ENGG2430A Probability and Statistics for Engineers

Chapter 9: Classical Statistical Inference

Instructor: Shengyu Zhang

Preceding chapter: Bayesian inference

- Preceding chapter: Bayesian approach to inference.
 - Unknown parameters are modeled as random variables.
 - Work within a single, fully-specified probabilistic model.
 - Compute posterior distribution by judicious application of Bayes' rule.

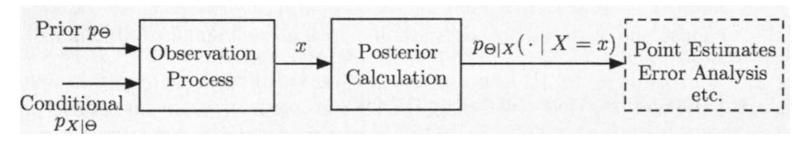
This chapter: classical inference

- The observation X is random and its distribution
 - p_X(x; θ) if X is discrete
 f_X(x; θ) if X is continuous
 depends on the value of θ.

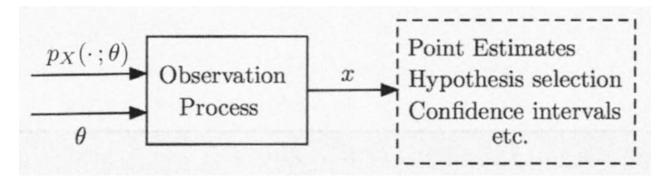
Classical inference

- Deal simultaneously with multiple candidate models, one model for each possible value of *θ*.
- A "good" hypothesis testing or estimation procedure will be one that possesses certain desirable properties under every candidate model.
 - □ i.e. for every possible value of θ .

Bayesian:



Classical:



Notation

- Our notation will generally indicate the dependence of probabilities and expected values on θ.
- For example, we will denote by $E_{\theta}[h(X)]$ the expected value of a random variable h(X) as a function of θ .
- Similarly, we will use the notation $P_{\theta}(A)$ to denote the probability of an event A.

Content

- Classical Parameter Estimation
- Linear Regression
- Binary Hypothesis Testing
- Significance Testing

- Given observations $X = (X_1, ..., X_n)$, an estimator is a random variable of the form $\widehat{\Theta} = g(X)$, for some function g.
- Note that since the distribution of X depends on θ , the same is true for the distribution of $\widehat{\Theta}$.
- We use the term estimate to refer to an actual realized value of Θ.

- Sometimes, particularly when we are interested in the role of the number of observations n, we use the notation $\widehat{\Theta}_n$ for an estimator.
- It is then also appropriate to view $\widehat{\Theta}_n$ as a sequence of estimators.

• One for each value of n.

- The mean and variance of $\widehat{\Theta}_n$ are denoted $E_{\theta}[\widehat{\Theta}_n]$ and $var_{\theta}[\widehat{\Theta}_n]$, respectively.
 - We sometimes drop this subscript θ when the context is clear.

Terminology regarding estimators

- Estimator: $\widehat{\Theta}_n$, a function of *n* observations for an (X_1, \dots, X_n) whose distribution depends on θ .
- Estimation error: $\overline{\Theta}_n = \widehat{\Theta}_n \theta$.
- Bias of the estimator: $b_{\theta}(\widehat{\Theta}_n) = E_{\theta}[\widehat{\Theta}_n] \theta$, is the expected value of the estimation error.

bias

- $\widehat{\Theta}_n$ is unbiased if $b_{\theta}(\widehat{\Theta}_n) = 0$.
 - a desirable property.
- $\widehat{\Theta}_n$ is asymptotically unbiased if $\lim_{n \to \infty} E_{\theta}[\widehat{\Theta}_n] =$
 - θ , for every possible value of θ .

 - \Box this is desirable when *n* is large.

Consistent

- Θ_n is consistent if the sequence Θ_n converges to the true value θ, in probability, for every possible value of θ.

 Recall:
 - \square X_n converges to a in probability if

 $\forall \epsilon > 0, \mathbb{P}(|X_n - a| \ge \epsilon) \to 0, \text{ as } n \to \infty.$

• X_n converges to a with probability 1 (or almost surely) if

$$\mathsf{P}\left(\lim_{n\to\infty}X_n=a\right)=1$$

- Mean squared error: $E_{\theta}[\widetilde{\Theta}_n^2]$.
- This is related to the bias and the variance of $\widehat{\Theta}_n$: $E_{\theta}[\widetilde{\Theta}_n^2] = b_{\theta}^2(\widehat{\Theta}_n) + var_{\theta}[\widehat{\Theta}_n]$.

