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‘ Statistical inference

= Statistical inference Is the process of
extracting information about an unknown
variable or an unknown model from available
data.

= Two main approaches
o Bayesian statistical inference
o Classical statistical inference




Statistical inference

Main categories of inference problems
0 parameter estimation

o hypothesis testing

o significance testing



Statistical inference

Most important methodologies
o maximum a posteriori (MAP)

o probability rule,

o least mean squares estimation,
o maximum likelihood,

0 regression,

o likelihood ratio tests



Bayesian versus Classical Statistics

Two prominent schools of thought
o Bayesian
o Classical/frequentist.

Difference: What’s the nature of the unknown
models or variables?

Bayesian: they are treated as random
variables with known distributions.

Classical/frequentist: they are treated as
deterministic but unknown quantities.



Bayesian

When trying to infer the nature of an unknown
model, it views the model as chosen
randomly from a given model class.

Introduce a random variable @ that
characterizes the model,

Postulate a prior distribution pg(8).

Given observed data x, one can use Bayes'
rule to derive a posterior distribution pgx (6]x).

o This captures all information that x can provide
about 6.



Classical/ frequentist

View the unknown guantity 8 as an unknown
constant.

Strives to develop an estimate of 6.

We are dealing with multiple candidate
probabllistic models, one for each possible
value of 6.



Model versus Variable Inference

Model inference: the object of study Is a real
phenomenon or process,...

...for which we wish to construct or validate a
model on the basis of available data

o e.g., do planets follow elliptical trajectories?
Such a model can then be used to make

predictions about the future, or to infer some
hidden underlying causes.



Model versus Variable Inference

Variable inference: we wish to estimate the
value of one or more unknown variables by
using some related, possibly noisy
iInformation

0 e.g., what is my current position, given a few GPS
readings?



Statistical Inference Problems

Estimation: a model is fully specified, except
for an unknown, possibly multidimensional,
parameter 8, which we wish to estimate.

This parameter can be viewed as either a
random variable ...

o Bayesian approach
...0r as an unknown constant
o classical approach.

Objective: to estimate 6.



Statistical Inference Problems

Binary hypothesis testing:
o start with two hypotheses

o use the available data to decide which of the two
IS true.

m-ary hypothesis testing: there is a finite
number m of competing hypotheses.
o Evaluation: typically by error probabillity.

Both Bayesian and classical approaches are
possible.
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Bayesian inference

In Bayesian inference, the unknown quantity
of Interest Is modeled as a random variable
or as a finite collection of random variables.

o We usually denote it by 0.
We aim to extract information about ®, based

on observing a collection X = (X, ..., X,,) of
related random variables.

o called observations, measurements, or an
observation vector.



Bayesian inference

We assume that we know the joint
distribution of ® and X.

Equivalently, we assume that we know

o A prior distribution pg or fg, depending on
whether 0 Is discrete or continuous.

o A conditional distribution px|e Or fx|e, depending
on whether X is discrete or continuous.



Bayesian inference

After a particular value x of X has been
observed, a complete answer to the Bayesian
iInference problem is provided by the
posterior distribution pgx Or fox.

o It encapsulates everything there is to know about
®, given the available information.
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Summary ot Bayesian Inference

We start with a prior distribution pg or fg for
the unknown random variable ©.

We have a model pxe Or fx|e Of the
observation vector X.

After observing the value x of X, we form the

posterior distribution of 0, using the
appropriate version of Bayes' rule.



Bayes’ rule: summary

The Four Versions of Bayes’ Rule
e O discrete, X discrete:

Depending on discrete o (6] 2) = FoOPxi0lzl)
or continuous 0 and X, > _pe(@)pxje(z|6")
. o’
thfere are fOlIJr VErsions e O discrete, X continuous:
of Bayes' rule.
y poix(02) = pe(0)fxe(z|0)

- Zpe(f)')fme(ﬂ?w').
N 9,
They are SyntaCt|CaIIy e O continuous, X discrete:
all similar. fo(@)px10(2|6)
foix(@|z) = '
[ fo®pxio(z10)ds

e O continuous, X continuous:

0
foix(6]z) = fo(0)fxie(]8)
/fe(el)f)(|e($|0’)d9’




Example: meeting

Romeo and Juliet meeting: Juliet will be late
on any date by a random amount X, uniformly
distributed over the interval |0, 6].

