ENGG2430A Probability and Statistics for Engineers

Chapter 8: Bayesian Statistical Inference

Instructor: Shengyu Zhang

Statistical inference

- Statistical inference is the process of extracting information about an unknown variable or an unknown model from available data.
- Two main approaches
 Bayesian statistical inference
 Classical statistical inference

Statistical inference

Main categories of inference problems

- parameter estimation
- hypothesis testing
- significance testing

Statistical inference

- Most important methodologies
 - maximum a posteriori (MAP)
 - probability rule,
 - least mean squares estimation,
 - maximum likelihood,
 - regression,
 - likelihood ratio tests

Bayesian versus Classical Statistics

- Two prominent schools of thought
 - Bayesian
 - Classical/frequentist.
- Difference: *What's the nature of the unknown models or variables?*
- Bayesian: they are treated as random variables with known distributions.
- Classical/frequentist: they are treated as deterministic but unknown quantities.

Bayesian

- When trying to infer the nature of an unknown model, it views the model as chosen randomly from a given model class.
- Postulate a prior distribution $p_{\Theta}(\theta)$.
- Given observed data x, one can use Bayes' rule to derive a *posterior distribution* $p_{\Theta|X}(\theta|x)$.
 - This captures all information that x can provide about θ .

Classical/frequentist

- View the unknown quantity θ as an unknown constant.
- Strives to develop an estimate of θ .
- We are dealing with multiple candidate probabilistic models, one for each possible value of θ.

Model versus Variable Inference

- Model inference: the object of study is a real phenomenon or process,...
- ...for which we wish to construct or validate a model on the basis of available data
 - e.g., do planets follow elliptical trajectories?
- Such a model can then be used to make predictions about the future, or to infer some hidden underlying causes.

Model versus Variable Inference

- Variable inference: we wish to estimate the value of one or more unknown variables by using some related, possibly noisy information
 - e.g., what is my current position, given a few GPS readings?

Statistical Inference Problems

- Estimation: a model is fully specified, except for an unknown, possibly multidimensional, parameter θ, which we wish to estimate.
- This parameter can be viewed as either a random variable …
 - Bayesian approach
- ...or as an unknown constant
 - classical approach.
- Objective: to estimate θ .

Statistical Inference Problems

Binary hypothesis testing:

- start with two hypotheses
- use the available data to decide which of the two is true.
- m-ary hypothesis testing: there is a finite number m of competing hypotheses.
 - Evaluation: typically by error probability.
- Both Bayesian and classical approaches are possible.

Content

- Bayesian inference, the posterior distribution
- Point estimation, hypothesis testing, MAP
- Bayesian least mean squares estimation
- Bayesian linear least mean squares estimation

Bayesian inference

- In Bayesian inference, the unknown quantity of interest is modeled as a random variable or as a finite collection of random variables.
 We usually denote it by Θ.
- We aim to extract information about Θ , based on observing a collection $X = (X_1, \dots, X_n)$ of related random variables.
 - called observations, measurements, or an observation vector.

Bayesian inference

- We assume that we know the joint distribution of Θ and X.
- Equivalently, we assume that we know
 - □ A prior distribution p_{Θ} or f_{Θ} , depending on whether Θ is discrete or continuous.
 - A conditional distribution $p_{X|\Theta}$ or $f_{X|\Theta}$, depending on whether X is discrete or continuous.

Bayesian inference

- After a particular value x of X has been observed, a complete answer to the Bayesian inference problem is provided by the posterior distribution $p_{\Theta|X}$ or $f_{\Theta|X}$.
 - It encapsulates everything there is to know about
 Θ, given the available information.

Summary of Bayesian Inference

- 1. We start with a prior distribution p_{Θ} or f_{Θ} for the unknown random variable Θ .
- 2. We have a model $p_{X|\Theta}$ or $f_{X|\Theta}$ of the observation vector *X*.
- 3. After observing the value x of X, we form the posterior distribution of Θ , using the appropriate version of Bayes' rule.

