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Statistical inference

 Statistical inference is the process of 

extracting information about an unknown 

variable or an unknown model from available 

data.

 Two main approaches 

 Bayesian statistical inference 

 Classical statistical inference



Statistical inference

 Main categories of inference problems 

 parameter estimation 

 hypothesis testing

 significance testing



Statistical inference

 Most important methodologies 

 maximum a posteriori (MAP)

 probability rule, 

 least mean squares estimation, 

 maximum likelihood, 

 regression, 

 likelihood ratio tests



Bayesian versus Classical Statistics 

 Two prominent schools of thought

 Bayesian 

 Classical/frequentist. 

 Difference: What’s the nature of the unknown 

models or variables?

 Bayesian: they are treated as random 

variables with known distributions. 

 Classical/frequentist: they are treated as 

deterministic but unknown quantities. 



Bayesian

 When trying to infer the nature of an unknown 
model, it views the model as chosen 
randomly from a given model class. 

 Introduce a random variable 𝛩 that 
characterizes the model, 

 Postulate a prior distribution 𝑝Θ 𝜃 . 

 Given observed data 𝑥, one can use Bayes' 
rule to derive a posterior distribution 𝑝Θ|𝑋 𝜃|𝑥 . 

 This captures all information that 𝑥 can provide 
about 𝜃.



Classical/frequentist

 View the unknown quantity 𝜃 as an unknown 

constant. 

 Strives to develop an estimate of 𝜃. 

 We are dealing with multiple candidate 

probabilistic models, one for each possible 

value of 𝜃. 



Model versus Variable Inference

 Model inference: the object of study is a real 

phenomenon or process,… 

 …for which we wish to construct or validate a 

model on the basis of available data 

 e.g., do planets follow elliptical trajectories?

 Such a model can then be used to make 

predictions about the future, or to infer some 

hidden underlying causes. 



Model versus Variable Inference

 Variable inference: we wish to estimate the 

value of one or more unknown variables by 

using some related, possibly noisy 

information 

 e.g., what is my current position, given a few GPS 

readings? 



Statistical Inference Problems 

 Estimation: a model is fully specified, except 

for an unknown, possibly multidimensional, 

parameter 𝜃, which we wish to estimate. 

 This parameter can be viewed as either a 

random variable …

 Bayesian approach

 …or as an unknown constant 

 classical approach. 

 Objective: to estimate 𝜃.  



Statistical Inference Problems 

 Binary hypothesis testing: 

 start with two hypotheses

 use the available data to decide which of the two 

is true.  

 𝑚-ary hypothesis testing: there is a finite 

number 𝑚 of competing hypotheses. 

 Evaluation: typically by error probability. 

 Both Bayesian and classical approaches are 

possible.



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



Bayesian inference

 In Bayesian inference, the unknown quantity 

of interest is modeled as a random variable 

or as a finite collection of random variables.

 We usually denote it by Θ.

 We aim to extract information about Θ, based 

on observing a collection 𝑋 = 𝑋1, … , 𝑋𝑛 of 

related random variables. 

 called observations, measurements, or an 

observation vector.



Bayesian inference

 We assume that we know the joint 

distribution of Θ and 𝑋.

 Equivalently, we assume that we know

 A prior distribution 𝑝Θ or 𝑓Θ, depending on 

whether Θ is discrete or continuous.

 A conditional distribution 𝑝𝑋|Θ or 𝑓𝑋|Θ, depending 

on whether 𝑋 is discrete or continuous.



Bayesian inference

 After a particular value 𝑥 of 𝑋 has been 

observed, a complete answer to the Bayesian 

inference problem is provided by the 

posterior distribution 𝑝Θ|𝑋 or 𝑓Θ|𝑋.

 It encapsulates everything there is to know about 

Θ, given the available information.



Summary of Bayesian Inference

1. We start with a prior distribution 𝑝Θ or 𝑓Θ for 

the unknown random variable Θ. 

2. We have a model 𝑝𝑋|Θ or 𝑓𝑋|Θ of the 

observation vector 𝑋. 

3. After observing the value 𝑥 of 𝑋, we form the 

posterior distribution of Θ, using the 

appropriate version of Bayes' rule.



Bayes’ rule: summary

 Depending on discrete 

or continuous Θ and 𝑋, 

there are four versions 

of Bayes' rule. 