• Reason: $E[X^2] = (E[X])^2 + var(X), X = \tilde{\Theta}_n = \hat{\Theta}_n - \theta$.

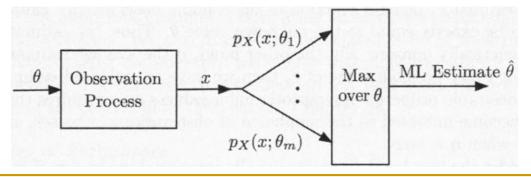
- In many statistical problems, there is a tradeoff between the two terms on the right-hand-side.
- Often a reduction in the variance is accompanied by an increase in the bias.
- Of course, a good estimator is one that manages to keep both terms small.

Maximum Likelihood Estimation (MLE)

- Let the vector of observations $X = (X_1, ..., X_n)$ be described by a joint PMF $p_X(x; \theta)$
 - Note that $p_X(x; \theta)$ is PMF for X only, not joint distribution for X and θ .
 - Recall θ is just a fixed parameter, not a random variable.
 - $p_X(x;\theta)$ depends on θ .
- Suppose we observe a particular value $x = (x_1, ..., x_n)$ of X.

- A maximum likelihood estimate (MLE) is a value of the parameter that maximizes the numerical function p_X(x₁,..., x_n; θ) over all θ. θ_n = argmax p_X(x₁,..., x_n; θ)
 θ
 The above is for the case of discrete X. If X is
- continuous, then MLE is

$$\theta_n = \operatorname*{argmax}_{\theta} f_X(x_1, \dots, x_n; \theta)$$



In many applications, the observations X_i are assumed to be independent.

• Then $p_X(x_1, ..., x_n; \theta) = \prod_{i=1}^n p_{X_i}(x_i; \theta)$.

 It is often analytically or computationally convenient to maximize its logarithm, called the log-likelihood function (over θ)

$$\log p_X(x_1, \dots, x_n; \theta) = \sum_{i=1}^n \log p_{X_i}(x_i; \theta)$$

- The term "likelihood" needs to be interpreted properly.
- Having observed the value x of X, $p_X(x,\theta)$ is not the probability that the unknown parameter is equal to θ .
- It is the probability that the observed value x can arise when the parameter is equal to θ .

Thus, in maximizing the likelihood, we are asking the following question:

"What is the value of θ under which the observations we have seen are most likely to arise?"

Comparison with Bayesian MAP

- Recall MAP: $\max_{\theta} p_{\Theta}(\theta) p_{X|\Theta}(x|\theta)$.
- Thus we can interpret MLE as MAP estimation with a flat prior.
 - \Box i.e., a prior which is the same for all θ ,
 - indicating the absence of any useful prior knowledge.
- In the case of continuous θ with a bounded range, MLE is MAP with a uniform prior: $f_{\Theta}(\theta) = c$ for all θ and some constant c.

Estimating parameter of exponential

- Customers arrive to a facility, with the *i*th customer arriving at time Y_i.
- We assume that the *i*th interarrival time,
 - $X_i = Y_i Y_{i-1}$ is exponentially distributed with parameter θ ,
 - with the convention $Y_0 = 0$
- Assume that X_1, \ldots, X_n are independent.
- We wish to estimate the value of θ (interpreted as the arrival rate), on the basis of the observations X_1, \dots, X_n .

• The corresponding likelihood function is $f_X(x;\theta) = \prod_{i=1}^n f_{X_i}(x_i;\theta) = \prod_{i=1}^n \theta e^{-\theta x_i}$

Thus the log-likelihood function is

$$\log f_X(x;\theta) = \sum_i \log(\theta e^{-\theta x_i}) = n \log \theta - \theta y_n$$

where $y_n = \sum_{i=1}^n x_i$.

Setting the derivative (wrt θ) to be 0: $(n/\theta) - y_n = 0$

• We get $\hat{\theta} = n/y_n$.

• That is,
$$\widehat{\Theta}_n = \left(\frac{\sum_{i=1}^n x_i}{n}\right)^{-1}$$

- It is the inverse of the sample mean of the interarrival times.
- Can be interpreted as an empirical arrival rate.