6 Is unknown and is modeled as the value of
a random variable uniformly distributed In
[0,1].

Assume that Juliet was late by an amount x
on their first date.

Question: How should Romeo use this
Information to update the distribution of 67?



1 ift0<60 <1,

Prior PDF: fo(0) = {O therwise

Conditional PDF of the observation:

1/6 if0<x<46
) = ’
fX|®(x| ) { 0 otherwise.



fxjo(x]6) =1/60if0 <x <6
Use Bayes' rule: the posterior PDF Is

fe(0)fxe(x|0)
Olx) =
fGlX( 2 fol fe(@)fxje(x|0")de’
— = if0<x<6<1

1/60 1
11 ., 5
fx?de 9~|10gx|

0 and fg x(8]x) = 0 otherwise.




Example: Inference of common mean

of normal

Suppose that X4, ..., X,, are independent
normal r.v. with

2 an unknown common mean,

o and known variances o7, ..., 0.

Suppose that the common mean follows the
a normal prior N(x,, ¢ ).

Then X; = 0 + W;, where

o O, W; are a independent normal r.v.

o 0 follows N(xg, ), W; follows N(0, o7).



Last slide: X; = 0 + W,.
o @ follows N(xg,a¢), W; follows N(0,07).

(H—xo)z}

2
20

Prior PDF: fg(8) = ¢, exp {—

—0)2 _0\2
Model: fyjo(x16) = c; exp{—~ S22 . exp{— Cr=2]

207% 207
o ¢q and ¢, are constants.
fe(0)fxe(x|0)
Iy fo(8")fxj0(x|6")d6’
2 Note: The denominator doesn’'t depend on 6.

By Bayes’ rule: fg x(0]x) =



Numeratotr

fo(0)fxje(x|0) = cic, exp {— o (xi_e)z}.

2
Zai

The exponent Iis a quadratic form, thus can

be written as
(6 —m)?
d - exp{ >

for some constant d, where

X 1 1
m=( 7iﬂtzoa_iz)/( ?:oa—iz)ﬂ?:l/( ?zoa_iz)




2V

Thus fox (8]x) o exp{ (9"")2}

So the posterior PDF fgx(6|x) is normal with
mean m and variance v.
Recall prior: ® ~ N(xg, 0¢).

A remarkable property: the posterior

distribution of @ is in the same family as the prior
distribution,

o the family of normal distributions.



This property opens up the possibility of
efficient recursive inference.

Suppose that after X, ..., X,, are observed, an
additional observation X,,,, Is obtained.

Instead of solving the inference problem from
scratch, we can view fgx, .y as our prior,

and use the new observation to obtain the

new posterior fox. .x. x., .-



Thus the new posterior is normal distribution
with mean

b 42 )
vV On+s VvV On+a

and variance

1 1
1/ (; 01%+1).
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MAP

Given the value x of the observation, we

select a value of 9, denoted &, that
maximizes the posterior distribution

0 peix(@x) if © is discrete

0 pex(@]x) if © is continuous

That Is,

6 = arggnax peix(0]x), if © is discrete,

f = argmaxg foix(0]x), if © is continuous.



= This is called the Maximum a Posteriori
probability (MAP) rule.

Posterior Posterlor
foix (0| x) Pe|x
|
I
b |
|
: e
7, 7,




When 0 Is discrete, the MAP rule has an
Important optimality property.
Since it chooses 6 to be the most likely value

of O, It maximizes the probability of correct
decision for any given value x.

This implies that it also maximizes (over all
decision rules) the overall (averaged over all

possible values x) probability of correct
decision.