Bayes' rule: summary

The Four Versions of Bayes' Rule

- Θ discrete, X discrete:
- Depending on discrete or continuous

 and X,
 there are four versions of Bayes' rule.

$$p_{\Theta|X}(\theta \,|\, x) = \frac{p_{\Theta}(\theta) p_{X|\Theta}(x \,|\, \theta)}{\sum_{\theta'} p_{\Theta}(\theta') p_{X|\Theta}(x \,|\, \theta')}$$

• Θ discrete, X continuous:

$$p_{\Theta|X}(\theta \,|\, x) = \frac{p_{\Theta}(\theta) f_{X|\Theta}(x \,|\, \theta)}{\sum_{\theta'} p_{\Theta}(\theta') f_{X|\Theta}(x \,|\, \theta')}.$$

- They are syntactically all similar.
- Θ continuous, X discrete:

$$f_{\Theta|X}(\theta \,|\, x) = \frac{f_{\Theta}(\theta) p_{X|\Theta}(x \,|\, \theta)}{\int f_{\Theta}(\theta') p_{X|\Theta}(x \,|\, \theta') \, d\theta'}$$

• Θ continuous, X continuous:

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{\int f_{\Theta}(\theta') f_{X|\Theta}(x \mid \theta') \, d\theta'}$$

Example: meeting

- Romeo and Juliet meeting: Juliet will be late on any date by a random amount X, uniformly distributed over the interval [0, θ].
- θ is unknown and is modeled as the value of a random variable uniformly distributed in [0,1].
- Assume that Juliet was late by an amount x on their first date.
- *Question*: How should Romeo use this information to update the distribution of θ ?

• Prior PDF:
$$f_{\Theta}(\theta) = \begin{cases} 1 & \text{if } 0 \le \theta \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

• Conditional PDF of the observation: $f_{X|\Theta}(x|\theta) = \begin{cases} 1/\theta & \text{if } 0 \le x \le \theta, \\ 0 & \text{otherwise.} \end{cases}$

•
$$f_{\Theta}(\theta) = 1 \text{ if } 0 \leq \theta \leq 1$$

• $f_{X|\Theta}(x|\theta) = 1/\theta \text{ if } 0 \leq x \leq \theta$
• Use Bayes' rule: the posterior PDF is
 $f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_{0}^{1}f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$
 $= \frac{1/\theta}{\int_{x}^{1}\frac{1}{\theta'}d\theta'} = \frac{1}{\theta \cdot |\log x|}, \text{ if } 0 \leq x \leq \theta \leq 1$
• and $f_{\Theta|X}(\theta|x) = 0$ otherwise.

Example: Inference of common mean of normal

- Suppose that X_1, \ldots, X_n are independent normal r.v. with
 - an unknown common mean,
 - and known variances $\sigma_1^2, \ldots, \sigma_n^2$.
- Suppose that the common mean follows the a normal prior $N(x_0, \sigma_0^2)$.
- Then $X_i = \Theta + W_i$, where
 - \Box Θ , W_i are a independent normal r.v.
 - Θ follows $N(x_0, \sigma_0^2)$, W_i follows $N(0, \sigma_i^2)$.

- Last slide: $X_i = \Theta + W_i$. • Θ follows $N(x_0, \sigma_0^2)$, W_i follows $N(0, \sigma_i^2)$. • Prior PDF: $f_{\Theta}(\theta) = c_1 \exp\left\{-\frac{(\theta - x_0)^2}{2\sigma_0^2}\right\},$ • Model: $f_{X|\Theta}(x|\theta) = c_2 \exp\left\{-\frac{(x_1-\theta)^2}{2\sigma_1^2}\right\} \dots \exp\left\{-\frac{(x_n-\theta)^2}{2\sigma_n^2}\right\}$ \Box c_1 and c_2 are constants. • By Bayes' rule: $f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_{0}^{1} f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$
 - Note: The denominator doesn't depend on θ .