Estimating parameters of normal

- Estimating the mean μ and variance σ of a normal distribution using n independent observations X_1, \dots, X_n .
- Simple calculation yields that the log likelihood function is

$$\log f_X(x;\mu,\sigma) = -\frac{n}{2} \left(\log(2\pi\sigma) + \frac{s_n^2}{\sigma} + \frac{(m_n - \mu)^2}{\sigma} \right)$$

$$\log f_X(x;\mu,\sigma) = -\frac{n}{2} \left(\log(2\pi\sigma) + \frac{s_n^2}{\sigma} + \frac{(m_n - \mu)^2}{\sigma} \right)$$

Here m_n and s²_n are the realized values of the random variables

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad \bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - M_n)^2$$

□ The sample mean and sample variance, resp.

- The maximizer is $\hat{\theta} = (m_n, s_n^2)$.
- "The MLE of normal is just sample mean and sample variance."

Properties of MLE

- Invariance principle: if $\widehat{\Theta}_n$ is the ML estimate of θ , then for any one-to-one function h of θ , the MLE of the parameter $\xi = h(\theta)$ is $h(\widehat{\Theta}_n)$.
- Consistency: MLE is consistent for i.i.d. observations
 - under some mild assumptions,
- Asymptotic normality property: When θ is a scalar, the distribution of $(\widehat{\Theta}_n \theta)/\sigma(\widehat{\Theta}_n)$ approaches N(0,1).
 - under some mild conditions

Estimation of the Mean

- Suppose that the observations X_1, \ldots, X_n are i.i.d., with an unknown common mean μ and common variance σ^2 .
- The sample mean M_n = ¹/_n ∑ⁿ_{i=1} X_i is unbiased.
 Its mean squared error is $E[(M_n \mu)^2] = \frac{1}{n^2} E[(\sum_{i=1}^n (X_i \mu))^2]$
 - $= \frac{1}{n^2} \sum_{i=1}^n E[(X_i \mu)^2] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$

• Doesn't depend on μ .

Estimation of the Variance

• Consider the sample variance $\bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - M_n)^2$

Let's compute its bias.

$$E[X_i^2] = \mu^2 + \sigma^2, E[M_n^2] = \mu^2 + \frac{\sigma^2}{n}.$$

$$E[\overline{S_n^2}] = (1/n)E[\sum_{i=1}^n X_i^2 - 2M_n \sum_{i=1}^n X_i^2 + nM_n^2]$$

$$= E[(1/n) \sum_{i=1}^n X_i^2 - 2M_n^2 + M_n^2]$$

$$= E[(1/n) \sum_{i=1}^n X_i^2 - M_n^2]$$

$$= \mu^2 + \sigma^2 - (\mu^2 + \sigma^2/n)$$

$$= \frac{n-1}{n} \sigma^2$$

- Last slide: $E[\bar{S}_n^2] = \frac{n-1}{n}\sigma^2$
- The sample variance \bar{S}_n^2 is not an unbiased estimator of σ^2 , although it is asymptotically unbiased.
- Define $\hat{S}_n^2 = \frac{n}{n-1} \bar{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i M_n)^2$, then \hat{S}_n^2 is unbiased.
 - For large n, however, \hat{S}_n^2 and \bar{S}_n^2 are almost the same.

Confidence Intervals

- Consider an estimator $\widehat{\Theta}_n$ of an unknown parameter θ .
- Besides the numerical value provided by an estimate, we are often interested in constructing a so-called confidence interval.
- Roughly speaking, this is an interval that contains θ with a certain high probability, for every possible value of θ.

- Let us first fix a desired confidence level, 1 *α*, where *α* is typically a small number.
- We then replace the point estimator $\widehat{\Theta}_n$ by a lower estimator $\widehat{\Theta}_n^-$ and an upper estimator $\widehat{\Theta}_n^+$, s.t.

 $P(\widehat{\Theta}_n^- \le \theta \le \widehat{\Theta}_n^+) \ge 1 - \alpha$ for every possible value of θ .

• We call $\left[\widehat{\Theta}_{n}^{-}, \widehat{\Theta}_{n}^{+}\right]$ a $(1 - \alpha)$ confidence interval.