 They are syntactically 

all similar.



Example: meeting

 Romeo and Juliet meeting: Juliet will be late
on any date by a random amount 𝑋, uniformly
distributed over the interval 0, 𝜃 . 

 𝜃 is unknown and is modeled as the value of 
a random variable uniformly distributed in 
0,1 . 

 Assume that Juliet was late by an amount 𝑥
on their first date. 

 Question: How should Romeo use this 
information to update the distribution of 𝜃?



 Prior PDF: 𝑓Θ 𝜃 = ቊ
1 if 0 ≤ 𝜃 ≤ 1,
0 otherwise.

 Conditional PDF of the observation: 

𝑓𝑋|Θ 𝑥|𝜃 = ቊ
1/𝜃 if 0 ≤ 𝑥 ≤ 𝜃,
0 otherwise.



 𝑓Θ 𝜃 = 1 if 0 ≤ 𝜃 ≤ 1

 𝑓𝑋|Θ 𝑥|𝜃 = 1/𝜃 if 0 ≤ 𝑥 ≤ 𝜃

 Use Bayes' rule: the posterior PDF is 

𝑓Θ|𝑋 𝜃|𝑥 =
𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃

0
1
𝑓Θ 𝜃′ 𝑓𝑋|Θ 𝑥|𝜃′ 𝑑𝜃′

=
1/𝜃

𝑥
1 1

𝜃′
𝑑𝜃′

=
1

𝜃⋅ log 𝑥
,  if 0 ≤ 𝑥 ≤ 𝜃 ≤ 1

 and 𝑓Θ|𝑋 𝜃|𝑥 = 0 otherwise.



Example: Inference of common mean 

of normal 
 Suppose that 𝑋1, … , 𝑋𝑛 are independent 

normal r.v. with 

 an unknown common mean,

 and known variances 𝜎1
2, … , 𝜎𝑛

2.

 Suppose that the common mean follows the 

a normal prior 𝑁 𝑥0, 𝜎0
2 .

 Then 𝑋𝑖 = Θ +𝑊𝑖, where 

 Θ, 𝑊𝑖 are a independent normal r.v.

 Θ follows 𝑁 𝑥0, 𝜎0
2 , 𝑊𝑖 follows 𝑁 0, 𝜎𝑖

2 .



 Last slide: 𝑋𝑖 = Θ +𝑊𝑖 .
 Θ follows 𝑁 𝑥0, 𝜎0

2 , 𝑊𝑖 follows 𝑁 0, 𝜎𝑖
2 .

 Prior PDF: 𝑓Θ 𝜃 = 𝑐1 exp −
𝜃−𝑥0

2

2𝜎0
2 , 

 Model: 𝑓𝑋|Θ 𝑥|𝜃 = 𝑐2 exp −
𝑥1−𝜃

2

2𝜎1
2 …exp −

𝑥𝑛−𝜃
2

2𝜎𝑛
2

 𝑐1 and 𝑐2 are constants.

 By Bayes’ rule: 𝑓Θ|𝑋 𝜃|𝑥 =
𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃

0
1
𝑓Θ 𝜃′ 𝑓𝑋|Θ 𝑥|𝜃′ 𝑑𝜃′

 Note: The denominator doesn’t depend on 𝜃.



Numerator 

 𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃 = 𝑐1𝑐2 exp −σ𝑖=0
𝑛 𝑥𝑖−𝜃

2

2𝜎𝑖
2 .

 The exponent is a quadratic form, thus can 

be written as 

𝑑 ⋅ exp −
𝜃 −𝑚 2

2𝑣

for some constant 𝑑, where 

𝑚 = σ𝑖=0
𝑛 𝑥𝑖

𝜎𝑖
2 / σ𝑖=0

𝑛 1

𝜎𝑖
2 , 𝑣 = 1/ σ𝑖=0

𝑛 1

𝜎𝑖
2

. 



 Thus 𝑓Θ|𝑋 𝜃|𝑥 ∝ exp −
𝜃−𝑚 2

2𝑣

 So the posterior PDF 𝑓Θ|𝑋 𝜃|𝑥 is normal with 

mean 𝑚 and variance 𝑣.

 Recall prior: Θ ∼ 𝑁 𝑥0, 𝜎0
2 .

 A remarkable property: the posterior 

distribution of 𝛩 is in the same family as the prior 

distribution, 

 the family of normal distributions.



