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Statistical inference

 Statistical inference is the process of 

extracting information about an unknown 

variable or an unknown model from available 

data.

 Two main approaches 

 Bayesian statistical inference 

 Classical statistical inference



Statistical inference

 Main categories of inference problems 

 parameter estimation 

 hypothesis testing

 significance testing



Statistical inference

 Most important methodologies 

 maximum a posteriori (MAP)

 probability rule, 

 least mean squares estimation, 

 maximum likelihood, 

 regression, 

 likelihood ratio tests



Bayesian versus Classical Statistics 

 Two prominent schools of thought

 Bayesian 

 Classical/frequentist. 

 Difference: What’s the nature of the unknown 

models or variables?

 Bayesian: they are treated as random 

variables with known distributions. 

 Classical/frequentist: they are treated as 

deterministic but unknown quantities. 



Bayesian

 When trying to infer the nature of an unknown 
model, it views the model as chosen 
randomly from a given model class. 

 Introduce a random variable 𝛩 that 
characterizes the model, 

 Postulate a prior distribution 𝑝Θ 𝜃 . 

 Given observed data 𝑥, one can use Bayes' 
rule to derive a posterior distribution 𝑝Θ|𝑋 𝜃|𝑥 . 

 This captures all information that 𝑥 can provide 
about 𝜃.



Classical/frequentist

 View the unknown quantity 𝜃 as an unknown 

constant. 

 Strives to develop an estimate of 𝜃. 

 We are dealing with multiple candidate 

probabilistic models, one for each possible 

value of 𝜃. 



Model versus Variable Inference

 Model inference: the object of study is a real 

phenomenon or process,… 

 …for which we wish to construct or validate a 

model on the basis of available data 

 e.g., do planets follow elliptical trajectories?

 Such a model can then be used to make 

predictions about the future, or to infer some 

hidden underlying causes. 



Model versus Variable Inference

 Variable inference: we wish to estimate the 

value of one or more unknown variables by 

using some related, possibly noisy 

information 

 e.g., what is my current position, given a few GPS 

readings? 



Statistical Inference Problems 

 Estimation: a model is fully specified, except 

for an unknown, possibly multidimensional, 

parameter 𝜃, which we wish to estimate. 

 This parameter can be viewed as either a 

random variable …

 Bayesian approach

 …or as an unknown constant 

 classical approach. 

 Objective: to estimate 𝜃.  



Statistical Inference Problems 

 Binary hypothesis testing: 

 start with two hypotheses

 use the available data to decide which of the two 

is true.  

 𝑚-ary hypothesis testing: there is a finite 

number 𝑚 of competing hypotheses. 

 Evaluation: typically by error probability. 

 Both Bayesian and classical approaches are 

possible.



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



Bayesian inference

 In Bayesian inference, the unknown quantity 

of interest is modeled as a random variable 

or as a finite collection of random variables.

 We usually denote it by Θ.

 We aim to extract information about Θ, based 

on observing a collection 𝑋 = 𝑋1, … , 𝑋𝑛 of 

related random variables. 

 called observations, measurements, or an 

observation vector.



Bayesian inference

 We assume that we know the joint 

distribution of Θ and 𝑋.

 Equivalently, we assume that we know

 A prior distribution 𝑝Θ or 𝑓Θ, depending on 

whether Θ is discrete or continuous.

 A conditional distribution 𝑝𝑋|Θ or 𝑓𝑋|Θ, depending 

on whether 𝑋 is discrete or continuous.



Bayesian inference

 After a particular value 𝑥 of 𝑋 has been 

observed, a complete answer to the Bayesian 

inference problem is provided by the 

posterior distribution 𝑝Θ|𝑋 or 𝑓Θ|𝑋.

 It encapsulates everything there is to know about 

Θ, given the available information.



Summary of Bayesian Inference

1. We start with a prior distribution 𝑝Θ or 𝑓Θ for 

the unknown random variable Θ. 

2. We have a model 𝑝𝑋|Θ or 𝑓𝑋|Θ of the 

observation vector 𝑋. 

3. After observing the value 𝑥 of 𝑋, we form the 

posterior distribution of Θ, using the 

appropriate version of Bayes' rule.



Bayes’ rule: summary

 Depending on discrete 

or continuous Θ and 𝑋, 

there are four versions 

of Bayes' rule. 