Content

- Classical Parameter Estimation
- Linear Regression
- Binary Hypothesis Testing
- Significance Testing

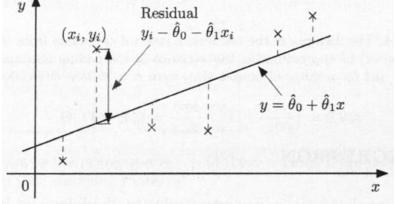
- We consider the case of only two variables for illustration.
- We wish to model the relation between two variables of interest, x and y
 - □ e.g., years of education and income.
- based on a collection of data pairs (x_i, y_i) ,
 - i = 1, ..., n.
 - e.g. x_i is the years of education, and y_i the annual income

- Often a two-dimensional plot of these samples indicates a systematic, approximately linear relation between x_i and y_i.
- Then, it is natural to attempt to build a linear model of the form $y \approx \theta_0 + \theta_1 x$.

 \Box θ_0 and θ_1 are unknown parameters to be estimated.

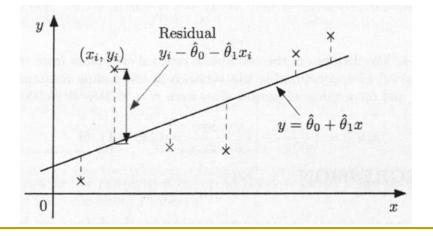
Given some estimates $\hat{\theta}_0$ and $\hat{\theta}_1$ of the resulting parameters, the value y_i corresponding to x_i , as predicted by the model, is $\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_i$.

- Generally, \hat{y}_i will be different from the given value y_i , and the corresponding difference $\tilde{y}_i = \hat{y}_i y_i$ is called the *i*th residual.
- A choice of estimates that results in small residuals is considered to provide a good fit to the data.



• The linear regression approach chooses the parameter estimates $\hat{\theta}_0$ and $\hat{\theta}_1$ that minimize the sum of the squared residuals

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$



- Note that the postulated linear model may or may not be true.
- The true relation between the two variables may be nonlinear.
- In practice, there is often an additional phase where we examine whether the hypothesis of a linear model is supported by the data and try to validate the estimated model.

Given n data pairs (x_i, y_i), the estimates that minimize the sum of the squared residuals are given by

$$\widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \qquad \widehat{\theta}_0 = \bar{y} - \widehat{\theta}_1 \bar{x}.$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

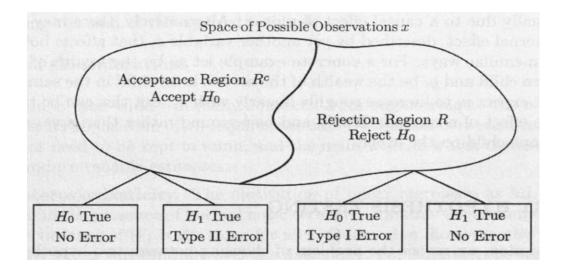
Content

- Classical Parameter Estimation
- Linear Regression
- Binary Hypothesis Testing
- Significance Testing

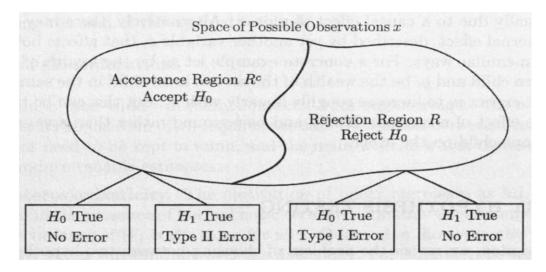
- We revisit the problem of choosing between two hypotheses.
- But unlike the Bayesian formulation, we will assume no prior probabilities.
- Two hypotheses: H_0 and H_1 .
- In traditional statistical language, hypothesis H₀ is often called the null hypothesis and H₁ the alternative hypothesis.
 - H_0 plays the role of a default model, to be proved or disproved on the basis of available data.

- The available observation is a vector $X = (X_1, ..., X_n)$ of random variables whose distribution depends on the hypothesis.
- Note that consistent with the classical inference framework, these are not conditional probabilities, because the true hypothesis is not treated as a random variable.

- Notation: $P(X \in A; H_j)$ is the probability that the observation X belongs to a set A when hypothesis H_j is true.
- $p_X(x; H_j)$ or $f_X(x; H_j)$ to denote the PMF or PDF, respectively, of the vector X, under hypothesis H_j .



