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Background 

 We will discuss fundamental issues related to 

the asymptotic behavior of sequences of 

random variables. 

 

 Our principal context involves a sequence 

𝑋1, 𝑋2, … of independent identically distributed 

(i.i.d.) random variables with mean 𝜇 and 

variance 𝜎2. 



Background 

 Let  

  𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛  

    be the sum of the first 𝑛 of them.  

 

 Limit theorems are mostly concerned with the 

properties of 𝑆𝑛 and related random variables 

as 𝑛 becomes very large. 



Background 

 Because of independence, we have 

var 𝑆𝑛 = var 𝑋1 +⋯+ var(𝑋𝑛) = 𝑛𝜎
2 

 The distribution of 𝑆𝑛 spreads out as 𝑛 
increases  

 Thus 𝑆𝑛 cannot have a meaningful limit. 

 But the situation is different if we consider the 
sample mean 

                   𝑀𝑛 =
𝑋1+⋯+𝑋𝑛

𝑛
=
𝑆𝑛

𝑛
. 



Background 

 A quick calculation yields, 

𝐄[𝑀𝑛] = 𝜇,  var(𝑀𝑛) =
𝜎2

𝑛
. 

 The variance of 𝑀𝑛 decreases to zero as 𝑛 
increases.  

 Thus the bulk of the distribution of 𝑀𝑛 must 

be very close to the mean 𝜇. 

 This phenomenon is the subject of certain 

laws of large numbers 



Background 

 The laws generally assert that the sample 

mean 𝑀𝑛 converges to the true mean 𝜇.  

 These laws provide a mathematical basis for 

the loose interpretation of an expectation 

𝐄[𝑋] = 𝜇 … 

 … as the average of a large number of 

independent samples drawn from the 

distribution of 𝑋. 

 



Background 

 We will also consider a quantity which is 

intermediate between 𝑆𝑛 and 𝑀𝑛.  

 𝑍𝑛 is defined as follows. 

1. subtract 𝑛𝜇 from 𝑆𝑛, to obtain the zero-mean 

random variable 𝑆𝑛 − 𝑛𝜇  

2. then divide by 𝜎 𝑛, to form the random 

variable 

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
 



Background 

 It can be seen that 

𝐄 𝑍𝑛 = 0,  var 𝑍𝑛 = 1 

 Since the mean/variance of 𝑍𝑛 remain 

unchanged as 𝑛 increases, its distribution 

neither spreads, nor shrinks to a point.  

 The central limit theorem is concerned with  

 the asymptotic shape of the distribution of 𝑍𝑛  

 and asserts that 𝑍𝑛 becomes the standard normal 

distribution. 

 



Application 

 Limit theorems are useful for several reasons: 

 

 (a) Conceptually. They provided an 

interpretation of expectations/probabilities in 

terms of a long sequence of identical 

independent experiments. 



Application 

 (b) They allow for an approximate analysis of 

the properties of random variables such as 𝑆𝑛 .  

 This is to be contrasted with an exact analysis 

which requires a formula for the PMF or PDF of 𝑆𝑛 , 
a complicated and tedious task when 𝑛 is large. 

 

 (c) They play a major role in inference and 

statistics, in the presence of large data sets.  
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Markov and Chebyshev Inequalities 

 These inequalities use the mean and possibly 

the variance of a random variable to draw 

conclusions on the probabilities of certain 

events.  

 primarily useful in situations  

 exact values or bounds for the mean and variance 

of a random variable 𝑋 are easily computable.  

 but the distribution of 𝑋 is either unavailable or 

hard to calculate. 



Markov inequality 

 Theorem (Markov Inequality). If a random 

variable 𝑋 can only take nonnegative values, 

then 

              𝑃 𝑋 ≥ 𝑎 ≤  
𝐸 𝑋

𝑎
,  for all 𝑎 > 0 

 If a nonnegative random variable has a small 

mean, then the probability that it takes a large 

value must also be small. 



Markov inequality (proof) 

 To justify the Markov inequality, let us fix a 

positive number 𝑎 and consider the random 

variable 𝑌𝑎 defined by 

𝑌𝑎 =  
0, if 𝑋 < 𝑎,
𝑎, if 𝑋 ≥ 𝑎.

 

 It is seen that the relation 

𝑌𝑎 ≤ 𝑋 

   always holds and therefore 

𝐄 𝑌𝑎 ≤ 𝐄[𝑋]. 



 On the other hand, 

 

𝐄 𝑌𝑎 = 𝑎P 𝑌𝑎 = 𝑎 = 𝑎P X ≥ a  

 

 From which we obtain 

 

𝑎P 𝑋 ≥ 𝑎 ≤ 𝐄(𝑋) 



 Part (a): the PDF of a 

nonnegative random 

variable 𝑋.  

 

 Part (b): the PMF of a 

related random 

variable 𝑌𝑎. 

 

Figure 1: Illustration of the derivation. 



 All of the mass in the 
PDF of 𝑋 that lies 
between 0 and 𝑎 is 
assigned to 0, 

 All of the mass that lies 
above 𝑎 is to 𝑎.  

 Since mass is shifted to 
the left, the expectation 
can only decrease and 
therefore 

    𝐄 𝑋 ≥ 𝐄 𝑌𝑎   
               = 𝑎P 𝑌𝑎 = 𝑎  
            = 𝑎P 𝑋 ≥ 𝑎 .  

Figure 1: Illustration of the derivation. 



Example 1. 

 Let 𝑋 be uniformly distributed in 0,4 . 