 They are syntactically 

all similar.



Example: meeting

 Romeo and Juliet meeting: Juliet will be late
on any date by a random amount 𝑋, uniformly
distributed over the interval 0, 𝜃 . 

 𝜃 is unknown and is modeled as the value of 
a random variable uniformly distributed in 
0,1 . 

 Assume that Juliet was late by an amount 𝑥
on their first date. 

 Question: How should Romeo use this 
information to update the distribution of 𝜃?



 Prior PDF: 𝑓Θ 𝜃 = ቊ
1 if 0 ≤ 𝜃 ≤ 1,
0 otherwise.

 Conditional PDF of the observation: 

𝑓𝑋|Θ 𝑥|𝜃 = ቊ
1/𝜃 if 0 ≤ 𝑥 ≤ 𝜃,
0 otherwise.



 𝑓Θ 𝜃 = 1 if 0 ≤ 𝜃 ≤ 1

 𝑓𝑋|Θ 𝑥|𝜃 = 1/𝜃 if 0 ≤ 𝑥 ≤ 𝜃

 Use Bayes' rule: the posterior PDF is 

𝑓Θ|𝑋 𝜃|𝑥 =
𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃

0׬
1
𝑓Θ 𝜃′ 𝑓𝑋|Θ 𝑥|𝜃′ 𝑑𝜃′

=
1/𝜃

𝑥׬
1 1

𝜃′
𝑑𝜃′

=
1

𝜃⋅ log 𝑥
,  if 0 ≤ 𝑥 ≤ 𝜃 ≤ 1

 and 𝑓Θ|𝑋 𝜃|𝑥 = 0 otherwise.



Example: Inference of common mean 

of normal 
 Suppose that 𝑋1, … , 𝑋𝑛 are independent 

normal r.v. with 

 an unknown common mean,

 and known variances 𝜎1
2, … , 𝜎𝑛

2.

 Suppose that the common mean follows the 

a normal prior 𝑁 𝑥0, 𝜎0
2 .

 Then 𝑋𝑖 = Θ +𝑊𝑖, where 

 Θ, 𝑊𝑖 are a independent normal r.v.

 Θ follows 𝑁 𝑥0, 𝜎0
2 , 𝑊𝑖 follows 𝑁 0, 𝜎𝑖

2 .



 Last slide: 𝑋𝑖 = Θ +𝑊𝑖 .
 Θ follows 𝑁 𝑥0, 𝜎0

2 , 𝑊𝑖 follows 𝑁 0, 𝜎𝑖
2 .

 Prior PDF: 𝑓Θ 𝜃 = 𝑐1 exp −
𝜃−𝑥0

2

2𝜎0
2 , 

 Model: 𝑓𝑋|Θ 𝑥|𝜃 = 𝑐2 exp −
𝑥1−𝜃

2

2𝜎1
2 …exp −

𝑥𝑛−𝜃
2

2𝜎𝑛
2

 𝑐1 and 𝑐2 are constants.

 By Bayes’ rule: 𝑓Θ|𝑋 𝜃|𝑥 =
𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃

0׬
1
𝑓Θ 𝜃′ 𝑓𝑋|Θ 𝑥|𝜃′ 𝑑𝜃′

 Note: The denominator doesn’t depend on 𝜃.



Numerator 

 𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃 = 𝑐1𝑐2 exp −σ𝑖=0
𝑛 𝑥𝑖−𝜃

2

2𝜎𝑖
2 .

 The exponent is a quadratic form, thus can 

be written as 

𝑑 ⋅ exp −
𝜃 −𝑚 2

2𝑣

for some constant 𝑑, where 

𝑚 = σ𝑖=0
𝑛 𝑥𝑖

𝜎𝑖
2 / σ𝑖=0

𝑛 1

𝜎𝑖
2 , 𝑣 = 1/ σ𝑖=0

𝑛 1

𝜎𝑖
2

. 



 Thus 𝑓Θ|𝑋 𝜃|𝑥 ∝ exp −
𝜃−𝑚 2

2𝑣

 So the posterior PDF 𝑓Θ|𝑋 𝜃|𝑥 is normal with 

mean 𝑚 and variance 𝑣.

 Recall prior: Θ ∼ 𝑁 𝑥0, 𝜎0
2 .

 A remarkable property: the posterior 

distribution of 𝛩 is in the same family as the prior 

distribution, 

 the family of normal distributions.



