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Background

We will discuss fundamental issues related to
the asymptotic behavior of sequences of
random variables.

Our principal context involves a sequence
X4, X5, ... of Independent identically distributed
(1.1.d.) random variables with mean u and
variance g*.



Background

Let
Sp =X+ -+ X,
be the sum of the first n of them.

Limit theorems are mostly concerned with the
properties of S,, and related random variables
as n becomes very large.



Background

Because of independence, we have

var(S,) = var(Xy) + --- + var(X,,) = no*

The distribution of S,, spreads out as n
Increases

Thus S,, cannot have a meaningful limit.

But the situation Is different if we consider the
sample mean

Xi+-+X, S
Mn __ 41 n __ “n

n n’




Background

A quick calculation yields,

2

o

E[My| = u, var(My) = o

The variance of M,, decreases to zero as n
Increases.

Thus the bulk of the distribution of M,, must
be very close to the mean u.

This phenomenon is the subject of certain
laws of large numbers



Background

The laws generally assert that the sample
mean M,, converges to the true mean p.

These laws provide a mathematical basis for
the loose interpretation of an expectation
E|X]=u...

... as the average of a large number of

iIndependent samples drawn from the
distribution of X.



Background

We will also consider a quantity which is
iIntermediate between §,, and M,,.

Z, 1s defined as follows.

subtract nu from S,,, to obtain the zero-mean
random variable §,, — nu

then divide by o+/n, to form the random
variable
_ Sp —nu

YA
n O'\/H




Background

It can be seen that
E[Z,] =0, var|Z,] =1
Since the mean/variance of Z,, remain

unchanged as n increases, its distribution
neither spreads, nor shrinks to a point.

The central limit theorem iIs concerned with

o the asymptotic shape of the distribution of Z,,

o and asserts that Z,, becomes the standard normal
distribution.



Application

Limit theorems are useful for several reasons:

(a) Conceptually. They provided an
Interpretation of expectations/probabillities in
terms of a long sequence of identical
Independent experiments.



Application

(b) They allow for an approximate analysis of
the properties of random variables such as S,,.

o This Is to be contrasted with an exact analysis
which requires a formula for the PMF or PDF of S,,,
a complicated and tedious task when n is large.

(c) They play a major role in inference and
statistics, in the presence of large data sets.
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Markov and Chebyshev Inequalities

These inequalities use the mean and possibly
the variance of a random variable to draw
conclusions on the probabillities of certain
events.

primarily useful in situations

o exact values or bounds for the mean and variance
of a random variable X are easily computable.

o but the distribution of X is either unavailable or
hard to calculate.




Markov inequality

Theorem (Markov Inequality). If a random
variable X can only take nonnegative values,
then

PX>a)< %, foralla > 0
If a nonnegative random variable has a small
mean, then the probability that it takes a large

value must also be small.



Markov inequality (proof)

To justify the Markov inequality, let us fix a
positive number a and consider the random
variable Y, defined by
v — {O, it X <a,
a a, ifX = a.
It Is seen that the relation
Y, <X

always holds and therefore
E[Y,] < E[X].



On the other hand,

E[Y,] =aP(Y, = a) = aP(X = a)

From which we obtain

aP(X = a) < E(X)



Figure 1: Illustration of the derivation.

Part (a): the PDF of a
nonnegative random
variable X.

P{};I = ()

Part (b): the PMF of a
related random
variable Y, .

/\ \T)

/

p!);l = ()




Figure 1: Illustration of the derivation.

All of the mass in the
PDF of X that lies
between 0 and a IS
assigned to 0,

All of the mass that lies
above a is to a.

Since mass is shifted to
the left, the expectation
can only decrease and
therefore

E[X] = E[Y,]
= aP(Y, = a)
= aP(X = a).

iirl

)\};’ = ()

P!);I = (1)




Example 1.

Let X be uniformly distributed in [0,4].
Note that E[X] = 2.
Then, the Markov inequality asserts that

2
P(X22)<5=1.

P(X >3)<-=0.67.

= 0.5.

Bl now| N

P(X > 4) <



Example 1.

By comparing with the exact probabillities

PX>2)<==1. PX=2)=0.5.