 Note that 𝐄[𝑋] = 2.  

 Then, the Markov inequality asserts that 

P 𝑋 ≥ 2 ≤
2

2
= 1.       

P 𝑋 ≥ 3 ≤
2

3
= 0.67. 

P 𝑋 ≥ 4 ≤
2

4
= 0.5.   



Example 1. 

 By comparing with the exact probabilities 

P 𝑋 ≥ 2 ≤
2

2
= 1.         P 𝑋 ≥ 2 = 0.5.    

P 𝑋 ≥ 3 ≤
2

3
= 0.67.   P 𝑋 ≥ 3 = 0.25. 

P 𝑋 ≥ 4 ≤
2

4
= 0.5.     P 𝑋 ≥ 4 = 0.       

 We see that the bounds provided by the 

Markov inequality can be quite loose. 



Chebyshev inequality 

 Theorem (Chebyshev Inequality). If 𝑋 is a 

random variable with mean 𝜇 and variance 𝜎2, 
then 

P 𝑋 − 𝜇 ≥ 𝑐 ≤
𝜎2

𝑐2
,  for all 𝑐 > 0 

 If a random variable has small variance, then 

the probability that it takes a value far from its 

mean is also small.  

 Note: does not require 𝑋 to be nonnegative. 



Chebyshev inequality (Proof) 

 Let’s prove the Chebyshev inequality 

P 𝑋 − 𝜇 ≥ 𝑐 ≤ 𝜎2/𝑐2  

 Consider the nonnegative random variable 

(𝑋 − 𝜇)2 and apply the Markov inequality: 

P 𝑋 − 𝜇 2 ≥ 𝑐2 ≤
𝐄 𝑋 − 𝜇 2

𝑐2
=
𝜎2

𝑐2
 

 Finally note that the event 𝑋 − 𝜇 2 ≥ 𝑐2 is 

identical to the event 𝑋 − 𝜇 ≥ 𝑐. Thus 

P 𝑋 − 𝜇 ≥ 𝑐 =  P 𝑋 − 𝜇 2 ≥ 𝑐2 ≤ 𝜎2/𝑐2 

 



An alternative form 

 An alternative form is obtained by letting 

𝑐 = 𝑘𝜎, where 𝑘 is positive, which yields 

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
𝜎2

𝑘2𝜎2
=
1

𝑘2
 

 The probability that a random variable that is 

more than 𝑘 standard deviations away from 

its mean is at most 
1

𝑘2
. 



Comparisons  

 The Chebyshev inequality tends to be more 

powerful than the Markov inequality  

 the bounds are more accurate, because it also 

uses information on the variance of 𝑋 

 The mean and the variance of a random 

variable are only a rough summary of its 

properties 

 we cannot expect the bounds to be close 

approximations of the exact probabilities. 



Example 2. uninformative case 

 Let 𝑋 be uniformly distributed in 0,4 .  

 Let us use the Chebyshev inequality  

P 𝑋 − 𝜇 ≥ 𝑐 ≤ 𝜎2/𝑐2  
to bound the probability that |𝑋 − 2| ≥ 1. 

 We have 𝜎2 =
𝑏−𝑎 2

12
=
16

12
=
4

3
, and thus 

𝑃 |𝑋 − 2 ≥ 1 ≤
4

3
 

which is uninformative. 



Example 2. uninformative case 

 let 𝑋 be exponentially distributed with parameter 

𝜆 = 1, so that 𝐄[𝑋] = var(𝑋) = 1.  

 For 𝑐 > 1, Chebyshev inequality yields  

   P 𝑋 ≥ 𝑐 = P 𝑋 − 1 ≥ 𝑐 − 1                              
≤ P 𝑋 − 1 ≥ 𝑐 − 1  

≤
1

𝑐 − 1 2
 

This is again conservative compared to the 

exact answer 𝑃(𝑋 ≥ 𝑐) = 𝑒−𝑐 



Example 3. Upper Bounds 

 When 𝑋 is known to take values in a range 

[𝑎, 𝑏], we claim that 𝜎2 ≤ 𝑏 − 𝑎 2/4. 

 

 If 𝜎2 is unknown, we may use the bound 

𝑏 − 𝑎 2/4 in the Chebyshev inequality, 

P 𝑋 − 𝜇 ≥ 𝑐 ≤
𝑏 − 𝑎 2

4𝑐2
,  for all 𝑐 > 0 



Example 3. Upper Bounds (Proof) 

 For the claim 𝜎2 ≤ 𝑏 − 𝑎 2/4, note that for 

any constant 𝛾 we have 
𝐄[ 𝑋 − 𝛾 2] = 𝐄 𝑋2 − 2𝐄 𝑋 𝛾 + 𝛾2 

 

 This quadratic is minimized when 𝛾 = 𝐄 𝑋 .  

 It follows that, for all 𝜆 ∈ 𝑎, 𝑏 , 

𝜎2 = 𝐄 𝑋 − 𝐄 𝑋 2 ≤ 𝐄 𝑋 − 𝛾 2  

 



Example 3. Upper Bounds (Proof) 

 By letting 𝛾 = (𝑎 + 𝑏)/2, we obtain 

 𝜎2 ≤ 𝐄 𝑋 −
𝑎+𝑏

2

2
  

             = 𝐄 𝑋 − 𝑎 𝑋 − 𝑏 +
𝑏−𝑎 2

4
≤
𝑏−𝑎 2

4
 

 The equality above is verified by calculation, 

 The last inequality follows from the fact 
𝑥 − 𝑎 𝑥 − 𝑏 ≤ 0 

∀𝑥 ∈ 𝑎, 𝑏 . 