Computational shortcut

pe(0)px|e(x|0)
Y1 Pe(8)px|0(x|6")

An important computational shortcut.
The denominator is independent of 6.

Thus, to maximize the posterior, we only need to
maximize the numerator pg(8)px e (x|0)

Recall posterior: pgx(0]x) =

o or similar expressions if ® and/or X are continuous.
Calculation of the denominator is unnecessary.



Example

X4, ..., X, are independent normal r.v. with
o an unknown common mean © ~ N(x,, a¢),
o and known variances ¢#, ..., 0.

_ 2
Posterior: fg1x(8]x) exp{ © 27:) }With

i 1 1
m=( 7i1=0§_i2)/( ?=og_iz)’77=1/( ?=00_l_z)

The MAP estimate: 6 = m.
o because the normal PDF Is maximized at its mean




Point Estimation

Point estimate: a value that represents our
best guess of the value of 0.

Estimate: the numerical value 8 that we
choose on observation x.

The value of 8 is to be determined by
applying some function g to the observation
x, resulting in 6 = g(x).

Estimator: the random variable ® = g(X)

o Its realized value equals g(x) when X = x.



Two popular estimators

Two popular estimators:
a0 MAP: 6 = argmax pgx (6]x)
6

o Conditional Expectation: 8 = E[O|X = x].
Conditional expectation estimator is also
called least mean squares (LMS) estimator.

o It minimizes the mean squared error over all
estimators.

o To be elaborated later.



Example: Romeo and Juliet meeting

Juliet is late on the first date by a random
amount X.

The distribution of X is uniform over |0, O].

® Is an unknown random variable with a
uniform prior PDF fg over the interval [0,1].

1
Recall: fgx(0]x) = G Tog xT

MAP: 6 = x, because fgx(6|x) is decreasing
in @ over the range [x, 1].

if0<x<6<1



Last slide: MAP gives 8 = x.

Note that this Is an "optimistic" estimate.

o If Juliet is late by a small amount on the first date
(x = 0), the estimate of future lateness is also
small.

Conditional expectation: less optimistic.

E[O|X = x] jle L gg=——F
= X| = — .
. Ollogx] llog x|




MAP vs. conditional expectation
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Hypothesis testing

® takes one of m values, 64, ..., 0,,.
o m is usually a small integer; often m = 2.

The ith hypothesis: the event H; & {0 = 6,}.

Once the value x of X Is observed, we may
use Bayes' rule to calculate the posterior
probabllities

P(© = 6;|X = x) = Pg x(6;]|x),
for each i.



MAP: select the hypothesis H; with the largest
posterior probability P(0 = 6;|X = x).

Equivalently, it selects a hypothesis H; with
the largest Py (0;)Px e (x|6;) (if X is discrete)
or Py(0;)fx1e(x|6;) (if X is continuous).

o Computational shortcut



Correct probability

Juap(x): the hypothesis selected by the MAP
rule when X = x,

The probabillity of correct decision Is
P(© = gyap(X)[X = x).

If S; = {x: guap(x) = H;}, then the overall

probability of correct decision Is

P(0 = (X)) = T;P(® = 6, X € 5)

And the corresponding probabillity of error is
Y. P(O+6;,X€ES;)



Example: binary hypothesis testing

Two biased coins, with probabillities of heads
equal to p; and p,, respectively.

We choose a coin at random: either coin is
equally likely to be chosen.

o This gives the prior

We want to infer its identity, based on the
outcome of a single toss.




Let ® = 1 and ® = 2 be the hypotheses that
coin 1 or 2, respectively, was chosen.

_ |1 ifhead,
& _{o if tail.

MAP: compare pg(1)pye(x|1) and
pe(2)pxe(x|2), and take the larger one.

Since pg(1) = pe(2) = 1/2, we just need to
compare pye(x|1) and pxe(x|2).




For instance, the outcome is tall.
P(taill@=1) =1 —pq,

P(tail|@ =2) =1 —p,.

So MAP rule selects the H; with smaller p;.
We can also toss the selected coin n times.
X = the number of heads obtained.