NN DN

P(X 23) << =067. P(X>3) =025

P(X>4)<-=05 PXz=4)=0.

NN

We see that the bounds provided by the
Markov inequality can be quite loose.



Chebyshev inequality

Theorem (Chebyshev Inequality). If X is a
random variable with mean u and variance o2,

then
2

P(|X — /,L|>c)<—2 forallc > 0

If a random variable has small variance, then
the probability that it takes a value far from its
mean Is also small.

o Note: does not require X to be nonnegative.



Chebyshev inequality (Proof)

Let’'s prove the Chebyshev inequality
P(]JX — u| =c¢) <o04/c?

Consider the nonnegative random variable
(X — w)? and apply the Markov inequality:
E[((X —p)?] o°
P((X —w)? =>c?) < > =
Finally note that the event (X — u)? > c? is
identical to the event | X — u| = c¢. Thus

P(IX —ul =¢) = P((X —w)? = c?) < 0?/c?




An alternative form

An alternative form is obtained by letting
¢ = ko, where k Is positive, which yields
a2 1
k202 k2
The probability that a random variable that is
more than k standard deviations away from

: : 1
ItS mean IS at most oz

P(|X — u| = ko) <




Comparisons

The Chebyshev inequality tends to be more
powerful than the Markov inequality

o the bounds are more accurate, because it also
uses information on the variance of X

The mean and the variance of a random

variable are only a rough summary of its

properties

o we cannot expect the bounds to be close
approximations of the exact probabillities.



Example 2. uninformative case

Let X be uniformly distributed in [0,4].

Let us use the Chebyshev inequality
P(|JX — u| =c¢) < o4/c?
to bound the probabillity that |X — 2| = 1.

(b-a)* 16 _

We have g% = — = and thus
12 12

4

which is uninformative.



Example 2. uninformative case

let X be exponentially distributed with parameter
A=1,sothat E[X] = var(X) = 1.
For ¢ > 1, Chebyshev inequality yields
PX>c)=PX—-1=2c—1)
<P(|X-1|=c—-1)
- 1
~ (c—1)3
This Is again conservative compared to the
exactanswer P(X >2c) =e™ ¢




Example 3. Upper Bounds

When X is known to take values in a range
[a, b], we claim that 6% < (b — a)?/4.

If 04 is unknown, we may use the bound

(b — a)?/4 in the Chebyshev inequality,

(b — a)?
4c?

P(|J X —ul =c) < , forallc > 0



Example 3. Upper Bounds (Proof)

For the claim 6% < (b — a)?/4, note that for

any constant y we have
E[(X —y)?] = E[X?] — 2E[X]y + y?

This quadratic is minimized when y = E| X].

It follows that, for all 1 € |a, b],
0 = E[(X — E[X])?] < E[(X —y)“]



Example 3. Upper Bounds (Proof)

By lettingy = (a + b)/2 we obtain

ol < E[ X —a—+b) ]
(b-a)* _ (b—a)?

= E[(X — a)(X — b)] A <

4 4
o The equality above is verified by calculation,

o The last inequality follows from the fact
(x—a)(x—b) <0
Vx € |a, b].



Example 3. Upper Bounds (Proof)

The bound may be quite conservative, but In
the absence of further information about X, it
cannot be improved.

Indeed, it is satisfied with equality when X
takes the two extreme values a and b with
equal probability 1/2.
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Weak law of large numbers

The weak law of large numbers asserts that

the sample mean of a large number of 1.1.d.

random variables is close to the true mean.

o 1L1.d.: independent identically distributed.

o This holds with high probability.

Consider a sequence X4, X5, ... of L.I.d. random

variables with mean u and variance o2,

X1++Xp
n

. While the

The sample meanis M,, =
true mean Is pu.



E M — = — =

(M, ] m —=H
and

Var(Mn) _ var(X{+-+Xp)

n2

:"ar(Xl)tl";"ar(X") (independence)

no? o

n? n



We apply the Chebyshev inequality and
obtain

2

P(|M,, — | =€) <—, forany € > 0

ne?

For any fixed € > 0, the right-hand side of this
Inequality goes to zero as n increases.