 



Example 3. Upper Bounds (Proof) 

 The bound may be quite conservative, but in 

the absence of further information about 𝑋, it 
cannot be improved. 

 

 Indeed, it is satisfied with equality when 𝑋 
takes the two extreme values 𝑎 and 𝑏 with 

equal probability 1/2. 
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Weak law of large numbers 

 The weak law of large numbers asserts that 
the sample mean of a large number of i.i.d. 
random variables is close to the true mean. 

 i.i.d.: independent identically distributed. 

 This holds with high probability. 

 Consider a sequence 𝑋1, 𝑋2, … of i.i.d. random 
variables with mean 𝜇 and variance 𝜎2,  

 The sample mean is 𝑀𝑛 =
𝑋1+⋯+𝑋𝑛

𝑛
, while the 

true mean is 𝜇. 

 



 We have 

𝐄 𝑀𝑛 =
𝐄 𝑋1 +⋯+ 𝐄 𝑋𝑛

𝑛
=
𝑛𝜇

𝑛
= 𝜇. 

 and 

    var 𝑀𝑛 =
var 𝑋1+⋯+𝑋𝑛

𝑛2
  

   =
var 𝑋1 +⋯+var 𝑋𝑛

𝑛2
  (independence) 

   =
𝑛𝜎2

𝑛2
=
𝜎2

𝑛
  

 



 We apply the Chebyshev inequality and 

obtain  

 P 𝑀𝑛 − 𝜇 ≥ 𝜖 ≤
𝜎2

𝑛𝜖2
,  for any 𝜖 > 0 

 

 For any fixed 𝜖 > 0, the right-hand side of this 

inequality goes to zero as 𝑛 increases. 

 This is the weak law of large numbers.  



The Weak Law of Large Numbers 

 Theorem. Let 𝑋1, 𝑋2, … be independent 

identically distributed random variables with 

mean 𝜇, then ∀𝜖 > 0, we have 
 

   P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞  

 

 Recall:  

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

. 



Intuitively 

 The weak law of large numbers states that for 
large 𝑛, the bulk of the distribution of 𝑀𝑛 is 
concentrated near 𝜇.  

 If we consider a positive length interval 
𝜇 − 𝜖, 𝜇 + 𝜖  around 𝜇, then there is high 

probability that 𝑀𝑛 will fall in that interval. 

 As 𝑛 → ∞, this probability converges to 1. 
 If 𝜖 is very small, we need to wait longer (i.e. need 

a larger value of 𝑛) to assert that 𝑀𝑛 is highly 
likely to fall in that interval. 

 



Example 4. Probabilities and Frequencies 

 Consider an event 𝐴 defined in the context of 

some probabilistic experiment.  

 Let 𝑝 = P(𝐴) be the probability of this event.  

 Consider 𝑛 independent repetitions of the 

experiment, and let 𝑀𝑛 be the fraction of time 

that event 𝐴 occurs;  

 In this context, 𝑀𝑛 is often called the 

empirical frequency of 𝐴. 



Example 4. Probabilities and Frequencies 

 Note that 

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

 

where 𝑋𝑖 is 1 whenever 𝐴 occurs, and 0 
otherwise. In particular, 𝐄 𝑋𝑖 = 𝑝.  

 

 The weak law shows that when 𝑛 is large, the 

empirical frequency is most likely to be 

within 𝜖 of 𝑝. 



Example 4. Probabilities and Frequencies 

 Loosely speaking, this allows us to conclude 

that empirical frequencies are faithful 

estimates of 𝑝.  

 

 Alternatively, this is a step towards 

interpreting the probability 𝑝 as the frequency 

of occurrence of 𝐴. 

 



Example 5. Polling 

 Let 𝑝 be the fraction of voters who support a 

particular candidate for office.  

 We interview 𝑛 "randomly selected" voters 

and record 𝑀𝑛, the fraction of them that 

support the candidate.  

 We view 𝑀𝑛 as our estimate of 𝑝 and would 

like to investigate its properties. 



Example 5. Polling 

 We interpret "randomly selected" to mean 

that the 𝑛 voters are chosen independently 

and uniformly from the given population. 

 Thus, the reply of each person interviewed 

can be viewed as an independent Bernoulli 

random variable 𝑋, with success probability 𝑝 
and variance 𝜎2 = 𝑝(1 − 𝑝).  



Example 5. Polling 

 The Chebyshev inequality yields 

𝑃 𝑀𝑛 − 𝑝 ≥ 𝜖 ≤
1

4𝑛𝜖2
 

 E.g. if 𝜖 = 0.1 and 𝑛 = 100, we obtain 

𝑃 𝑀100 − 𝑝 ≥ 0.1 ≤
1

4 ∗ 100 ∗ 0.12
= 0.25 

 With a sample size of 𝑛 = 100, the probability that 

our estimate is incorrect by more than 0.1 is no 

larger than 0.25. 

 



Example 5. Polling (2) 

 Suppose now that we impose some tight 

specifications on our poll.  

 We would like to have high confidence 

(probability at least 95%) that our estimate 

will be very accurate (within 0.01 of 𝑝).  

 

 Question: How many voters should be sampled? 