Numerator

$$f_{\Theta}(\theta)f_{X|\Theta}(x|\theta) = c_1c_2 \exp\left\{-\sum_{i=0}^n \frac{(x_i-\theta)^2}{2\sigma_i^2}\right\}.$$

The exponent is a quadratic form, thus can be written as

$$d \cdot \exp\left\{-\frac{(\theta-m)^2}{2\nu}\right\}$$

for some constant d, where

$$m = \left(\sum_{i=0}^{n} \frac{x_i}{\sigma_i^2}\right) / \left(\sum_{i=0}^{n} \frac{1}{\sigma_i^2}\right), \ \nu = 1 / \left(\sum_{i=0}^{n} \frac{1}{\sigma_i^2}\right)$$

• Thus
$$f_{\Theta|X}(\theta|x) \propto \exp\left\{-\frac{(\theta-m)^2}{2\nu}\right\}$$

- So the posterior PDF $f_{\Theta|X}(\theta|x)$ is normal with mean m and variance v.
- Recall prior: $\Theta \sim N(x_0, \sigma_0^2)$.
- A remarkable property: the posterior distribution of O is in the same family as the prior distribution,
 - the family of normal distributions.

- This property opens up the possibility of efficient recursive inference.
- Suppose that after $X_1, ..., X_n$ are observed, an additional observation X_{n+1} is obtained.
- Instead of solving the inference problem from scratch, we can view $f_{\Theta|X_1,...,X_n}$ as our prior, and use the new observation to obtain the new posterior $f_{\Theta|X_1,...,X_n,X_{n+1}}$.

Thus the new posterior is normal distribution with mean

$$\left(\frac{m}{v} + \frac{x_{n+1}}{\sigma_{n+1}^2}\right) / \left(\frac{1}{v} + \frac{1}{\sigma_{n+1}^2}\right)$$

and variance

$$1/\left(\frac{1}{v}+\frac{1}{\sigma_{n+1}^2}\right).$$

Content

- Bayesian inference, the posterior distribution
- Point estimation, hypothesis testing, MAP
- Bayesian least mean squares estimation
- Bayesian linear least mean squares estimation

MAP

- Given the value x of the observation, we select a value of θ, denoted θ, that maximizes the posterior distribution
 - $p_{\Theta|X}(\theta|x)$ if Θ is discrete
 - $p_{\Theta|X}(\theta|x)$ if Θ is continuous
- That is,
 - $\hat{\theta} = \underset{\Theta}{\operatorname{argmax}} p_{\Theta|X}(\theta|x)$, if Θ is discrete,
 - $\hat{\theta} = \operatorname{argmax}_{\theta} f_{\Theta|X}(\theta|x)$, if Θ is continuous.

This is called the Maximum a Posteriori probability (MAP) rule.

- When Ø is discrete, the MAP rule has an important optimality property.
- Since it chooses θ to be the most likely value of Θ, it maximizes the probability of correct decision for any given value x.
- This implies that it also maximizes (over all decision rules) the overall (averaged over all possible values x) probability of correct decision.

Computational shortcut

- Recall posterior: $p_{\Theta|X}(\theta|x) = \frac{p_{\Theta}(\theta)p_{X|\Theta}(x|\theta)}{\sum_{\theta'} p_{\Theta}(\theta')p_{X|\Theta}(x|\theta')}$
- An important computational shortcut.
- The denominator is independent of θ .
- Thus, to maximize the posterior, we only need to maximize the numerator $p_{\Theta}(\theta)p_{X|\Theta}(x|\theta)$
 - or similar expressions if Θ and/or X are continuous.
- Calculation of the denominator is unnecessary.

Example

X₁,...,X_n are independent normal r.v. with
 an unknown common mean Θ ~ N(x₀, σ₀²),
 and known variances σ₁²,...,σ_n².