- Any decision rule can be represented by a partition of the set of all possible $X = (X_1, ..., X_n)$ into two subsets.
 - the rejection region R,
 - the acceptance region R^c .
- The choice of a decision rule is equivalent to choosing the rejection region.



- For a particular choice of the rejection region R, there are two possible types of errors.
- Type I error, or a false rejection: Reject H_0 even though H_0 is true.

□ This happens with probability $\alpha(R) = P(X \in R; H_0)$.

• Type II error, or a false acceptance: Accept H_0 even though H_0 is false.

□ This happens with probability $\beta(R) = P(X \notin R; H_1)$.

- To motivate a particular form of rejection region, we draw an analogy with Bayesian hypothesis testing.
- Two hypotheses $\Theta = \theta_0$ and $\Theta = \theta_1$ are involved, with respective prior probabilities $p_{\Theta}(\theta_0)$ and $p_{\Theta}(\theta_1)$.
- The overall probability of error is minimized by using the MAP rule.

Given the observed value x of X, declare $\Theta = \theta_1$ be true if

 $p_{\Theta}(\theta_0)p_{X|\Theta}(x|\theta_0) < p_{\Theta}(\theta_1)p_{X|\Theta}(x|\theta_1)$

- This decision rule can be rewritten as follows.
- Define the likelihood ratio L(x) by

$$L(x) = \frac{p_{X|\Theta}(x|\theta_1)}{p_{X|\Theta}(x|\theta_0)}$$

• Declare $\Theta = \theta_1$ to be true if the realized value x of the observation vector X satisfies $L(x) \ge \xi$.

• Here ξ is the critical value defined by $\xi = \frac{p_{\Theta}(\theta_0)}{p_{\Theta}(\theta_1)}$

• If X is continuous, the approach is the same, except that the likelihood ratio is defined as a ratio of PDFs: $L(x) = \frac{f_{X|\Theta}(x|\theta_1)}{f_{X|\Theta}(x|\theta_0)}$. Motivated by the preceding form of the MAP rule, we are led to consider rejection regions of the form

 $R = \{x | L(x) > \xi\},\$ where the likelihood ratio L(x) is denned similar to the Bayesian case:

 $L(x) = \frac{p_X(x;H_1)}{p_X(x;H_0)}, \quad \text{or} \quad L(x) = \frac{f_X(x;H_1)}{f_X(x;H_0)}.$

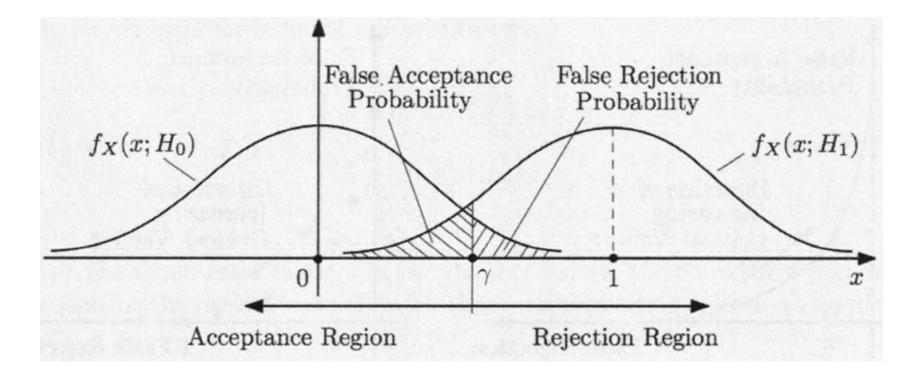
• The critical value ξ remains free to be chosen on the basis of other considerations.

Likelihood Ratio Test (LRT)

- Start with a target value *α* for the false rejection probability.
- Choose a value for ξ such that the false rejection probability is equal to α : $P(L(X) > \xi; H_0) = \alpha$
- Once the value x of X is observed, reject H_0 if $L(x) > \xi$.
- Typical choices for α are $\alpha = 0.1$, $\alpha = 0.05$, or $\alpha = 0.01$, depending on the degree of undesirability of false rejection.

- Note that to be able to apply the LRT to a given problem, the following are required.
- We must be able to compute L(x) for any given observation value x, so that we can compare it with the critical value ξ.
 - Fortunately, this is the case when the underlying PMFs or PDFs are given in closed form.