This is the weak law of large numbers.



The Weak LLaw of LLarge Numbers

Theorem. Let X4, X5, ... be independent
identically distributed random variables with
mean u, then Ve > 0, we have

P(|IM,, —u| =€) -0, asn - o

o Recall:
B X{1+-+X,
— - _

My,




Intuitively

The weak law of large numbers states that for
large n, the bulk of the distribution of M., Is
concentrated near p.

f we consider a positive length interval
u— e, u+ €] around u, then there is high
orobability that M,, will fall in that interval.

As n — oo, this probability converges to 1.

o If e Is very small, we need to wait longer (i.e. need
a larger value of n) to assert that M,, is highly
likely to fall in that interval.




Example 4. Probabilities and Frequencies

Consider an event A defined in the context of
some probabillistic experiment.

Let p = P(A) be the probabillity of this event.

Consider n independent repetitions of the
experiment, and let M,, be the fraction of time
that event A occurs;

In this context, M,, is often called the
empirical frequency of A.



Example 4. Probabilities and Frequencies

Note that
Xt Xy

n

n
where X; iIs 1 whenever A occurs, and 0

otherwise. In particular, E|X;| = p.

The weak law shows that when n is large, the

empirical frequency is most likely to be
within € of p.



Example 4. Probabilities and Frequencies

Loosely speaking, this allows us to conclude
that empirical frequencies are faithful
estimates of p.

Alternatively, this is a step towards
Interpreting the probability p as the frequency
of occurrence of A.



Example 5. Polling

Let p be the fraction of voters who support a
particular candidate for office.

We interview n "randomly selected" voters
and record M,,, the fraction of them that
support the candidate.

We view M,, as our estimate of p and would
like to investigate Its properties.



Example 5. Polling

We interpret "randomly selected"” to mean
that the n voters are chosen independently
and uniformly from the given population.

Thus, the reply of each person interviewed
can be viewed as an independent Bernoulli
random variable X, with success probability p
and variance ¢ = p(1 — p).



Example 5. Polling

The Chebyshev inequality yields
1
P(IM,, —p| =€) < I
E.g.if e = 0.1 and n = 100, we obtain

o With a sample size of n = 100, the probabillity that
our estimate is incorrect by more than 0.1 is no
larger than 0.25.



Example 5. Polling (2)

Suppose now that we impose some tight
specifications on our poll.

We would like to have high confidence
(probability at least 95%) that our estimate
will be very accurate (within 0.01 of p).

Question: How many voters should be sampled?



Example 5. Polling (2)

The only guarantee that we have at this point
IS the Inequality

P(|[M, —p| = 0.01) <

(IMn =Pl 2001 = == 5012
To satisfy the above specifications:
1
<1-095=0.05
4 xn*0.012

which yields n = 50,000




Example 5. Polling (2)

This n satisfies our specifications, but turns
out to be fairly conservative.

o because it Is based on the rather loose
Chebyshev inequality.

We’'ll give a finer bound later.
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CONVERGENCE IN PROBABILITY

We can interpret the weak law of large
numbers as stating that

" M, converges to u."

However, since My, M,, ... IS a sequence of
random variables, not numbers, the meaning
of convergence has to be made precise.



Convergence of a Deterministic Sequence

Let a4, a,, ... be a sequence of real numbers,
and let a be another real number. We say

that a,, converges to a, or
lim a,, = a,

n—>00

If for every € > 0 there exists some n, such
that
la,, —al| <€, foralln = n,

Intuitively, for any accuracy level €, a,, must
be within € of a, when n is large enough.



Convergence 1n Probability

LetY,,Y,, ... be a sequence of random
variables, and let a be a real number.

We say that the sequence Y,, converges to
a In probabillity, If for every e > 0, we have

lim P(|Y,, —a| =€) = 0.
Nn—o>00



Given this definition, the weak law of large
numbers simply states that the sample mean
converges in probability to the true mean pu.

More generally, the Chebyshev inequality
iImplies the following:

If all Y,, have the same mean u and var(Y,,)
converges to 0, then Y,, converges to u in
probabillity.