• Posterior:
$$f_{\Theta|X}(\theta|x) \propto \exp\left\{-\frac{(\theta-m)^2}{2\nu}\right\}$$
 with
 $m = \left(\sum_{i=0}^n \frac{x_i}{\sigma_i^2}\right) / \left(\sum_{i=0}^n \frac{1}{\sigma_i^2}\right), \ \nu = 1 / \left(\sum_{i=0}^n \frac{1}{\sigma_i^2}\right)$

- The MAP estimate: $\hat{\theta} = m$.
 - because the normal PDF is maximized at its mean

Point Estimation

- Point estimate: a value that represents our best guess of the value of Θ.
- Estimate: the numerical value $\hat{\theta}$ that we choose on observation *x*.
- The value of $\hat{\theta}$ is to be determined by applying some function g to the observation x, resulting in $\hat{\theta} = g(x)$.
- Estimator: the random variable $\widehat{\Theta} = g(X)$ • its realized value equals g(x) when X = x.

Two popular estimators

- Two popular estimators:
 - $\square MAP: \hat{\theta} = \underset{\theta}{\operatorname{argmax}} p_{\Theta|X}(\theta|x)$
 - Conditional Expectation: $\hat{\theta} = \mathbf{E}[\Theta|X = x]$.
- Conditional expectation estimator is also called least mean squares (LMS) estimator.
 - It minimizes the mean squared error over all estimators.
 - To be elaborated later.

Example: Romeo and Juliet meeting

- Juliet is late on the first date by a random amount X.
- The distribution of X is uniform over $[0, \Theta]$.
- Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0,1].
- Recall: $f_{\Theta|X}(\theta|x) = \frac{1}{\theta \cdot |\log x|}$, if $0 \le x \le \theta \le 1$
- MAP: $\hat{\theta} = x$, because $f_{\Theta|X}(\theta|x)$ is decreasing in θ over the range [x, 1].

- Last slide: MAP gives $\hat{\theta} = x$.
- Note that this is an "optimistic" estimate.
 - If Juliet is late by a small amount on the first date (x ≈ 0), the estimate of future lateness is also small.
- Conditional expectation: less optimistic.

$$\mathbf{E}[\Theta|X=x] = \int_{x}^{1} \theta \frac{1}{\theta |\log x|} d\theta = \frac{1-x}{|\log x|}.$$
MAP vs. conditional expectation

Hypothesis testing

- Θ takes one of *m* values, $\theta_1, \ldots, \theta_m$.
 - *m* is usually a small integer; often m = 2.
- The *i*th hypothesis: the event $H_i \stackrel{\text{\tiny def}}{=} \{\Theta = \theta_i\}$.
- Once the value x of X is observed, we may use Bayes' rule to calculate the posterior probabilities

$$P(\Theta = \theta_i | X = x) = P_{\Theta | X}(\theta_i | x),$$

for each *i*.

- MAP: select the hypothesis H_i with the *largest* posterior probability $P(\Theta = \theta_i | X = x)$.
- Equivalently, it selects a hypothesis H_i with the largest $P_{\Theta}(\theta_i)P_{X|\Theta}(x|\theta_i)$ (if X is discrete) or $P_{\Theta}(\theta_i)f_{X|\Theta}(x|\theta_i)$ (if X is continuous).
 - Computational shortcut

Correct probability

- $g_{MAP}(x)$: the hypothesis selected by the MAP rule when X = x,
- The probability of correct decision is $P(\Theta = g_{MAP}(x)|X = x).$
- If $S_i = \{x: g_{MAP}(x) = H_i\}$, then the overall probability of correct decision is $P(\Theta = g_{MAP}(X)) = \sum_i P(\Theta = \theta_i, X \in S_i)$
- And the corresponding probability of error is $\sum_i P(\Theta \neq \theta_i, X \in S_i)$

Example: binary hypothesis testing

- Two biased coins, with probabilities of heads equal to p₁ and p₂, respectively.
- We choose a coin at random: either coin is equally likely to be chosen.
 - This gives the prior
- We want to infer its identity, based on the outcome of a single toss.

- Let $\Theta = 1$ and $\Theta = 2$ be the hypotheses that coin 1 or 2, respectively, was chosen.
- $X = \begin{cases} 1 & \text{if head,} \\ 0 & \text{if tail.} \end{cases}$
- MAP: compare $p_{\Theta}(1)p_{X|\Theta}(x|1)$ and $p_{\Theta}(2)p_{X|\Theta}(x|2)$, and take the larger one.
- Since $p_{\Theta}(1) = p_{\Theta}(2) = 1/2$, we just need to compare $p_{X|\Theta}(x|1)$ and $p_{X|\Theta}(x|2)$.