MAP rule selects the hypothesis under which
the observed outcome is most likely.



= If X =k, we should decide ® =1 if
pFf(1—p)™ % > pk(1 —p )"k

1) b

ook 4 \
Posterior ‘

!'%-P(e= 1 l X=k)

Posterior
PO=21X=£k)

Number of heads &

! | ¥ # : $! % &l
e ot >

Choose 6 =1 Choose © = 2

1
|
|
|
|
|
|
|
|
|
|




The character of the MAP rule, as illustrated
In the above figure, Is typical of decision rules
In binary hypothesis testing problems.

It Is specified by a partition of the observation
space Into the two disjoint sets in which each
of the two hypotheses is chosen.

In this example, the MAP rule Is specified by
a single threshold k*:

Accept® =11f k < k™, and accept © = 2
otherwise.
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Estimation without observation

Considering the simpler problem of
estimating ©® with a constant 8, in the
absence of an observation X.

The estimation error: § — ©
The mean squared error: E [(é — @)2]
Question: What’s the minimum E [(é — @)2]

(over choices of §)?
Answer: var[@], achieved when 8 = E[0].



proof

E|(6-0)
= var(0 — ) + (E[0 — 8])" 1/ def of var()
= var(0) + (E[0 - §])°
// shifting doesn’t change variance
= var(0) + (E[@] — @)2
// linearity of expectation
> var(0)
/I “=" achieved when 8 = E[0].




$ Mean Squared

Estimation Error

E[(© — 6)?] = var(©) + (E[O] - §)°




Estimation with observation

Now suppose that we have observation X.

We still like to estimate 0 to minimize the
mean squared error.

Note that once we know the value x of X, the
situation is identical to the one considered
earlier, ...

...except that we are now in a new universe:
everything is conditioned on X = x.



We can therefore adapt our earlier
conclusion.

And assert that the conditional expectation
E[0|X = x] minimizes the conditional mean
squared error E [(@ —8)°|x = x] over all

N

constants 6.



Generally, the (unconditional) mean squared
estimation error associated with an estimator
g(X) is defined as

E|(e-gx)7.

View E|[0|X] as an estimator/function of X, the
preceding analysis shows that out of all possible
estimators.

The mean squared estimation error is minimized

when
g(X) = E[0]X].



Example

®: uniform over [4,10]
Independent noise W: uniform over [—1,1]

We observe © with error W:
X=04+W

fo(@) =1/61f4 <6 < 10 (and O otherwise).
X|® = 6 is uniform over [0 — 1,6 + 1].

Joint PDF: fo x(6,x) = fo(8)fxe(x]|0) =
o when 8 €[410]andx € [6 —1,0 + 1].

| =

1 1
2 12



The joint PDF of ® and
X is uniform over the i
parallelogram.

Given that X = x, the
posterior PDF fgx IS

uniform on the ¥ AL

: : Least squares estimate
corresponding vertical E©| X =21
section of the g ik TR

parallelogram.



Thus E[G|X = x] is the
midpoint of that section, | °
which Is a piecewise
linear function of x.

Conditioned on a
particular value x of X,

: Least squares estimate
define the mean E6| X =21
squared error as 3 5 W
E[(6 — E[O|X])?|X = x],




Conditional
Mean Squared
Estimation Error

The mean squared error

E[(® — E[B|X])?|X = x], equals the
conditional variance of 0.

It Is a function of x, illustrated in the above
figure.



Example: meeting

Juliet is late on the first date by a random

amount X that is uniformly distributed over
10, 0].

O: uniform prior over the interval [0,1].
MAP: 6§ = x.

A 11 1 _ 1-x
LMS: 6 = E[B|X = x] = fx 99|logx| do = Tog x
Let’s calculate the conditional mean squared
error for the MAP and the LMS estimates.