 This property opens up the possibility of 

efficient recursive inference.

 Suppose that after 𝑋1, … , 𝑋𝑛 are observed, an 

additional observation 𝑋𝑛+1 is obtained. 

 Instead of solving the inference problem from 

scratch, we can view 𝑓Θ|𝑋1,…,𝑋𝑛 as our prior, 

and use the new observation to obtain the 

new posterior 𝑓Θ|𝑋1,…,𝑋𝑛,𝑋𝑛+1.



 Thus the new posterior is normal distribution 

with mean 
𝑚

𝑣
+

𝑥𝑛+1

𝜎𝑛+1
2 /

1

𝑣
+

1

𝜎𝑛+1
2

and variance

1/
1

𝑣
+

1

𝜎𝑛+1
2 .



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



MAP

 Given the value 𝑥 of the observation, we 

select a value of 𝜃, denoted 𝜃, that 

maximizes the posterior distribution 

 𝑝Θ|𝑋 𝜃|𝑥 if Θ is discrete 

 𝑝Θ|𝑋 𝜃|𝑥 if Θ is continuous

 That is, 
𝜃 = argmax

𝜃
𝑝Θ|𝑋 𝜃|𝑥 , if Θ is discrete,

𝜃 = argmax𝜃 𝑓Θ|𝑋 𝜃|𝑥 , if Θ is continuous.



 This is called the Maximum a Posteriori 

probability (MAP) rule.



 When Θ is discrete, the MAP rule has an 

important optimality property. 

 Since it chooses 𝜃 to be the most likely value 

of Θ, it maximizes the probability of correct 

decision for any given value 𝑥. 

 This implies that it also maximizes (over all 

decision rules) the overall (averaged over all 

possible values 𝑥) probability of correct 

decision.



Computational shortcut

 Recall posterior: 𝑝Θ|𝑋 𝜃|𝑥 =
𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃

σ
𝜃′

𝑝Θ 𝜃′ 𝑝𝑋|Θ 𝑥|𝜃′

 An important computational shortcut. 

 The denominator is independent of 𝜃. 

 Thus, to maximize the posterior, we only need to 

maximize the numerator 𝑝Θ 𝜃 𝑝𝑋|Θ 𝑥|𝜃

 or similar expressions if Θ and/or 𝑋 are continuous. 

 Calculation of the denominator is unnecessary. 



Example

 𝑋1, … , 𝑋𝑛 are independent normal r.v. with 

 an unknown common mean Θ ∼ 𝑁 𝑥0, 𝜎0
2 ,

 and known variances 𝜎1
2, … , 𝜎𝑛

2.

 Posterior: 𝑓Θ|𝑋 𝜃|𝑥 ∝ exp −
𝜃−𝑚 2

2𝑣
with 

𝑚 = σ𝑖=0
𝑛 𝑥𝑖

𝜎𝑖
2 / σ𝑖=0

𝑛 1

𝜎𝑖
2 , 𝑣 = 1/ σ𝑖=0

𝑛 1

𝜎𝑖
2

 The MAP estimate: 𝜃 = 𝑚.

 because the normal PDF is maximized at its mean



Point Estimation

 Point estimate: a value that represents our 
best guess of the value of Θ.

 Estimate: the numerical value 𝜃 that we 
choose on observation 𝑥. 

 The value of 𝜃 is to be determined by 
applying some function 𝑔 to the observation 
𝑥, resulting in 𝜃 = 𝑔 𝑥 . 

 Estimator: the random variable Θ = 𝑔 𝑋
 its realized value equals 𝑔(𝑥) when 𝑋 = 𝑥.



Two popular estimators

 Two popular estimators: 

 MAP: መ𝜃 = argmax
𝜃

𝑝Θ|𝑋 𝜃|𝑥

 Conditional Expectation: መ𝜃 = 𝐄 Θ|𝑋 = 𝑥 .

 Conditional expectation estimator is also 

called least mean squares (LMS) estimator.

 It minimizes the mean squared error over all 

estimators.

 To be elaborated later. 



Example: Romeo and Juliet meeting

 Juliet is late on the first date by a random 

amount 𝑋. 

 The distribution of 𝑋 is uniform over 0, Θ . 

 Θ is an unknown random variable with a 

uniform prior PDF 𝑓Θ over the interval 0,1 . 