For instance, the outcome is tail.

- $P(tail|\Theta = 1) = 1 p_1,$ $P(tail|\Theta = 2) = 1 - p_2.$
- So MAP rule selects the H_i with smaller p_i .
- We can also toss the selected coin n times.
- X = the number of heads obtained.
- MAP rule selects the hypothesis under which the observed outcome is most likely.

- The character of the MAP rule, as illustrated in the above figure, is typical of decision rules in binary hypothesis testing problems.
- It is specified by a *partition of the observation space* into the two disjoint sets in which each of the two hypotheses is chosen.
- In this example, the MAP rule is specified by a single threshold k*:
- Accept $\Theta = 1$ if $k \le k^*$, and accept $\Theta = 2$ otherwise.

Content

- Bayesian inference, the posterior distribution
- Point estimation, hypothesis testing, MAP
- Bayesian least mean squares estimation
- Bayesian linear least mean squares estimation

Estimation without observation

- Considering the simpler problem of estimating Θ with a constant θ̂, in the absence of an observation X.
- The estimation error: $\hat{\theta} \Theta$
- The mean squared error: $E\left[\left(\hat{\theta} \Theta\right)^2\right]$
- *Question*: What's the minimum $E\left[\left(\hat{\theta} \Theta\right)^2\right]$ (over choices of $\hat{\theta}$)?
- Answer: $var[\Theta]$, achieved when $\hat{\theta} = E[\Theta]$.

proof

$$E\left[\left(\hat{\theta}-\Theta\right)^{2}\right]$$

$$= var(\Theta-\hat{\theta}) + \left(E\left[\Theta-\hat{\theta}\right]\right)^{2} // \text{ def of var()}$$

$$= var(\Theta) + \left(E\left[\Theta-\hat{\theta}\right]\right)^{2} // \text{ shifting doesn't change variance}$$

$$= var(\Theta) + \left(E[\Theta]-\hat{\theta}\right)^{2} // \text{ linearity of expectation}$$

$$\geq var(\Theta) // \text{ "=" achieved when } \hat{\theta} = E[\Theta].$$

Estimation with observation

- Now suppose that we have observation X.
- We still like to estimate

 O
 to minimize the mean squared error.
- Note that once we know the value x of X, the situation is identical to the one considered earlier, ...
- ...except that we are now in a new universe:
 everything is conditioned on X = x.

- We can therefore adapt our earlier conclusion.
- And assert that the conditional expectation $E[\Theta|X = x]$ minimizes the conditional mean squared error $E[(\Theta \hat{\theta})^2|X = x]$ over all constants $\hat{\theta}$.

Generally, the (unconditional) mean squared estimation error associated with an estimator g(X) is defined as

$$E\left[\left(\Theta-g(X)\right)^2\right].$$

- View $E[\Theta|X]$ as an estimator/function of X, the preceding analysis shows that out of all possible estimators.
- The mean squared estimation error is minimized when

 $g(X) = E[\Theta|X].$

Example

- Θ: uniform over [4,10]
- Independent noise *W*: uniform over [-1,1]
- We observe Θ with error W:

 $X = \Theta + W$

- $f_{\Theta}(\theta) = 1/6$ if $4 \le \theta \le 10$ (and 0 otherwise).
- $X|\Theta = \theta$ is uniform over $[\theta 1, \theta + 1]$.
- Joint PDF: $f_{\Theta,X}(\theta, x) = f_{\Theta}(\theta) f_{X|\Theta}(x|\theta) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}$

• when $\theta \in [4,10]$ and $x \in [\theta - 1, \theta + 1]$.

- The joint PDF of Ø and X is uniform over the parallelogram.
- Given that X = x, the posterior PDF $f_{\Theta|X}$ is uniform on the corresponding vertical section of the parallelogram.