 This property opens up the possibility of 

efficient recursive inference.

 Suppose that after 𝑋1, … , 𝑋𝑛 are observed, an 

additional observation 𝑋𝑛+1 is obtained. 

 Instead of solving the inference problem from 

scratch, we can view 𝑓Θ|𝑋1,…,𝑋𝑛 as our prior, 

and use the new observation to obtain the 

new posterior 𝑓Θ|𝑋1,…,𝑋𝑛,𝑋𝑛+1.



 Thus the new posterior is normal distribution 

with mean 
𝑚

𝑣
+

𝑥𝑛+1

𝜎𝑛+1
2 /

1

𝑣
+

1

𝜎𝑛+1
2

and variance

1/
1

𝑣
+

1

𝜎𝑛+1
2 .



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



MAP

 Given the value 𝑥 of the observation, we 

select a value of 𝜃, denoted ෠𝜃, that 

maximizes the posterior distribution 

 𝑝Θ|𝑋 𝜃|𝑥 if Θ is discrete 

 𝑝Θ|𝑋 𝜃|𝑥 if Θ is continuous

 That is, 
෠𝜃 = argmax

𝜃
𝑝Θ|𝑋 𝜃|𝑥 , if Θ is discrete,

෠𝜃 = argmax𝜃 𝑓Θ|𝑋 𝜃|𝑥 , if Θ is continuous.



 This is called the Maximum a Posteriori 

probability (MAP) rule.



 When Θ is discrete, the MAP rule has an 

important optimality property. 

 Since it chooses 𝜃 to be the most likely value 

of Θ, it maximizes the probability of correct 

decision for any given value 𝑥. 

 This implies that it also maximizes (over all 

decision rules) the overall (averaged over all 

possible values 𝑥) probability of correct 

decision.



Computational shortcut

 Recall posterior: 𝑝Θ|𝑋 𝜃|𝑥 =
𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃

σ
𝜃′

𝑝Θ 𝜃′ 𝑝𝑋|Θ 𝑥|𝜃′

 An important computational shortcut. 

 The denominator is independent of 𝜃. 

 Thus, to maximize the posterior, we only need to 

maximize the numerator 𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃

 or similar expressions if Θ and/or 𝑋 are continuous. 

 Calculation of the denominator is unnecessary. 



Example

 𝑋1, … , 𝑋𝑛 are independent normal r.v. with 

 an unknown common mean Θ ∼ 𝑁 𝑥0, 𝜎0
2 ,

 and known variances 𝜎1
2, … , 𝜎𝑛

2.

 Posterior: 𝑓Θ|𝑋 𝜃|𝑥 ∝ exp −
𝜃−𝑚 2

2𝑣
with 

𝑚 = σ𝑖=0
𝑛 𝑥𝑖

𝜎𝑖
2 / σ𝑖=0

𝑛 1

𝜎𝑖
2 , 𝑣 = 1/ σ𝑖=0

𝑛 1

𝜎𝑖
2

 The MAP estimate: ෠𝜃 = 𝑚.

 because the normal PDF is maximized at its mean



Point Estimation

 Point estimate: a value that represents our 
best guess of the value of Θ.

 Estimate: the numerical value ෠𝜃 that we 
choose on observation 𝑥. 

 The value of ෠𝜃 is to be determined by 
applying some function 𝑔 to the observation 
𝑥, resulting in ෠𝜃 = 𝑔 𝑥 . 

 Estimator: the random variable ෡Θ = 𝑔 𝑋
 its realized value equals 𝑔(𝑥) when 𝑋 = 𝑥.



Two popular estimators

 Two popular estimators: 

 MAP: መ𝜃 = argmax
𝜃

𝑝Θ|𝑋 𝜃|𝑥

 Conditional Expectation: መ𝜃 = 𝐄 Θ|𝑋 = 𝑥 .

 Conditional expectation estimator is also 

called least mean squares (LMS) estimator.

 It minimizes the mean squared error over all 

estimators.

 To be elaborated later. 



Example: Romeo and Juliet meeting

 Juliet is late on the first date by a random 

amount 𝑋. 

 The distribution of 𝑋 is uniform over 0, Θ . 

 Θ is an unknown random variable with a 

uniform prior PDF 𝑓Θ over the interval 0,1 . 