- We must either have a closed form expression for the distribution of L(X)
 - or of a related random variable such as $\log L(X)$
 - or we must be able to approximate it analytically, computationally, or through simulation.
- This is needed to determine the critical value *ξ* that corresponds to a given false rejection probability *α*.



- When L(X) is a continuous random variable, the probability P(L(X) > ξ; H₀) moves continuously from 1 to 0 as ξ increases.
- Thus, we can find a value of ξ for which the requirement $P(L(X) > \xi; H_0) = \alpha$ is satisfied.
- If, however, L(X) is a discrete random variable, it may be impossible to satisfy the equality P(L(X) > ξ; H₀) = α exactly, no matter how ξ is chosen.

In such cases, there are several possibilities:

Strive for approximate equality.

• Choose the smallest value of ξ that satisfies $P(L(X) > \xi; H_0) \leq \alpha$

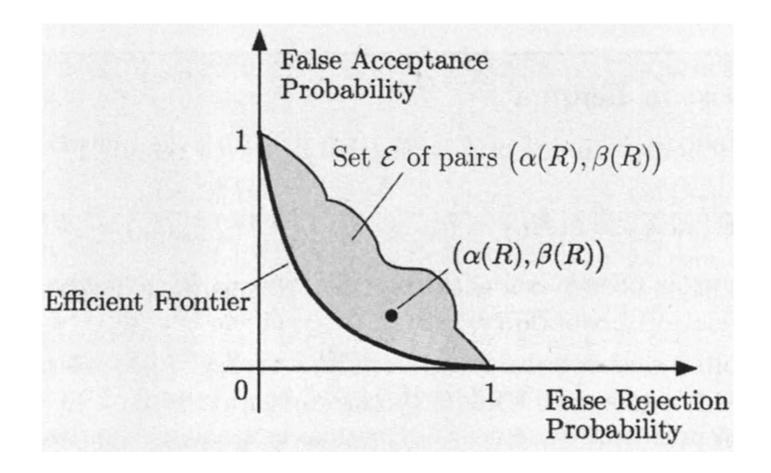
- We have motivated so far the use of a LRT through an analogy with Bayesian inference.
- However, it also has a stronger justification.
- For a given false rejection probability, the LRT offers the smallest possible false acceptance probability.

Neyman-Pearson Lemma

- Consider a particular choice of ξ in the LRT, which results in error probabilities $P(L(X) > \xi; H_0) = \alpha, P(L(X) \le \xi; H_1) = \beta.$
- Suppose that some other test, with rejection region R, achieves a smaller or equal false rejection probability:

 $P(X \in R; H_0) \le \alpha \quad (1)$

- Then, $P(X \notin R; H_1) \ge \beta$. (2)
- In addition, if (1) is strict, so is (2).



Content

- Classical Parameter Estimation
- Linear Regression
- Binary Hypothesis Testing
- Significance Testing

- Hypothesis testing problems encountered in realistic settings do not always involve two well-specified alternatives.
- So the methodology in the preceding section cannot be applied.
- This section introduces an approach to this more general class of problems.
- Note: a unique or universal methodology is not available. There is a significant element of judgment and art that comes into play.

Motivation

- Consider problems such as the following:
 - A coin is tossed repeatedly and independently. Is the coin fair?
 - We observe a sequence of i.i.d. normal random variables X_1, \ldots, X_n . Are they standard normal?
 - Two different drug treatments are delivered to two different groups of patients with the same disease. Is the first treatment more effective than the second?

- On the basis of historical data (say, based on the last year), is the daily change of the Dow Jones Industrial Average normally distributed?
- On the basis of several sample pairs (x_i, y_i) of two random variables X and Y, can we determine whether the two random variables are independent?

• • • •

- In all of the above cases, we are dealing with a phenomenon that involves uncertainty,
 - presumably governed by a probabilistic model.
- We have a default hypothesis, usually called the null hypothesis, denoted by H₀,
- We wish to determine on the basis of the observations $X = (X_1, ..., X_n)$, whether the null hypothesis should be rejected or not.

- In order to avoid obscuring the key ideas, we will mostly restrict the scope of our discussion to situations with the following characteristics.
 - Parametric models: We assume that the observations $X_1, ..., X_n$ have a distribution governed by a joint PMF/PDF, which is completely determined by an unknown parameter θ (scalar or vector), belonging to a given set *M* of possible parameters.