Example 5. Polling (2) 

 The only guarantee that we have at this point 

is the inequality 

P 𝑀𝑛 − 𝑝 ≥ 0.01 ≤
1

4 ∗ 𝑛 ∗ 0.012
 

 To satisfy the above specifications: 
1

4 ∗ 𝑛 ∗ 0.012
≤ 1 − 0.95 = 0.05 

  which yields 𝑛 ≥ 50,000 

 



Example 5. Polling (2) 

 This 𝑛 satisfies our specifications, but turns 

out to be fairly conservative. 

 because it is based on the rather loose 

Chebyshev inequality.  

 

 We’ll give a finer bound later. 
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CONVERGENCE IN PROBABILITY 

 We can interpret the weak law of large 

numbers as stating that  

  " 𝑀𝑛 converges to 𝜇."  

 

 However, since 𝑀1, 𝑀2, … is a sequence of 

random variables, not numbers, the meaning 

of convergence has to be made precise. 



Convergence of a Deterministic Sequence 

 Let 𝑎1, 𝑎2, … be a sequence of real numbers, 

and let 𝑎 be another real number. We say 

that 𝑎𝑛 converges to 𝑎, or  
lim
𝑛→∞
𝑎𝑛 = 𝑎, 

if for every 𝜖 > 0 there exists some 𝑛0 such 

that 

𝑎𝑛 − 𝑎 ≤ 𝜖, for all 𝑛 ≥ 𝑛0 

 Intuitively, for any accuracy level 𝜖,  𝑎𝑛 must 

be within 𝜖 of 𝑎, when 𝑛 is large enough. 

 



Convergence in Probability 

 Let 𝑌1, 𝑌2, … be a sequence of random 

variables, and let 𝑎 be a real number.  

 

 We say that the sequence 𝑌𝑛 converges to 

𝑎 in probability, if for every 𝜖 > 0 , we have 

  lim
𝑛→∞
P 𝑌𝑛 − 𝑎 ≥ 𝜖 = 0. 

 



 Given this definition, the weak law of large 

numbers simply states that the sample mean 

converges in probability to the true mean 𝜇. 

 

 More generally, the Chebyshev inequality 

implies the following:  

 If all 𝑌𝑛 have the same mean 𝜇 and var(𝑌𝑛) 
converges to 0, then 𝑌𝑛 converges to 𝜇 in 

probability. 



 Suppose that 𝑌1, 𝑌2… have a PMF or a PDF 

and converge in probability to 𝑎. 

 

 Then "almost all" of the PMF or PDF of 𝑌𝑛 is 

concentrated within 𝜖 of 𝑎 for large values of 

𝑛. 

 



 It is also instructive to rephrase the above 

definition as follows.  

 For every 𝜖 > 0 and for every 𝛿 > 0, there 

exists some 𝑛0 such that 

P 𝑌𝑛 − 𝑎 ≥ 𝜖 ≤ 𝛿,  for all 𝑛 ≥ 𝑛0. 



 Last slide: P 𝑌𝑛 − 𝑎 ≥ 𝜖 ≤ 𝛿. 

 Let’s refer to 𝜖 as the accuracy level, and 𝛿 
as the confidence level.  

 The definition takes the following intuitive 

form. 

 For any given level of accuracy and 

confidence, 𝑌𝑛 will be equal to 𝑎, within these 

levels of accuracy and confidence, provided 

that 𝑛 is large enough. 



Example 6. 

 Consider a sequence of independent random 
variables 𝑋𝑛 that are uniformly distributed in 
the interval [0,1]. 

 Let 𝑌𝑛 = min 𝑋1, …𝑋𝑛 . 

 The sequence of values of 𝑌𝑛 cannot 
increase as 𝑛 increases. 

 Minimum over more numbers is smaller. 

 𝑌𝑛 occasionally decreases  

 whenever a value of 𝑋𝑛 that is smaller than the 
preceding values is obtained.  



 Thus, we expect that 𝑌𝑛 converges to zero.  

 Indeed, for 𝜖 > 0, we have using the 
independence of the 𝑋𝑛, 
𝑃 𝑌𝑛 − 0 ≥ 𝜖 = 𝑃 𝑋1 ≥ 𝜖,… , 𝑋𝑛 ≥ 𝜖  

                                    = 𝑃 𝑋1 ≥ 𝜖 ⋯𝑃(𝑋𝑛 ≥ 𝜖) 
       = (1 − 𝜖)𝑛 

 In particular, 
lim
𝑛→∞
𝑃( 𝑌𝑛 − 0 ≥ 𝜖) = lim

𝑛→∞
(1 − 𝜖)𝑛 = 0 

 Since this is true for every 𝜖 > 0, 𝑌𝑛 converges 
to zero (in probability). 

 

 



Example 7.  

 Let 𝑌 be an exponentially distributed random 

variable with parameter 𝜆 = 1.  

 For any positive integer 𝑛, let 𝑌𝑛 = 𝑌/𝑛.  

 Note: These random variables are dependent. 

 

 We wish to investigate whether the sequence 

𝑌𝑛 converges to zero. 



 For 𝜖 > 0, we have  

 P 𝑌𝑛 − 0 ≥ 𝜖 = P 𝑌𝑛 ≥ 𝜖   

          = P 𝑌 ≥ 𝑛𝜖 = 𝑒−𝑛𝜖 

 In particular,  
lim
𝑛→∞
P 𝑌𝑛 − 0 ≥ 𝜖 = lim

𝑛→∞
𝑒−𝑛𝜖 = 0. 

 

 Since this is the case for every 𝜖 > 0, 𝑌𝑛 
converges to zero, in probability. 