 Recall: 𝑓Θ|𝑋 𝜃|𝑥 =
1

𝜃⋅ log 𝑥
,  if 0 ≤ 𝑥 ≤ 𝜃 ≤ 1

 MAP: ෠𝜃 = 𝑥, because 𝑓Θ|𝑋 𝜃|𝑥 is decreasing 

in 𝜃 over the range 𝑥, 1 .



 Last slide: MAP gives ෠𝜃 = 𝑥.

 Note that this is an "optimistic" estimate. 

 If Juliet is late by a small amount on the first date 

𝑥 ≈ 0 , the estimate of future lateness is also 

small.

 Conditional expectation: less optimistic.

𝐄 Θ|𝑋 = 𝑥 = න
𝑥

1

𝜃
1

𝜃 log 𝑥
𝑑𝜃 =

1 − 𝑥

log 𝑥
.



MAP vs. conditional expectation



Hypothesis testing

 Θ takes one of 𝑚 values, 𝜃1, … , 𝜃𝑚.

 𝑚 is usually a small integer; often 𝑚 = 2.

 The 𝑖th hypothesis: the event 𝐻𝑖 ≝ Θ = 𝜃𝑖 .

 Once the value 𝑥 of 𝑋 is observed, we may 

use Bayes' rule to calculate the posterior 

probabilities

𝑃 Θ = 𝜃𝑖|𝑋 = 𝑥 = 𝑃Θ|𝑋 𝜃𝑖|𝑥 ,

for each 𝑖. 



 MAP: select the hypothesis 𝐻𝑖 with the largest 

posterior probability 𝑃 Θ = 𝜃𝑖|𝑋 = 𝑥 .

 Equivalently, it selects a hypothesis 𝐻𝑖 with 

the largest 𝑃Θ 𝜃𝑖 𝑃𝑋|Θ 𝑥|𝜃𝑖 (if 𝑋 is discrete) 

or 𝑃Θ 𝜃𝑖 𝑓𝑋|Θ 𝑥|𝜃𝑖 (if 𝑋 is continuous).

 Computational shortcut



Correct probability

 𝑔MAP 𝑥 : the hypothesis selected by the MAP 
rule when 𝑋 = 𝑥, 

 The probability of correct decision is 
𝑃 Θ = 𝑔MAP 𝑥 |𝑋 = 𝑥 .

 If 𝑆𝑖 = 𝑥: 𝑔MAP 𝑥 = 𝐻𝑖 , then the overall 
probability of correct decision is
𝑃 Θ = 𝑔MAP 𝑋 = σ𝑖 𝑃 Θ = 𝜃𝑖 , 𝑋 ∈ 𝑆𝑖

 And the corresponding probability of error is 
σ𝑖 𝑃 Θ ≠ 𝜃𝑖 , 𝑋 ∈ 𝑆𝑖



Example: binary hypothesis testing

 Two biased coins, with probabilities of heads 

equal to 𝑝1 and 𝑝2, respectively. 

 We choose a coin at random: either coin is 

equally likely to be chosen.

 This gives the prior

 We want to infer its identity, based on the 

outcome of a single toss. 



 Let Θ = 1 and Θ = 2 be the hypotheses that 

coin 1 or 2, respectively, was chosen. 

 𝑋 = ቊ
1 if head,
0 if tail.

 MAP: compare 𝑝Θ 1 𝑝𝑋|Θ 𝑥|1 and 

𝑝Θ 2 𝑝𝑋|Θ 𝑥|2 , and take the larger one.

 Since 𝑝Θ 1 = 𝑝Θ 2 = 1/2, we just need to 

compare 𝑝𝑋|Θ 𝑥|1 and 𝑝𝑋|Θ 𝑥|2 .



 For instance, the outcome is tail. 

 𝑃 𝑡𝑎𝑖𝑙|Θ = 1 = 1 − 𝑝1, 

𝑃 𝑡𝑎𝑖𝑙|Θ = 2 = 1 − 𝑝2. 

 So MAP rule selects the 𝐻𝑖 with smaller 𝑝𝑖.

 We can also toss the selected coin 𝑛 times.

 𝑋 = the number of heads obtained.

 MAP rule selects the hypothesis under which 

the observed outcome is most likely. 



 If 𝑋 = 𝑘, we should decide Θ = 1 if 

𝑝1
𝑘 1 − 𝑝1

𝑛−𝑘 > 𝑝2
𝑘 1 − 𝑝2

𝑛−𝑘.