- Thus E[G|X = x] is the midpoint of that section, which is a piecewise linear function of x.
- Conditioned on a particular value x of X, define the mean squared error as $E[(\Theta - E[\Theta|X])^2|X = x],$

- The mean squared error $E[(\Theta - E[\Theta|X])^2|X = x]$, equals the conditional variance of Θ .
- It is a function of x, illustrated in the above figure.

Example: meeting

- Juliet is late on the first date by a random amount X that is uniformly distributed over [0, 0].
- Θ: uniform prior over the interval [0,1].
 MAP: θ̂ = x.

• LMS:
$$\hat{\theta} = E[\Theta|X = x] = \int_x^1 \theta \frac{1}{\theta |\log x|} d\theta = \frac{1-x}{|\log x|}$$

Let's calculate the conditional mean squared error for the MAP and the LMS estimates.

$$E\left[\left(\widehat{\theta} - \Theta\right)^2 | X = x\right]$$

= $\int_x^1 (\widehat{\theta} - \theta)^2 \frac{1}{\theta | \log x|} d\theta$
= $\int_x^1 (\widehat{\theta}^2 - 2\widehat{\theta}\theta + \theta^2) \frac{1}{\theta | \log x|} d\theta$
= $\widehat{\theta}^2 - \widehat{\theta} \frac{2(1-x)}{\theta | \log x|} + \frac{1-x^2}{2|\log x|}.$

•
$$E\left[\left(\hat{\theta} - \Theta\right)^2 | X = x\right] = \hat{\theta}^2 - \hat{\theta} \frac{2(1-x)}{\theta |\log x|} + \frac{1-x^2}{2|\log x|}$$

• MAP: $\hat{\theta} = x$.
 $E\left[\left(\hat{\theta} - \Theta\right)^2 | X = x\right] = x^2 + \frac{3x^2 - 4x + 1}{2|\log x|}$
• LMS: $\hat{\theta} = \frac{1-x}{|\log x|}$.
 $E\left[\left(\hat{\theta} - \Theta\right)^2 | X = x\right] = \frac{1-x^2}{2|\log x|} - \left(\frac{1-x}{\log x}\right)^2$

- MAP has smaller
 estimator.
- LMS estimator has uniformly smaller mean squared error.

Properties of estimation error

- Denote $\widehat{\Theta} = E[\Theta|X], \ \widetilde{\Theta} = \widehat{\Theta} \Theta$
 - The LMS estimator and the associated estimation error, respectively.

•
$$E[\widehat{\Theta}] = E[\widehat{\Theta} - \Theta] = E[E[\Theta|X]] - E[\Theta] = 0$$

• $E[\widetilde{\Theta}|X = x] = E[\widehat{\Theta} - \Theta|X = x] = E[\widehat{\Theta}|X = x] - E[\Theta|X = x] = E[\Theta|X = x] - E[\Theta|X = x] = 0.$

$\widehat{\Theta} = E[\Theta|X], \ \widetilde{\Theta} = \widehat{\Theta} - \Theta$ • $E[\widehat{\Theta}\widetilde{\Theta}] = E\left[E[\widehat{\Theta}\widetilde{\Theta}|X]\right]$ // iterated expectation $= E\left[\widehat{\Theta}E\left[\widetilde{\Theta}|X\right]\right] \qquad // \widehat{\Theta} \text{ depends only on } X$ $= 0 \qquad // E\left[\widetilde{\Theta}|X = x\right] = 0, \forall x. \text{ So } E\left[\widetilde{\Theta}|X\right] = 0$ • $Cov(\widehat{\Theta}\widetilde{\Theta}) = E[\widehat{\Theta}\widetilde{\Theta}] - E[\widehat{\Theta}]E[\widetilde{\Theta}] = 0 - 0 = 0.$ Therefore, by considering the variance of both sides in $\Theta = \widetilde{\Theta} + \widehat{\Theta}$, we have $var(\Theta) = var(\widehat{\Theta}) + var(\widetilde{\Theta})$

Content

- Bayesian inference, the posterior distribution
- Point estimation, hypothesis testing, MAP
- Bayesian least mean squares estimation
- Bayesian linear least mean squares estimation

- LMS estimator is sometimes hard to compute, and we need alternatives.
- We derive an estimator that minimizes the mean squared error within a restricted class of estimators: linear functions of the observations.
- This estimator may result in higher mean squared error.
- But it has a significant computational advantage.
 - It requires simple calculations, involving only means, variances, and covariances of the parameters and observations.