 



Example 8. 

 One might believe that if a sequence 𝑌𝑛 
converges to a number 𝑎, then 𝐄 𝑌𝑛  must 

also converge to 𝑎. 

 The following example shows that this need 

not be the case. 

 This illustrates some of the limitations of the 

notion of convergence in probability. 



Example 8. 

 Consider a sequence of discrete random 

variables 𝑌𝑛 with the following distribution: 

 

P 𝑌𝑛 = 𝑦 =

1 −
1

𝑛
for 𝑦 = 0,   

1

𝑛
for 𝑦 =  𝑛2,

0 otherwise.  

 

 



Example 8. 

 For every 𝜖 > 0, we have 

lim
𝑛→∞
P( 𝑌𝑛 ≥ 𝜖) = lim

𝑛→∞

1

𝑛
= 0 

 

 Thus 𝑌𝑛 converges to zero in probability. 

 On the other hand, 𝐄 𝑌𝑛 =
𝑛2

𝑛
= 𝑛, which 

goes to infinity as 𝑛 increases. 
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Sample mean 

 According to the weak law of large 

numbers,  

 the distribution of the sample mean  

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

 

is increasingly concentrated in the near 

vicinity of the true mean 𝜇.  

 In particular, its variance tends to zero. 



Sample sum and normalized mean 

 On the other hand, the variance of the sum 
𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 = 𝑛𝑀𝑛 

increases to infinity.   

 And the distribution of 𝑆𝑛 cannot be said to 

converge to anything meaningful.  

 An intermediate view is obtained by 

considering the deviation 𝑆𝑛 − 𝑛𝜇 of 𝑆𝑛, and 

scaling it by a factor proportional to 1/ 𝑛. 



Formally 

 Let 𝑋1, ⋯ , 𝑋𝑛 be a sequence of 

independent identically distributed random 

variable with mean 𝜇 and variance 𝜎2 

 

 Define  

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
=
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
. 

 



Mean and variance 

 An easy calculation yields 

E[𝑍𝑛] =
E 𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
= 0 

 

 For variance, we have 

var 𝑍𝑛 =
var 𝑋1 +⋯+ 𝑋𝑛

𝜎 𝑛 2
=
𝑛𝜎2

𝑛𝜎2
= 1 

 



The Central Limit Theorem 

 Theorem (The Central Limit Theorem) The 

CDF of 𝑍𝑛 =
𝑋1+⋯+𝑋𝑛−𝑛𝜇

𝜎 𝑛
 converges to 

standard normal CDF 

Φ 𝑧 =
1

2𝜋
 𝑒−𝑥

2/2𝑑𝑥
𝑧

−∞

 

in the sense that  

lim
𝑛→∞
P 𝑍𝑛 ≤ 𝑧 = Φ(𝑧) 

 



Generality  

 The central limit theorem is surprisingly 

general.  

 Besides independence, and the implicit 

assumption that the mean and variance 

are finite, it places no other requirement 

on the distribution of the 𝑋𝑖,  

 which could be discrete, continuous, or mixed.  

 



Importance - conceptual 

 The theorem is of tremendous importance for 
several reasons. 

 Both conceptual and practical.  

 Conceptual: It indicates that the sum of a large 
number of independent random variables is 
approximately normal. 

 As such, it applies to many situations in 
which a random effect is the sum of a large 
number of small but independent random 
factors.  



 Noise in many natural or engineered systems 

has this property.  

 In a wide array of contexts, it has been found 

empirically that the statistics of noise are well-

described by normal distributions. 

 The central limit theorem provides a convincing 

explanation for this phenomenon.  

 



Importance - practical 

 Practical: It eliminates the need for detailed 

probabilistic models.  

 Rather, it allows the calculation by 

referring to the normal CDF. 

 Furthermore, these calculations only 

require the knowledge of means and 

variances.  

 

 



Approximations Based on CLT 

 The central limit theorem allow us to 

calculate probabilities related to 𝑍𝑛 as if 𝑍𝑛 
is normal.  

 Since normality is preserved under linear 

transformations, this is equivalent to 

treating 𝑆𝑛 as a normal variable with mean 

𝑛𝜇 and variance 𝑛𝜎2 

 



Approximations Based on CLT 

 Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛, where the 𝑋𝑖 are i.i.d. 
random variables with mean 𝜇, variance 𝜎2.  

 If 𝑛 is large, the probability P 𝑆𝑛 ≤ 𝑐  can be 
approximated by treating 𝑆𝑛 as if it were 
normal, according to the following procedure. 

I. Calculate the mean 𝑛𝜇 and variance 𝑛𝜎2. 

II. Calculate 𝑧 = (𝑐 − 𝑛𝜇)/𝜎 𝑛. 

III. Use the approximation 

P 𝑆𝑛 ≤ 𝑐 ≈ Φ 𝑧 . 



Approximations example: Plane 

 We load on a plane 100 packages whose 
weights are independent and uniform 
between 5 and 50.  

 Question: What is the probability that the total 
weight exceeds 3000? 

 Let 𝑆100 be the sum of weights. We first find 
the mean and variance of the weight of a 
single package 

𝜇 =
5 + 50

2
= 27.5, 𝜎2 =

50 − 5 2

12
= 168.75 



Approximations example: Plane 

 We then calculate 

𝑧 =
3000 − 𝑛𝜇

𝜎 𝑛
= 1.92 

 Then 

P 𝑆𝑛 ≤ 3000 ≈ Φ(1.92) ≈ 0.9726 
 by checking the standard normal table 

 Hence the desired probability (that the 
total weight exceeds 3000) is about 
0.0274. 



