF, which is completely 

determined by an unknown parameter 𝜃 (scalar or 

vector), belonging to a given set 𝑀 of possible 

parameters.



 Simple null hypothesis: The null hypothesis 

asserts that the true value of 𝜃 is equal to a given 

element 𝜃0 of 𝑀. 

 Alternative hypothesis: The alternative hypothesis, 

denoted by 𝐻1, is just the statement that 𝐻0 is not 

true, i.e., that 𝜃 ≠ 𝜃0. 



The General Approach 

 We introduce the general approach through a 

concrete example. 

 We then summarize and comment on the 

various steps involved. 



Example: Is my coin fair?

 A coin is tossed independently 𝑛 = 1000
times. 

 Let 𝜃 be the unknown probability of heads at 

each toss. 

 The set of all possible parameters is 𝑀 =
0,1 . 

 The null hypothesis 𝐻0 ("the coin is fair") is of 

the form 𝜃 = 1/2. The alternative hypothesis 

is that 𝜃 ≠ 1/2. 



 The observed data is a sequence 𝑋1, … , 𝑋𝑛
 where 𝑋𝑖 equals 1 or 0, depending on whether the 
𝑖th toss resulted in heads or tails. 

 We choose to address the problem by 
considering the value of 𝑆 = 𝑋1 +⋯+ 𝑋𝑛, the 
number of heads observed, and using a 
decision rule of the form:

reject 𝐻0 if 𝑆 −
𝑛

2
> 𝜉

where 𝜉 is a suitable critical value, to be 
determined.



 We finally choose the critical value 𝜉 so that 

the probability of false rejection is equal to a 

given value 𝛼:

𝑃 reject 𝐻0; 𝐻0 = 𝛼

 Typically, 𝛼, called the significance level, is a 

small number: 

 In this example, we use 𝛼 = 0.05.

 Some probabilistic calculations are now 

needed to determine the critical value 𝜉.



 Some probabilistic calculations are now 

needed to determine the critical value 𝜉.

 Under the null hypothesis, the random 

variable 𝑆 is binomial with parameters 𝑛 =
1000 and 𝑝 = 1/2. 

 Using the normal approximation to the 

binomial and the normal tables, we find that 

an appropriate choice is 𝜉 = 31.



 If, for example, the observed value of 𝑆 turns out 

to be 𝑠 = 472, we have 

𝑠 − 500 = 472 − 500 = 28 ≤ 31.

 And the hypothesis 𝐻0 is not rejected at the 5% 

significance level.

 "not rejected'' (as opposed to "accepted“): We do not 

have any firm grounds to assert that 𝜃 equals ½, as 

opposed to, say, 0.51. 

 We can only assert that the observed value of 𝑆 does 

not provide strong evidence against hypothesis 𝐻0.



Significance Testing Methodology

 A statistical test of a hypothesis "𝐻0: 𝜃 = 𝜃∗" 
is to be performed, based on the 

observations 𝑋 = 𝑋1, … , 𝑋𝑛 .

 1. The following steps are carried out before 

the data are observed.

 1.1 Choose a statistic 𝑆, that is, a scalar random 

variable that will summarize the data 𝑋. This 

involves the choice of a function ℎ: 𝑅𝑛 → 𝑅, 

resulting in the statistic 𝑆 = ℎ 𝑋 .



 1.2 Determine the shape of the rejection region by 

specifying the set of values of 𝑆 for which 𝐻0 will 

be rejected as a function of a yet undetermined 

critical value 𝜉.

 1.3 Choose the significance level, i.e., the desired 

probability 𝛼 of a false rejection of 𝐻0.

 1.4 Choose the critical value 𝜉 so that the 

probability of false rejection is equal (or 

approximately equal) to 𝛼. (At this point, the 

rejection region is completely determined.)



 2. Once the values 𝑥1, … , 𝑥𝑛 of 𝑋1, … , 𝑋𝑛 are 

observed: 

 2.1 Calculate the value 𝑠 = ℎ 𝑥1, … , 𝑥𝑛 of the 

statistic 𝑆. 

 2.2 Reject the hypothesis 𝐻0 if 𝑠 belongs to the 

rejection region.



Comments and interpretation

 There is no universal method for choosing 
the "right'' statistic 𝑆.

 The set of values of 𝑆 under which 𝐻0 is not 
rejected is usually an interval surrounding the 
peak of the distribution of 𝑆 under 𝐻0.

 Typical choices for the false rejection 
probability a range between 𝛼 = 0.10 and 𝛼 =
0.01.

 Step 1.4 is the only place where probabilistic 
calculations are used.



 Given the value of 𝛼, if the hypothesis 𝐻0
ends up being rejected, one says that 𝐻0 is 

rejected at the a significance level. 

 Note: It does not mean that the probability of 

𝐻0 being true is less than 𝛼. 

 Instead, it means that when this particular 

methodology is used, we will have false 

rejections a fraction 𝛼 of the time.



 Quite often, statisticians skip steps 1.3 and 

1.4 in the above described methodology. 

 Instead, once they calculate the realized 

value 𝑠 of 𝑆, they determine and report an 

associated 𝑝-value defined by 

min𝛼| 𝐻0 would be rejected at the 𝛼 significance level



 Equivalently, the 𝑝-value is the value of 𝛼 for 

which 𝑠 would be exactly at the threshold 

between rejection and non-rejection. 

 Thus, for example, the null hypothesis would 

be rejected at the 5% significance level if and 

only if the 𝑝-value is smaller than 0.05.