 Recall: 𝑓Θ|𝑋 𝜃|𝑥 =
1

𝜃⋅ log 𝑥
,  if 0 ≤ 𝑥 ≤ 𝜃 ≤ 1

 MAP: 𝜃 = 𝑥, because 𝑓Θ|𝑋 𝜃|𝑥 is decreasing 

in 𝜃 over the range 𝑥, 1 .



 Last slide: MAP gives 𝜃 = 𝑥.

 Note that this is an "optimistic" estimate. 

 If Juliet is late by a small amount on the first date 

𝑥 ≈ 0 , the estimate of future lateness is also 

small.

 Conditional expectation: less optimistic.

𝐄 Θ|𝑋 = 𝑥 = න
𝑥

1

𝜃
1

𝜃 log 𝑥
𝑑𝜃 =

1 − 𝑥

log 𝑥
.



MAP vs. conditional expectation



Hypothesis testing

 Θ takes one of 𝑚 values, 𝜃1, … , 𝜃𝑚.

 𝑚 is usually a small integer; often 𝑚 = 2.

 The 𝑖th hypothesis: the event 𝐻𝑖 ≝ Θ = 𝜃𝑖 .

 Once the value 𝑥 of 𝑋 is observed, we may 

use Bayes' rule to calculate the posterior 

probabilities

𝑃 Θ = 𝜃𝑖|𝑋 = 𝑥 = 𝑃Θ|𝑋 𝜃𝑖|𝑥 ,

for each 𝑖. 



 MAP: select the hypothesis 𝐻𝑖 with the largest 

posterior probability 𝑃 Θ = 𝜃𝑖|𝑋 = 𝑥 .

 Equivalently, it selects a hypothesis 𝐻𝑖 with 

the largest 𝑃Θ 𝜃𝑖 𝑃𝑋|Θ 𝑥|𝜃𝑖 (if 𝑋 is discrete) 

or 𝑃Θ 𝜃𝑖 𝑓𝑋|Θ 𝑥|𝜃𝑖 (if 𝑋 is continuous).

 Computational shortcut



Correct probability

 𝑔MAP 𝑥 : the hypothesis selected by the MAP 
rule when 𝑋 = 𝑥, 

 The probability of correct decision is 
𝑃 Θ = 𝑔MAP 𝑥 |𝑋 = 𝑥 .

 If 𝑆𝑖 = 𝑥: 𝑔MAP 𝑥 = 𝐻𝑖 , then the overall 
probability of correct decision is
𝑃 Θ = 𝑔MAP 𝑋 = σ𝑖 𝑃 Θ = 𝜃𝑖 , 𝑋 ∈ 𝑆𝑖

 And the corresponding probability of error is 
σ𝑖 𝑃 Θ ≠ 𝜃𝑖 , 𝑋 ∈ 𝑆𝑖



Example: binary hypothesis testing

 Two biased coins, with probabilities of heads 

equal to 𝑝1 and 𝑝2, respectively. 

 We choose a coin at random: either coin is 

equally likely to be chosen.

 This gives the prior

 We want to infer its identity, based on the 

outcome of a single toss. 



 Let Θ = 1 and Θ = 2 be the hypotheses that 

coin 1 or 2, respectively, was chosen. 

 𝑋 = ቊ
1 if head,
0 if tail.

 MAP: compare 𝑝Θ 1 𝑝𝑋|Θ 𝑥|1 and 

𝑝Θ 2 𝑝𝑋|Θ 𝑥|2 , and take the larger one.

 Since 𝑝Θ 1 = 𝑝Θ 2 = 1/2, we just need to 

compare 𝑝𝑋|Θ 𝑥|1 and 𝑝𝑋|Θ 𝑥|2 .



 For instance, the outcome is tail. 

 𝑃 𝑡𝑎𝑖𝑙|Θ = 1 = 1 − 𝑝1, 

𝑃 𝑡𝑎𝑖𝑙|Θ = 2 = 1 − 𝑝2. 

 So MAP rule selects the 𝐻𝑖 with smaller 𝑝𝑖.

 We can also toss the selected coin 𝑛 times.

 𝑋 = the number of heads obtained.

 MAP rule selects the hypothesis under which 

the observed outcome is most likely. 