 The character of the MAP rule, as illustrated 
in the above figure, is typical of decision rules 
in binary hypothesis testing problems. 

 It is specified by a partition of the observation 
space into the two disjoint sets in which each 
of the two hypotheses is chosen. 

 In this example, the MAP rule is specified by 
a single threshold 𝑘∗: 

 Accept Θ = 1 if 𝑘 ≤ 𝑘∗, and accept Θ = 2
otherwise. 



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



Estimation without observation

 Considering the simpler problem of 
estimating Θ with a constant ෠𝜃, in the 
absence of an observation 𝑋. 

 The estimation error: ෠𝜃 − Θ

 The mean squared error: 𝐸 ෠𝜃 − Θ
2

 Question: What’s the minimum 𝐸 ෠𝜃 − 𝛩
2

(over choices of ෠𝜃)? 

 Answer: 𝑣𝑎𝑟 𝛩 , achieved when ෠𝜃 = 𝐸 𝛩 .



proof

 𝐸 ෠𝜃 − Θ
2

= 𝑣𝑎𝑟 Θ − ෠𝜃 + 𝐸 Θ − ෠𝜃
2

// def of var()

= 𝑣𝑎𝑟 Θ + 𝐸 Θ − ෠𝜃
2

// shifting doesn’t change variance

= 𝑣𝑎𝑟 Θ + 𝐸 Θ − ෠𝜃
2

// linearity of expectation

≥ 𝑣𝑎𝑟 Θ

// “=” achieved when ෠𝜃 = 𝐸 Θ .





Estimation with observation

 Now suppose that we have observation 𝑋. 

 We still like to estimate Θ to minimize the 

mean squared error. 

 Note that once we know the value 𝑥 of 𝑋, the 

situation is identical to the one considered 

earlier, …

 …except that we are now in a new universe: 

everything is conditioned on 𝑋 = 𝑥.



 We can therefore adapt our earlier 

conclusion.

 And assert that the conditional expectation 

𝐸 Θ|𝑋 = 𝑥 minimizes the conditional mean 

squared error 𝐸 Θ − ෠𝜃
2
|𝑋 = 𝑥 over all 

constants ෠𝜃.



 Generally, the (unconditional) mean squared 
estimation error associated with an estimator 
𝑔 𝑋 is defined as 

𝐸 Θ − 𝑔 𝑋
2
.

 View 𝐸 Θ 𝑋 as an estimator/function of 𝑋, the 
preceding analysis shows that out of all possible 
estimators. 

 The mean squared estimation error is minimized 
when 

𝑔 𝑋 = 𝐸 Θ|𝑋 .



Example

 Θ: uniform over 4,10

 Independent noise 𝑊: uniform over −1,1

 We observe Θ with error 𝑊:

𝑋 = Θ +𝑊

 𝑓Θ 𝜃 = 1/6 if 4 ≤ 𝜃 ≤ 10 (and 0 otherwise).

 𝑋|Θ = 𝜃 is uniform over 𝜃 − 1, 𝜃 + 1 .

 Joint PDF: 𝑓Θ,𝑋 𝜃, 𝑥 = 𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃 =
1

6
⋅
1

2
=

1

12

 when 𝜃 ∈ 4,10 and 𝑥 ∈ 𝜃 − 1, 𝜃 + 1 .



 The joint PDF of Θ and 

𝑋 is uniform over the 

parallelogram.

 Given that 𝑋 = 𝑥, the 

posterior PDF 𝑓Θ|𝑋 is 

uniform on the 

corresponding vertical 

section of the 

parallelogram. 



 Thus 𝐸 𝐺 𝑋 = 𝑥 is the 

midpoint of that section, 

which is a piecewise 

linear function of 𝑥. 

 Conditioned on a 

particular value 𝑥 of 𝑋, 

define the mean 

squared error as 

𝐸 Θ − 𝐸 Θ 𝑋 2|𝑋 = 𝑥 , 



 The mean squared error  

𝐸 Θ − 𝐸 Θ 𝑋 2|𝑋 = 𝑥 , equals the 

conditional variance of Θ.

 It is a function of 𝑥, illustrated in the above 

figure.



Example: meeting

 Juliet is late on the first date by a random 

amount 𝑋 that is uniformly distributed over 

0, Θ . 