Approximations example: Machine 

 A machine process parts, one at a time, in a 
time independently and uniformly distributed 
in [1,5].  

 We will approximate the probability the 
machine processes at least 100 parts in 320 
time units. 

 Let 𝑋𝑖 be the processing time of the 𝑖-th part, 
and let 

𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 
be the total processing time of first 100 parts.  



Approximations example: Machine 

 Then we need to calculate P 𝑆100 ≤ 320 .  

 Note that 𝜇 = 𝐄 𝑋𝑖 = 3, 𝜎
2 = var 𝑋𝑖 =

4/3, 

𝑧 =
320 − 𝑛𝜇

𝜎 𝑛
= 1.73 

 Hence 

P 𝑆100 ≤ 320 ≈ Φ(1.73) ≈ 0.9582 

 



Approximations example: Polling 

 We poll 𝑛 voters and record the fraction 

𝑀𝑛 of those polled who are in favor of a 

particular candidate.  

 If 𝑝 is fraction of the entire voter population 

that supports this candidate, then 

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

, 

where 𝑋𝑖 is a Bernoulli random variable 

with parameter 𝑝.  



Approximations example: Polling 

 𝑀𝑛 has mean 𝑝 and variance 𝑝 1 − 𝑝 /𝑛.  

 We’re interested in the probability 

P 𝑀𝑛 − 𝑝 ≥ 𝜖 .  

 The probability that the polling error is larger 

than some desired accuracy 𝜖.  

 Because of the symmetry of the normal 

PDF around the mean, we have  

P 𝑀𝑛 − 𝑝 ≥ 𝜖 ≈ 2P 𝑀𝑛 − 𝑝 ≥ 𝜖  



Approximations example: Polling 

 The variance 𝑝 1 − 𝑝 /𝑛 of 𝑀𝑛 − 𝑝 
depends on 𝑝 and is therefore unknown.  

 Note that the probability of a large 
deviation from the mean increases with 
the variance.  

 Thus, we can obtain an upper bound on 
P 𝑀𝑛 − 𝑝 ≥ 𝜖  by assuming that 𝑀𝑛 − 𝑝 
has the largest possible variance 1/4𝑛, 
which corresponds to 𝑝 = 1/2. 



Approximations example: Polling 

 We evaluate the normalized value 𝑧 =
𝜖

1/(2 𝑛)
 

 And use the normal approximation 

P 𝑀𝑛 − 𝑝 ≥ 𝜖 ≤ 1 − Φ(2𝜖 𝑛) 

 For example: 𝑛 = 100 and 𝜖 = 0.1. We 
observe, for any 𝑝 
P 𝑀100 − 𝑝 ≥ 𝜖 ≤ 2 − 2Φ 2𝜖 𝑛 = 0.046 

 This is much smaller (more accurate) than 
the estimate of 0.25 that was obtained using 
the Chebyshev inequality.  

 

 



Approximations example: Polling 

 We consider a reverse problem.  

 How large a sample size 𝑛 is needed if we 

wish our estimate 𝑀𝑛 to be within 0.01 of 𝑝 
with probability at least 0.95?  

 Similar to previous calculations, we have 

2 − 2Φ 2𝜖 𝑛 ≤ 0.05 
which leads to 𝑛 ≥ 9604. 

 This is significantly better than the 50,000 

that we found using Chebyshev's inequality.  

 

 

 



Approximations - Example 

 The normal approximation is increasingly 

accurate as 𝑛 tends to infinity.  

 But in practice we are generally faced with 

specific and finite values of 𝑛.  

 It would be useful to know how large n 

should be before the approximation can be 

trusted.  



 But there are no simple and general guidelines. 

Much depends on whether the distribution of the 

𝑋𝑖 is close to normal and, in particular, whether it 

is symmetric.  

 For example, if the 𝑋𝑖 are uniform, then 𝑆8 is 

already very close to normal.  

 But if the 𝑋𝑖 are, say, exponential, a 

significantly larger 𝑛 will be needed before 𝑆𝑛 
is close to a normal one.  



Approximation to the Binomial  

 Consider a binomial random variable 𝑆𝑛 
with parameters 𝑛 and 𝑝.  

 It can be viewed as the sum of 𝑛 
independent Bernoulli random variables 

𝑋1, … , 𝑋𝑛, with common parameter 𝑝: 
𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 

 Recall that for each 𝑋𝑖 

𝜇 = 𝑝, 𝜎 = 𝑝(1 − 𝑝) 



Approximation to the Binomial  

 We will now use the CLT approximation 

for P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙 ,  

 where 𝑘 and 𝑙 are given integers.  

 We express the event of interest in terms 

of a standardized random variable, using 

the equivalence  

𝑘 ≤ 𝑆𝑛 ≤ 𝑙 ⇔
𝑘 − 𝑛𝜇

𝜎 𝑛
≤
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
≤
𝑙 − 𝑛𝜇

𝜎 𝑛
 



 By CLT, 
𝑆𝑛−𝑛𝜇

𝜎 𝑛
 approximates standard 

normal,  

       P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙  

= P
𝑘 − 𝑛𝜇

𝜎 𝑛
≤
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
≤
𝑙 − 𝑛𝜇

𝜎 𝑛

≈ Φ
𝑙 − 𝑛𝜇

𝜎 𝑛
− Φ
𝑘 − 𝑛𝜇

𝜎 𝑛
 

 



Approximation to the Binomial  

 A first approximation (a) of a binomial probability 

P(𝑘 ≤ 𝑆𝑛 ≤ 𝑙) is obtained by integrating the area 

under the normal PDF from 𝑘 to 𝑙.  