 If 𝑋 = 𝑘, we should decide Θ = 1 if 

𝑝1
𝑘 1 − 𝑝1

𝑛−𝑘 > 𝑝2
𝑘 1 − 𝑝2

𝑛−𝑘.



 The character of the MAP rule, as illustrated 
in the above figure, is typical of decision rules 
in binary hypothesis testing problems. 

 It is specified by a partition of the observation 
space into the two disjoint sets in which each 
of the two hypotheses is chosen. 

 In this example, the MAP rule is specified by 
a single threshold 𝑘∗: 

 Accept Θ = 1 if 𝑘 ≤ 𝑘∗, and accept Θ = 2
otherwise. 



Content 

 Bayesian inference, the posterior distribution

 Point estimation, hypothesis testing, MAP

 Bayesian least mean squares estimation

 Bayesian linear least mean squares 

estimation



Estimation without observation

 Considering the simpler problem of 
estimating Θ with a constant 𝜃, in the 
absence of an observation 𝑋. 

 The estimation error: 𝜃 − Θ

 The mean squared error: 𝐸 𝜃 − Θ
2

 Question: What’s the minimum 𝐸 𝜃 − 𝛩
2

(over choices of 𝜃)? 

 Answer: 𝑣𝑎𝑟 𝛩 , achieved when 𝜃 = 𝐸 𝛩 .



proof

 𝐸 𝜃 − Θ
2

= 𝑣𝑎𝑟 Θ − 𝜃 + 𝐸 Θ − 𝜃
2

// def of var()

= 𝑣𝑎𝑟 Θ + 𝐸 Θ − 𝜃
2

// shifting doesn’t change variance

= 𝑣𝑎𝑟 Θ + 𝐸 Θ − 𝜃
2

// linearity of expectation

≥ 𝑣𝑎𝑟 Θ

// “=” achieved when 𝜃 = 𝐸 Θ .





Estimation with observation

 Now suppose that we have observation 𝑋. 

 We still like to estimate Θ to minimize the 

mean squared error. 

 Note that once we know the value 𝑥 of 𝑋, the 

situation is identical to the one considered 

earlier, …

 …except that we are now in a new universe: 

everything is conditioned on 𝑋 = 𝑥.



 We can therefore adapt our earlier 

conclusion.

 And assert that the conditional expectation 

𝐸 Θ|𝑋 = 𝑥 minimizes the conditional mean 

squared error 𝐸 Θ − 𝜃
2
|𝑋 = 𝑥 over all 

constants 𝜃.



 Generally, the (unconditional) mean squared 
estimation error associated with an estimator 
𝑔 𝑋 is defined as 

𝐸 Θ − 𝑔 𝑋
2
.

 View 𝐸 Θ 𝑋 as an estimator/function of 𝑋, the 
preceding analysis shows that out of all possible 
estimators. 

 The mean squared estimation error is minimized 
when 

𝑔 𝑋 = 𝐸 Θ|𝑋 .



Example

 Θ: uniform over 4,10

 Independent noise 𝑊: uniform over −1,1

 We observe Θ with error 𝑊:

𝑋 = Θ +𝑊

 𝑓Θ 𝜃 = 1/6 if 4 ≤ 𝜃 ≤ 10 (and 0 otherwise).

 𝑋|Θ = 𝜃 is uniform over 𝜃 − 1, 𝜃 + 1 .

 Joint PDF: 𝑓Θ,𝑋 𝜃, 𝑥 = 𝑓Θ 𝜃 𝑓𝑋|Θ 𝑥|𝜃 =
1

6
⋅
1

2
=

1

12

 when 𝜃 ∈ 4,10 and 𝑥 ∈ 𝜃 − 1, 𝜃 + 1 .



 The joint PDF of Θ and 

𝑋 is uniform over the 

parallelogram.

 Given that 𝑋 = 𝑥, the 

posterior PDF 𝑓Θ|𝑋 is 

uniform on the 

corresponding vertical 

section of the 

parallelogram. 



 Thus 𝐸 𝐺 𝑋 = 𝑥 is the 

midpoint of that section, 

which is a piecewise 

linear function of 𝑥. 

 Conditioned on a 

particular value 𝑥 of 𝑋, 

define the mean 

squared error as 

𝐸 Θ − 𝐸 Θ 𝑋 2|𝑋 = 𝑥 , 



 The mean squared error  

𝐸 Θ − 𝐸 Θ 𝑋 2|𝑋 = 𝑥 , equals the 

conditional variance of Θ.