 Θ: uniform prior over the interval 0,1 .

 MAP: ෠𝜃 = 𝑥.

 LMS: ෠𝜃 = 𝐸 Θ|𝑋 = 𝑥 = 𝑥׬
1
𝜃

1

𝜃 log 𝑥
𝑑𝜃 =

1−𝑥

log 𝑥

 Let’s calculate the conditional mean squared 

error for the MAP and the LMS estimates. 



 𝐸 ෠𝜃 − Θ
2
|𝑋 = 𝑥

= 𝑥׬
1 ෠𝜃 − 𝜃

2 1

𝜃 log 𝑥
𝑑𝜃

= 𝑥׬
1 ෠𝜃2 − 2 ෠𝜃𝜃 + 𝜃2

1

𝜃 log 𝑥
𝑑𝜃

= ෠𝜃2 − ෠𝜃
2 1−𝑥

𝜃 log 𝑥
+

1−𝑥2

2 log 𝑥
. 



 𝐸 ෠𝜃 − Θ
2
|𝑋 = 𝑥 = ෠𝜃2 − ෠𝜃

2 1−𝑥

𝜃 log 𝑥
+

1−𝑥2

2 log 𝑥
.

 MAP: ෠𝜃 = 𝑥. 

𝐸 ෠𝜃 − Θ
2
|𝑋 = 𝑥 = 𝑥2 +

3𝑥2 − 4𝑥 + 1

2 log 𝑥

 LMS: ෠𝜃 =
1−𝑥

log 𝑥
. 

𝐸 ෠𝜃 − Θ
2
|𝑋 = 𝑥 =

1 − 𝑥2

2 log 𝑥
−

1 − 𝑥

log 𝑥

2



 MAP has 

smaller 

estimator. 

 LMS estimator 

has uniformly 

smaller mean 

squared error. 



Properties of estimation error

 Denote ෡Θ = 𝐸 Θ|𝑋 , ෩Θ = ෡Θ − Θ

 The LMS estimator and the associated estimation 

error, respectively.

 𝐸 ෩Θ = 𝐸 ෡Θ − Θ = 𝐸 𝐸 Θ|𝑋 − 𝐸 Θ = 0

 𝐸 ෩Θ|𝑋 = 𝑥 = 𝐸 ෡Θ − Θ|𝑋 = 𝑥 = 𝐸 ෡Θ|𝑋 = 𝑥 −

𝐸 Θ|𝑋 = 𝑥 = 𝐸 Θ|𝑋 = 𝑥 − 𝐸 Θ|𝑋 = 𝑥 = 0.




෡Θ = 𝐸 Θ|𝑋 , ෩Θ = ෡Θ − Θ

 𝐸 ෡Θ෩Θ = 𝐸 𝐸 ෡Θ෩Θ|𝑋 // iterated expectation

= 𝐸 ෡Θ𝐸 ෩Θ|𝑋 // ෡Θ depends only on 𝑋

= 0 // 𝐸 ෩Θ|𝑋 = 𝑥 = 0, ∀𝑥. So 𝐸 ෩Θ|𝑋 = 0

 𝐶𝑜𝑣 ෡Θ෩Θ = 𝐸 ෡Θ෩Θ − 𝐸 ෡Θ 𝐸 ෩Θ = 0 − 0 = 0.

 Therefore, by considering the variance of 
both sides in Θ = ෩Θ + ෡Θ, we have

𝑣𝑎𝑟 Θ = 𝑣𝑎𝑟 ෡Θ + 𝑣𝑎𝑟 ෩Θ



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



 LMS estimator is sometimes hard to compute, 
and we need alternatives.

 We derive an estimator that minimizes the mean 
squared error within a restricted class of 
estimators: linear functions of the observations. 

 This estimator may result in higher mean 
squared error. 

 But it has a significant computational advantage. 
 It requires simple calculations, involving only means, 

variances, and covariances of the parameters and 
observations. 



 A linear estimator of a random variable Θ, based 

on observations 𝑋1, … , 𝑋𝑛, has the form 
෡Θ = 𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛 + 𝑏

 Given a particular choice of the scalars 

𝑎1, … , 𝑎𝑛, 𝑏, the corresponding mean squared 

error is 

E ෡Θ − 𝑎1𝑋1 −⋯− 𝑎𝑛𝑋𝑛 − 𝑏
2

 The linear LMS estimator chooses 𝑎1, … , 𝑎𝑛, 𝑏 to 

minimize the above expression. 