- A linear estimator of a random variable Θ , based on observations X_1, \dots, X_n , has the form $\widehat{\Theta} = a_1 X_1 + \dots + a_n X_n + b$
- Given a particular choice of the scalars a₁, ..., a_n, b, the corresponding mean squared error is

$$\mathbf{E}\left[\left(\widehat{\Theta}-a_1X_1-\cdots-a_nX_n-b\right)^2\right]$$

The linear LMS estimator chooses a₁, ..., a_n, b to minimize the above expression.

- We first develop the solution for the case where n = 1, and then generalize.
- The estimator is $\widehat{\Theta} = aX + b$ and the mean squared error is $E\left[\left(\widehat{\Theta} aX b\right)^2\right]$.
- We are interested in finding a and b that minimize this error.

- If a is chosen, then it's easy to find the optimal b:
- Choose a constant *b* to estimate the random variable ΘaX .
- By the discussion in previous section, the best choice is $b = E[\Theta aX] = E[\Theta] aE[X]$.

Thus it remains to minimize

$$E[(\Theta - aX - E[\Theta] + aE[X])^2]$$

which is $var(\Theta - aX)$.

$$var(\Theta - aX)$$

= $var(\Theta) + a^{2}var(X) + 2 \cdot cov(\Theta, -aX)$
= $var(\Theta) + a^{2}var(X) - 2a \cdot cov(\Theta, X)$
This is minimized when $a = \frac{cov(\Theta, X)}{var(X)} = \rho \frac{\sigma_{\Theta}}{\sigma_{X}}$

• σ_{Θ} and σ_X : standard deviation of Θ and X, respectively.

•
$$\rho = \frac{cov(\Theta,X)}{\sigma_{\Theta}\sigma_X}$$
: the correlation coefficient.

• With this choice of *a*, the estimator $\widehat{\Theta} = aX + b = aX + E[\Theta] - aE[X]$ $= a(X - E[X]) + E[\Theta]$ $= \rho \frac{\sigma_{\Theta}}{\sigma_{X}} (X - E[X]) + E[\Theta].$

• And the mean squared estimation error is $var(\Theta - \widehat{\Theta}) = (1 - \rho^2)var(\Theta)$

Example

- Juliet is late by an amount *X* uniformly distributed over $[0, \Theta]$, and Θ is a random variable with a uniform prior PDF $f_{\Theta}(\theta)$ over the interval [0,1].
- Let us derive the linear LMS estimator of Θ based on X.
- By law of iterated expectation,

$$E[X] = E[E[X|\Theta]] = E[\Theta/2] = \frac{E[\Theta]}{2} = \frac{1}{4}$$

By law of total variance, $var(X) = E[var(X|\Theta)] + var(E[X|\Theta])$ $= E\left[\frac{\Theta^2}{12}\right] + var\left(\frac{\Theta}{2}\right)$ $=\frac{1}{12}\int_0^1 \theta^2 d\theta + \frac{1}{4}\frac{(1-\theta)^2}{12} = \frac{7}{144}$ Now we compute $cov(\Theta, X)$. • $E[\Theta X] = E[E[\Theta X|\Theta]] = E[\Theta E[X|\Theta]]$ $= E[\Theta^2/2] = 1/6$

•
$$cov(\Theta, X) = E[\Theta X] - E[\Theta]E[X] = \frac{1}{6} - \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{24}$$

The linear LMS estimator is

$$\widehat{\Theta} = E[\Theta] + \frac{cov(\Theta, X)}{var(X)} (X - E[X])$$
$$= \frac{1}{2} + \frac{1/24}{7/144} \left(X - \frac{1}{4} \right) = \frac{6}{7}X + \frac{2}{7}$$