 An issue happens when 𝑘 = 𝑙: P 𝑆𝑛 = 𝑘  will be 

approximated as 0. 



Approximation to the Binomial  

 A possible remedy (b) is to integrate 

normal PDF between 𝑘 − 1/2 and 𝑙 + 1/2, 
to approximate P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙 .  

 If so, P 𝑆𝑛 = 𝑘  is no longer 0. 



Approximation to the Binomial  

 Plugging 𝜇 = 𝑝, 𝜎 = 𝑝(1 − 𝑝), we get the 
following De Moivre-Laplace Approximation to 
the Binomial.  

 If 𝑆𝑛 is a binomial random variable with 
parameters 𝑛 and 𝑝, 𝑛 is large, and 𝑘, 𝑙 are 
nonnegative integers, then  

   P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙  

≈ Φ
𝑙 + 1/2 − 𝑛𝑝

𝑛𝑝(1 − 𝑝)
− Φ
𝑘 − 1/2 − 𝑛𝑝

𝑛𝑝(1 − 𝑝)
 



Approximation to the Binomial  

 When 𝑝 is close to 1/2, in which case the 

PMF of the 𝑋𝑖 is symmetric, the above 

formula yields a very good approximation 

for 𝑛 as low as 40 or 50.  

 When 𝑝 is near 1 or near 0, the quality of 

the approximation drops, and a larger 

value of 𝑛 is needed to maintain the same 

accuracy.  



Approximation to the Binomial  

 For example, let 𝑆𝑛 be a binomial random 

variable with 𝑛 = 36 and 𝑝 = 0.5, the exact 

calculation 

P 𝑆𝑛 ≤ 21 =  
36
𝑘

21

𝑘=0

0.5 36 = 0.8785. 

 Using CLT approximation,  

P 𝑆𝑛 < 21 ≈ Φ
21.5 − 𝑛𝑝

𝑛𝑝 1 − 𝑝
= 0.879. 
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The Strong Law of Large Numbers 

 The strong law of large numbers is similar 

to the weak law in that it also deals with 

the convergence of the sample mean to 

the true mean.  

 It is different, however, because it refers to 

another type of convergence.  

 The following is a general statement of the 

strong law of large numbers.  



The Strong Law of Large Numbers 

 Let 𝑋1, 𝑋2, … be a sequence of 

independent identically distributed random 

variables with mean 𝜇.  

 Then, the sequence of sample means 

𝑀𝑛 = (𝑋1 +⋯+ 𝑋𝑛)/𝑛 converges to 𝜇, 
with probability 1, in the sense that 

P lim
𝑛→∞

𝑋1 +⋯+ 𝑋𝑛
𝑛

=𝜇 = 1 



The Strong Law of Large Numbers 

 In order to interpret the strong law of large 

numbers, we need to go back to our 

original description of probabilistic models 

in terms of sample spaces.  

 The contemplated experiment is infinitely 

long and generates a sequence of values, 

one value for each one of the random 

variables in the sequence 𝑋1, 𝑋2, … 



The Strong Law of Large Numbers 

 Thus, it is best to think of the sample 

space as a set of infinite sequences 

𝑥1, 𝑥2, …  of real numbers: any such 

sequence is a possible outcome. 

 Let us now consider the set 𝐴 consisting of 

those sequences 𝑥1, 𝑥2, …  whose long-

term average is 𝜇, i.e.,  

𝑥1, 𝑥2, … ∈ 𝐴  ⇔ lim
𝑛→∞

𝑥1 +⋯+ 𝑥𝑛
𝑛

=𝜇 



The Strong Law of Large Numbers 

 The strong law of large numbers states 

that all of the probability is concentrated 

on this subset 𝐴 of the sample space.  

 

 Equivalently, the collection of outcomes 

that do not belong to 𝐴 (infinite sequences 

whose long-term average is not 𝜇) has 

probability zero. 



The Strong Law of Large Numbers 

 The difference between the weak and the 
strong law is subtle and deserves close 
scrutiny.  

 The weak law states that the probability 
P 𝑀𝑛 − 𝜇 ≥ 𝜖  of a significant deviation 
of 𝑀𝑛 from 𝜇 goes to zero as 𝑛 → ∞.  

 Still, for any finite 𝑛, this probability can be 
positive and 𝑀𝑛 may once in a while 
deviates significantly from 𝜇.  



 The weak law provides no conclusive 

information on the number of such deviations.  

 But the strong law does.  

 According to the strong law, with probability 

1, 𝑀𝑛 converges to 𝜇.  

 This implies that for any given 𝜖 > 0, the 

probability that the difference 𝑀𝑛 − 𝜇  will 

exceed 𝜖 an infinite number of times is equal 

to zero.  

 



Probabilities and Frequencies 

 Consider an event 𝐴 defined in terms of 

some probabilistic experiment.  

 Denote 𝜇 = 𝑃 𝐴 . 

 Consider a sequence of independent 

repetitions of the same experiment.  

 Let 𝑀𝑛 be the fraction of the first 𝑛 
repetitions in which 𝐴 occurs.  



Probabilities and Frequencies 

 The strong law of large numbers asserts 

that 𝑀𝑛 converges to 𝜇, with probability 1.  