 We first develop the solution for the case 

where 𝑛 = 1, and then generalize.

 The estimator is ෡Θ = 𝑎𝑋 + 𝑏 and the mean 

squared error is E ෡Θ − 𝑎𝑋 − 𝑏
2

.

 We are interested in finding 𝑎 and 𝑏 that 

minimize this error.



 If 𝑎 is chosen, then it’s easy to find the 

optimal 𝑏:

 Choose a constant 𝑏 to estimate the random 

variable Θ − 𝑎𝑋. 

 By the discussion in previous section, the 

best choice is 𝑏 = 𝐸 Θ − 𝑎𝑋 = 𝐸 Θ − 𝑎𝐸 𝑋 .

 Thus it remains to minimize

E Θ − 𝑎𝑋 − 𝐸 Θ + 𝑎𝐸 𝑋 2

which is 𝑣𝑎𝑟 Θ − 𝑎𝑋 .



 𝑣𝑎𝑟 Θ − 𝑎𝑋
= 𝑣𝑎𝑟 Θ + 𝑎2𝑣𝑎𝑟 𝑋 + 2 ⋅ 𝑐𝑜𝑣 Θ,−𝑎𝑋
= 𝑣𝑎𝑟 Θ + 𝑎2𝑣𝑎𝑟 𝑋 − 2𝑎 ⋅ 𝑐𝑜𝑣 Θ, 𝑋

 This is minimized when 𝑎 =
𝑐𝑜𝑣 Θ,𝑋

𝑣𝑎𝑟 𝑋
= 𝜌

𝜎Θ

𝜎𝑋

 𝜎Θ and 𝜎𝑋: standard deviation of Θ and 𝑋, 

respectively.

 𝜌 =
𝑐𝑜𝑣 Θ,𝑋

𝜎Θ𝜎𝑋
: the correlation coefficient.



 With this choice of 𝑎, the estimator 
෡Θ = 𝑎𝑋 + 𝑏 = 𝑎𝑋 + 𝐸 Θ − 𝑎𝐸 𝑋
= 𝑎 𝑋 − 𝐸 𝑋 + 𝐸 Θ

= 𝜌
𝜎Θ

𝜎𝑋
𝑋 − 𝐸 𝑋 + 𝐸 Θ .

 And the mean squared estimation error is 

𝑣𝑎𝑟 Θ − ෡Θ = 1 − 𝜌2 𝑣𝑎𝑟 Θ



Example

 Juliet is late by an amount 𝑋 uniformly 

distributed over 0, Θ , and Θ is a random 

variable with a uniform prior PDF 𝑓Θ 𝜃 over 

the interval 0,1 .

 Let us derive the linear LMS estimator of Θ
based on 𝑋.

 By law of iterated expectation, 

𝐸 𝑋 = 𝐸 𝐸 𝑋|Θ = 𝐸 Θ/2 =
𝐸 Θ

2
=
1

4



 By law of total variance, 

𝑣𝑎𝑟 𝑋 = 𝐸 𝑣𝑎𝑟 𝑋|Θ + 𝑣𝑎𝑟 𝐸 𝑋|Θ

= 𝐸
Θ2

12
+ 𝑣𝑎𝑟

Θ

2

=
1

12
0׬
1
𝜃2𝑑𝜃 +

1

4

1−0 2

12
=

7

144

 Now we compute 𝑐𝑜𝑣 Θ, 𝑋 .

 𝐸 Θ𝑋 = 𝐸 𝐸 Θ𝑋|Θ = 𝐸 Θ𝐸 𝑋|Θ

= 𝐸 Θ2/2 = 1/6



 𝑐𝑜𝑣 Θ, 𝑋 = 𝐸 Θ𝑋 − 𝐸 Θ 𝐸 𝑋 =
1

6
−

1

2
⋅
1

4
=

1

24

 The linear LMS estimator is 


෡Θ = 𝐸 Θ +

𝑐𝑜𝑣 Θ,𝑋

𝑣𝑎𝑟 𝑋
𝑋 − 𝐸 𝑋

=
1

2
+

1/24

7/144
𝑋 −

1

4
=

6

7
𝑋 +

2

7