 It is a function of 𝑥, illustrated in the above 

figure.



Example: meeting

 Juliet is late on the first date by a random 

amount 𝑋 that is uniformly distributed over 

0, Θ . 

 Θ: uniform prior over the interval 0,1 .

 MAP: 𝜃 = 𝑥.

 LMS: 𝜃 = 𝐸 Θ|𝑋 = 𝑥 = 𝑥
1
𝜃

1

𝜃 log 𝑥
𝑑𝜃 =

1−𝑥

log 𝑥

 Let’s calculate the conditional mean squared 

error for the MAP and the LMS estimates. 



 𝐸 𝜃 − Θ
2
|𝑋 = 𝑥

= 𝑥
1 𝜃 − 𝜃

2 1

𝜃 log 𝑥
𝑑𝜃

= 𝑥
1 𝜃2 − 2 𝜃𝜃 + 𝜃2

1

𝜃 log 𝑥
𝑑𝜃

= 𝜃2 − 𝜃
2 1−𝑥

𝜃 log 𝑥
+

1−𝑥2

2 log 𝑥
. 



 𝐸 𝜃 − Θ
2
|𝑋 = 𝑥 = 𝜃2 − 𝜃

2 1−𝑥

𝜃 log 𝑥
+

1−𝑥2

2 log 𝑥
.

 MAP: 𝜃 = 𝑥. 

𝐸 𝜃 − Θ
2
|𝑋 = 𝑥 = 𝑥2 +

3𝑥2 − 4𝑥 + 1

2 log 𝑥

 LMS: 𝜃 =
1−𝑥

log 𝑥
. 

𝐸 𝜃 − Θ
2
|𝑋 = 𝑥 =

1 − 𝑥2

2 log 𝑥
−

1 − 𝑥

log 𝑥

2



 MAP has 

smaller 

estimator. 

 LMS estimator 

has uniformly 

smaller mean 

squared error. 



Properties of estimation error

 Denote Θ = 𝐸 Θ|𝑋 , ෩Θ = Θ − Θ

 The LMS estimator and the associated estimation 

error, respectively.

 𝐸 ෩Θ = 𝐸 Θ − Θ = 𝐸 𝐸 Θ|𝑋 − 𝐸 Θ = 0

 𝐸 ෩Θ|𝑋 = 𝑥 = 𝐸 Θ − Θ|𝑋 = 𝑥 = 𝐸 Θ|𝑋 = 𝑥 −

𝐸 Θ|𝑋 = 𝑥 = 𝐸 Θ|𝑋 = 𝑥 − 𝐸 Θ|𝑋 = 𝑥 = 0.




Θ = 𝐸 Θ|𝑋 , ෩Θ = Θ − Θ

 𝐸 Θ෩Θ = 𝐸 𝐸 Θ෩Θ|𝑋 // iterated expectation

= 𝐸 Θ𝐸 ෩Θ|𝑋 // Θ depends only on 𝑋

= 0 // 𝐸 ෩Θ|𝑋 = 𝑥 = 0, ∀𝑥. So 𝐸 ෩Θ|𝑋 = 0

 𝐶𝑜𝑣 Θ෩Θ = 𝐸 Θ෩Θ − 𝐸 Θ 𝐸 ෩Θ = 0 − 0 = 0.

 Therefore, by considering the variance of 
both sides in Θ = ෩Θ + Θ, we have

𝑣𝑎𝑟 Θ = 𝑣𝑎𝑟 Θ + 𝑣𝑎𝑟 ෩Θ



Content 
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estimation



 LMS estimator is sometimes hard to compute, 
and we need alternatives.

 We derive an estimator that minimizes the mean 
squared error within a restricted class of 
estimators: linear functions of the observations. 

 This estimator may result in higher mean 
squared error. 

 But it has a significant computational advantage. 
 It requires simple calculations, involving only means, 

variances, and covariances of the parameters and 
observations. 



 A linear estimator of a random variable Θ, based 

on observations 𝑋1, … , 𝑋𝑛, has the form 
Θ = 𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛 + 𝑏

 Given a particular choice of the scalars 

𝑎1, … , 𝑎𝑛, 𝑏, the corresponding mean squared 

error is 

E Θ − 𝑎1𝑋1 −⋯− 𝑎𝑛𝑋𝑛 − 𝑏
2

 The linear LMS estimator chooses 𝑎1, … , 𝑎𝑛, 𝑏 to 

minimize the above expression. 