- □ Simple null hypothesis: The null hypothesis asserts that the true value of θ is equal to a given element θ_0 of M.
- □ Alternative hypothesis: The alternative hypothesis, denoted by H_1 , is just the statement that H_0 is not true, i.e., that $\theta \neq \theta_0$.

The General Approach

- We introduce the general approach through a concrete example.
- We then summarize and comment on the various steps involved.

Example: Is my coin fair?

- A coin is tossed independently n = 1000 times.
- Let θ be the unknown probability of heads at each toss.
- The set of all possible parameters is M = [0,1].
- The null hypothesis H_0 ("the coin is fair") is of the form $\theta = 1/2$. The alternative hypothesis is that $\theta \neq 1/2$.

- The observed data is a sequence X_1, \dots, X_n
 - where X_i equals 1 or 0, depending on whether the *i*th toss resulted in heads or tails.
- We choose to address the problem by considering the value of $S = X_1 + \dots + X_n$, the number of heads observed, and using a decision rule of the form:

reject H_0 if $\left|S - \frac{n}{2}\right| > \xi$

where ξ is a suitable critical value, to be determined.

 We finally choose the critical value ξ so that the probability of false rejection is equal to a given value α:

 $P(\operatorname{reject} H_0; H_0) = \alpha$

- Typically, α, called the significance level, is a small number:
 - In this example, we use $\alpha = 0.05$.
- Some probabilistic calculations are now needed to determine the critical value ξ .

- Some probabilistic calculations are now needed to determine the critical value ξ .
- Under the null hypothesis, the random variable *S* is binomial with parameters n = 1000 and p = 1/2.
- Using the normal approximation to the binomial and the normal tables, we find that an appropriate choice is $\xi = 31$.

- If, for example, the observed value of *S* turns out to be s = 472, we have $|s - 500| = |472 - 500| = 28 \le 31$.
- And the hypothesis H_0 is not rejected at the 5% significance level.
 - "not rejected" (as opposed to "accepted"): We do not have any firm grounds to assert that θ equals ½, as opposed to, say, 0.51.
 - We can only assert that the observed value of S does not provide strong evidence against hypothesis H_0 .

Significance Testing Methodology

- A statistical test of a hypothesis " $H_0: \theta = \theta^*$ " is to be performed, based on the observations $X = (X_1, ..., X_n)$.
- The following steps are carried out before the data are observed.
 - 1.1 Choose a statistic *S*, that is, a scalar random variable that will summarize the data *X*. This involves the choice of a function $h: R^n \to R$, resulting in the statistic S = h(X).

- 1.2 Determine the shape of the rejection region by specifying the set of values of *S* for which *H*₀ will be rejected as a function of a yet undetermined critical value *ξ*.
- □ 1.3 Choose the significance level, i.e., the desired probability α of a false rejection of H_0 .
- 1.4 Choose the critical value ξ so that the probability of false rejection is equal (or approximately equal) to α. (At this point, the rejection region is completely determined.)

- 2. Once the values x_1, \ldots, x_n of X_1, \ldots, X_n are observed:
 - 2.1 Calculate the value $s = h(x_1, ..., x_n)$ of the statistic *S*.
 - 2.2 Reject the hypothesis H_0 if s belongs to the rejection region.

Comments and interpretation

- There is no universal method for choosing the "right" statistic S.
- The set of values of S under which H_0 is not rejected is usually an interval surrounding the peak of the distribution of S under H_0 .
- Typical choices for the false rejection probability a range between $\alpha = 0.10$ and $\alpha = 0.01$.
- Step 1.4 is the only place where probabilistic calculations are used.

- Given the value of α, if the hypothesis H₀ ends up being rejected, one says that H₀ is rejected at the a significance level.
- Note: It does not mean that the probability of H_0 being true is less than α .
- Instead, it means that when this particular methodology is used, we will have false rejections a fraction *α* of the time.

- Quite often, statisticians skip steps 1.3 and 1.4 in the above described methodology.
- Instead, once they calculate the realized value s of S, they determine and report an associated p-value defined by

{min α | H_0 would be rejected at the α significance level}

- Equivalently, the *p*-value is the value of *α* for which *s* would be exactly at the threshold between rejection and non-rejection.
- Thus, for example, the null hypothesis would be rejected at the 5% significance level if and only if the *p*-value is smaller than 0.05.