 P lim
𝑛→∞
𝑀𝑛 = 𝜇 = 1 

 In contrast, the weak law of large numbers 

asserts that 𝑀𝑛 converges to P(𝐴) in 

probability. 

 ∀𝜖 > 0, P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞. 



Probabilities and Frequencies 

 We have often talked intuitively about the 

probability of an event 𝐴 as the frequency 

with which it occurs in an infinitely long 

sequence of independent trials.  

 The strong law backs this intuition and 

establishes that the long-term frequency of 

occurrence of 𝐴 is indeed equal to P(𝐴), 
with essential certainty. 



Convergence with Probability 1 

 The convergence concept behind the 

strong law is different than the notion 

employed in the weak law.  

 

 We provide here a definition and some 

discussion of this new convergence 

concept.  



Convergence with Probability 1 

 Let 𝑌1, 𝑌2, ⋯ be a sequence of random 

variables (not necessarily independent).  

 Let 𝑐 be a real number.  

 We say that , 𝑌𝑛 converges to 𝑐 with 

probability 1 (or almost surely) if 

P lim
𝑛→∞
𝑌𝑛 =𝑐 = 1 

 



Convergence with Probability 1 

 Similar to our earlier discussion, a proper 
interpretation of this type of convergence 
involves a sample space consisting of 
infinite sequences. 

 All of the probability is concentrated on 
those sequences that converge to 𝑐.  

 This does not mean that other sequences 
are impossible, only that their total 
probability is zero.  

 



Convergence with Probability 1 

 Let 𝑋1, 𝑋2, … be a sequence of 

independent random variables that are 

uniformly distributed in 0,1 . Let 

𝑌𝑛 = min (𝑋1, 𝑋2, ⋯ , 𝑋𝑛). 

 

 We will show that 𝑌𝑛 converges to 0 with 

probability 1. 



Convergence with Probability 1 

 We first observe 𝑌𝑛 is nonincreasing, i.e., 

𝑌𝑛 ≥ 𝑌𝑛+1.  

 Since 𝑌𝑛 ≥ 0 is bounded, it has a limit 𝑌.  

 For any small 𝜖 > 0, 𝑌 > 𝜖 iff 𝑋𝑖 > 𝜖, ∀𝑖.  

 Therefore,  

P 𝑌 > 𝜖 = P 𝑋𝑖 > 𝜖, ∀𝑖 = 1 − 𝜖
𝑛 

 Letting 𝑛 → ∞, we have P 𝑌 > 𝜖 = 0 

 Hence, P 𝑌 = 0 = 1. 

 

 



Convergence with Probability 1 

 Convergence with probability 1 implies 

convergence in probability, but the 

converse is not necessarily true.  

 

 Our last example illustrates the difference 

between convergence in probability and 

convergence with probability 1.  

 



Convergence with Probability 1 

 Consider a discrete-time arrival process.  

 The set of time is partitioned into consecutive 
intervals of the form  

𝐼𝑘 = 2
𝑘, 2𝑘 + 1,⋯2𝑘+1 − 1 . 

 Note the length of 𝐼𝑘 increases as 𝑘 
increases. 

 During each interval 𝐼𝑘, there is exactly one 
arrival, and all times within an interval are 
equally likely.  
 The arrivals are assumed to be independent. 

 



Convergence with Probability 1 

 Define 𝑌𝑛 = 1 if there is an arrival at time 

𝑛, and 𝑌𝑛 =0 if there is no arrival.  

 We have P 𝑌𝑛 ≠ 0 = 1/2
𝑘 , if 𝑛 ∈ 𝐼𝑘.  

 Therefore, 

lim
𝑛→∞
P 𝑌𝑛 ≠ 0 = lim

𝑘→∞

1

2𝑘
= 0. 

 We conclude that 𝑌𝑛 converges to 0 in 

probability. 

 



Convergence with Probability 1 

 However, the total number of arrivals is 

infinite.  

 Therefore, 𝑌𝑛 is unity for infinitely many 

values of 𝑛.  

 So the event lim
𝑛→∞
𝑌𝑛 = 0 has 0 probability.  

 It doesn’t converge with probability 1. 



Convergence with Probability 1 

 Intuitively, the following is happening.  

 At any given time, there is only a small, and 
diminishing with 𝑛, probability of a substantial 
deviation from 0,  

 which implies convergence in probability.  

 On the other hand, given enough time, a 
substantial deviation from 0 is certain to 
occur.  

 For this reason, we do not have convergence with 
probability 1.  



Summary  

 Weak law of large numbers  

 ∀𝜖 > 0, P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞. 

 Indicates that the sample mean 𝑀𝑛 is very likely 

to be close to the true mean 𝜇, as the sample size  

increases.  

 Based on the Chebyshev inequality. 



Summary 

 Central limit theorem 

 lim
𝑛→∞
P 𝑍𝑛 ≤ 𝑧 = Φ 𝑧 , where  

 𝑍𝑛 =
𝑋1+⋯+𝑋𝑛−𝑛𝜇

𝜎 𝑛
 

 Φ is the CDF of the standard normal. 

 Asserts that the sum of a large number of 

independent random variables is approximately 

normal. 

 Can be used for approximation. 



Summary 

 Strong law of large numbers. 

 P lim
𝑛→∞

𝑋1+⋯+𝑋𝑛

𝑛
=𝜇 = 1 

 Makes a more emphatic connection of 

probabilities and relative frequencies,  

 Is often an important tool in theoretical studies.  

 