 We first develop the solution for the case 

where 𝑛 = 1, and then generalize.

 The estimator is Θ = 𝑎𝑋 + 𝑏 and the mean 

squared error is E Θ − 𝑎𝑋 − 𝑏
2

.

 We are interested in finding 𝑎 and 𝑏 that 

minimize this error.



 If 𝑎 is chosen, then it’s easy to find the 

optimal 𝑏:

 Choose a constant 𝑏 to estimate the random 

variable Θ − 𝑎𝑋. 

 By the discussion in previous section, the 

best choice is 𝑏 = 𝐸 Θ − 𝑎𝑋 = 𝐸 Θ − 𝑎𝐸 𝑋 .

 Thus it remains to minimize

E Θ − 𝑎𝑋 − 𝐸 Θ + 𝑎𝐸 𝑋 2

which is 𝑣𝑎𝑟 Θ − 𝑎𝑋 .



 𝑣𝑎𝑟 Θ − 𝑎𝑋
= 𝑣𝑎𝑟 Θ + 𝑎2𝑣𝑎𝑟 𝑋 + 2 ⋅ 𝑐𝑜𝑣 Θ,−𝑎𝑋
= 𝑣𝑎𝑟 Θ + 𝑎2𝑣𝑎𝑟 𝑋 − 2𝑎 ⋅ 𝑐𝑜𝑣 Θ, 𝑋

 This is minimized when 𝑎 =
𝑐𝑜𝑣 Θ,𝑋

𝑣𝑎𝑟 𝑋
= 𝜌

𝜎Θ

𝜎𝑋

 𝜎Θ and 𝜎𝑋: standard deviation of Θ and 𝑋, 

respectively.

 𝜌 =
𝑐𝑜𝑣 Θ,𝑋

𝜎Θ𝜎𝑋
: the correlation coefficient.



 With this choice of 𝑎, the estimator 
Θ = 𝑎𝑋 + 𝑏 = 𝑎𝑋 + 𝐸 Θ − 𝑎𝐸 𝑋
= 𝑎 𝑋 − 𝐸 𝑋 + 𝐸 Θ

= 𝜌
𝜎Θ

𝜎𝑋
𝑋 − 𝐸 𝑋 + 𝐸 Θ .

 And the mean squared estimation error is 

𝑣𝑎𝑟 Θ − Θ = 1 − 𝜌2 𝑣𝑎𝑟 Θ



Example

 Juliet is late by an amount 𝑋 uniformly 

distributed over 0, Θ , and Θ is a random 

variable with a uniform prior PDF 𝑓Θ 𝜃 over 

the interval 0,1 .

 Let us derive the linear LMS estimator of Θ
based on 𝑋.

 By law of iterated expectation, 

𝐸 𝑋 = 𝐸 𝐸 𝑋|Θ = 𝐸 Θ/2 =
𝐸 Θ

2
=
1

4



 By law of total variance, 

𝑣𝑎𝑟 𝑋 = 𝐸 𝑣𝑎𝑟 𝑋|Θ + 𝑣𝑎𝑟 𝐸 𝑋|Θ

= 𝐸
Θ2

12
+ 𝑣𝑎𝑟

Θ

2

=
1

12
0
1
𝜃2𝑑𝜃 +

1

4

1−0 2

12
=

7

144

 Now we compute 𝑐𝑜𝑣 Θ, 𝑋 .

 𝐸 Θ𝑋 = 𝐸 𝐸 Θ𝑋|Θ = 𝐸 Θ𝐸 𝑋|Θ

= 𝐸 Θ2/2 = 1/6



 𝑐𝑜𝑣 Θ, 𝑋 = 𝐸 Θ𝑋 − 𝐸 Θ 𝐸 𝑋 =
1

6
−

1

2
⋅
1

4
=

1

24

 The linear LMS estimator is 


Θ = 𝐸 Θ +

𝑐𝑜𝑣 Θ,𝑋

𝑣𝑎𝑟 𝑋
𝑋 − 𝐸 𝑋

=
1

2
+

1/24

7/144
𝑋 −

1

4
=

6

7
𝑋 +

2

7