A 2(1-x) | 1-x°

~ 2 ~
& [(9 B 6) X = x] =6° -0 Ollog x| = 2|log x|

MAP: 6 = x.
3x% —4x + 1
2|log x|

E|[(0-0)"1x =x|=x%+

1—-x

LMS: 0 = .
log x|

E[(0-0)"1x = 2] = - (1"“)2

2|log x| log x




Estimates

M A P h aS | - I— MAPrEst.imat;s l '
S m al I e r ol LMS Estimates
estimator. P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

+

LMS estimator *—————— "
has uniformly
smaller mean o
squared error. °




Properties of estimation error

Denote ©® = E[0|X],0 =0 -0
o The LMS estimator and the associated estimation
error, respectively.

E|®| = E|o — 0] = E[E[0|X]| — E[0®] = 0
E|O|X =x|=E[®-0|X =x| =E|0|X = x| -
E[O|X =x] =E[O|X =x] —E[O|X =x] = 0.



O =FE[0|X],06=0-0

E|06| =E [E :@@|X]] /l iterated expectation
=F [@E['(35|X]_ /I ® depends only on X
=0 //E|6|X =x|=0,Vx. SOE|O|X] =0
Cov(00) = E|0B| — E[6]|E[6] =0 -0 = 0.
Therefore, by considering the variance of

both sides in ® = © + 8, we have
var(0) = var(@) + var(@)
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LMS estimator is sometimes hard to compute,
and we need alternatives.

We derive an estimator that minimizes the mean
sqguared error within a restricted class of
estimators: linear functions of the observations.

This estimator may result in higher mean
sqguared error.

But it has a significant computational advantage.

o It requires simple calculations, involving only means,
variances, and covariances of the parameters and
observations.



A linear estimator of a random variable 0, based
on observations X4, ..., X,,, has the form

@ — a1X1 + -+ aan + b
Given a particular choice of the scalars

a,, ..., a,, b, the corresponding mean squared
error is

E [(@ — a1 Xy — - —a X, — b)2]

The linear LMS estimator chooses a4, ...,a,, b to
minimize the above expression.



We first develop the solution for the case
where n = 1, and then generalize.

The estimator is ® = aX + b and the mean
squared error is E [(@ —ax - b)°|

We are interested in finding a and b that
minimize this error.



If a Is chosen, then it's easy to find the
optimal b:
Choose a constant b to estimate the random
variable © — aX.
By the discussion in previous section, the
best choice is b = E|® — aX]| = E[O] — aE|X].
Thus it remains to minimize

E[(®@ — aX — E[O] + aE[X])?]
which is var(0 — aX).



var(0 — aX)
= var(0) + a?var(X) + 2 - cov(0, —aX)
= var(0®) + a’var(X) — 2a - cov(0, X)

This is minimized when ¢ = €222 — ;%
var(X) Ox

0 0g and oy: standard deviation of ® and X,
respectively.
cov(0,X).

ap= . the correlation coefficient.
00X




With this choice of a, the estimator
O =aX+b=aX+ E[O] — aF[X]
=a(X — E|X]) + E[0O]
= p_2 (X — E[X]) + E[6],

And the mean squared estimation error Is
var(® — 0) = (1 — p?)var(6)



Example

Juliet is late by an amount X uniformly
distributed over [0, ®], and O is a random

variable with a uniform prior PDF fg(8) over
the interval [0,1].

Let us derive the linear LMS estimator of 0
based on X.

By law of iterated expectation,
E[O]
E[X] = E|E[X|0]| = E [0/2] = ===



By law of total variance,
var(X) = E[var(X|0)] + var(E[X|©])

—E [?—2] + var (g)

_iflgzdg L 1(a-02% _ 7
1270 4 12 144

Now we compute cov(0, X).

E[eX] = E|E[6X]0]| = E[0E[X|0]]
= E[02/2] =1/6




cov(0,X) = E|0X]| — E[O]E|X]

The linear LMS estimator Is

~ 0,X
® = E[0] 4 C;’Z?f (X)) (X — E[X])

_ 1, 1/24 N 2
2 7/144(X 4)_7X+7