Suppose that Y3, Y, ... have a PMF or a PDF
and converge in probabillity to a.

Then "almost all* of the PMF or PDF of Y,, IS
concentrated within € of a for large values of
n.



It Is also instructive to rephrase the above
definition as follows.

For every € > 0 and for every § > 0, there
exists some n, such that

P(lY,, —a| =€) <6, for all n > n,,.



Last slide: P(|Y,, —a|l =€) < 6.
Let’s refer to € as the accuracy level, and §
as the confidence level.

The definition takes the following intuitive
form.

For any given level of accuracy and
confidence, Y,, will be equal to a, within these
levels of accuracy and confidence, provided
that n Is large enough.



Example 0.

Consider a sequence of independent random
variables X,, that are uniformly distributed Iin
the interval [0,1].

Let Y,, = min{Xy,...X,,}.

The sequence of values of Y,, cannot
Increase as n increases.

o Minimum over more numbers is smaller.

Y,, occasionally decreases

o whenever a value of X,, that is smaller than the
preceding values is obtained.



Thus, we expect that Y,, converges to zero.

Indeed, for € > 0, we have using the
Independence of the X,,,
P(lY, —0|=¢)=P(X; =€, ..,X, = 6)
= P(X; > e) ‘P(X, =€)

=1 -e"
In particular,
lim P(|Y,, — 0| = ¢€) = llm (1 — )" =
Nn—00

Since this is true for every € > 0, Y,, converges
to zero (in probability).



Example 7.

Let Y be an exponentially distributed random
variable with parameter 4 = 1.

For any positive integer n, letY,, =Y /n.
Note: These random variables are dependent.

We wish to investigate whether the sequence
Y,, converges to zero.



For e > 0, we have
P(lY,, — 0| =€) =P(Y,, = ¢€)
=P(Y = ne) =e™ "€
In particular,
hm P(lY,, — 0] =€) = lim e ™€ = 0.

n—-0o

Since this is the case for every € > 0,7,
converges to zero, in probabillity.



Example 8.

One might believe that if a sequence Y.,
converges to a number a, then E[Y,,] must
also converge to a.

The following example shows that this need
not be the case.

This illustrates some of the limitations of the
notion of convergence in probabillity.



Example 8.

Consider a sequence of discrete random
variables Y,, with the following distribution:

P(Y, =y) =+

r1 ! f =0
~ fory =0,

1

fory = n?,

n
S

otherwise.



Example 8.

For every e > 0, we have

lim P(|Y,| =€) =1lim—=0
Nn—oo n-on

Thus Y,, converges to zero in probability.

On the other hand, E[Y,,| = o n, which

n
goes to Infinity as n increases.
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Sample mean

According to the weak law of large
numbers,

the distribution of the sample mean

X, ++X
Mn= 1 - n

IS Increasingly concentrated in the near
vicinity of the true mean .

In particular, its variance tends to zero.




Sample sum and normalized mean

On the other hand, the variance of the sum
S, =X{+ -+ X, =nM,
Increases to Infinity.

And the distribution of S,, cannot be said to
converge to anything meaningful.

An intermediate view Is obtained by
considering the deviation S,, — nu of S,,, and
scaling it by a factor proportional to 1/+/n.



Formally

Let X4, -+, X,, be a sequence of
Independent identically distributed random
variable with mean u and variance ¢

Define

Zn

Sy —nu Xyttt Xy —np

o\Vn o\vn



Mean and variance

An easy calculation yields
E[X; + -+ Xp]—np

a\n

E[Z,] = 0

For variance, we have

var(X; +--+X,,) no?*
VaF(Zn) — (0'\/%)2 — TLTC'Z =1




The Central Limit Theorem

Theorem (The Central Limit Theorem) The

CDF of Z,, = X1+:/)%"_n” converges to

standard normal CDF

d(z) = e */2qx

.

In the sense that
lim P(Z,, < z) = ®(2)

n—00



Generality

The central
general.

limit theorem Is surprisingly

Besides independence, and the implicit

assumption
are finite, it
on the distri

that the mean and variance
nlaces no other requirement
pution of the X;,

2 which could

be discrete, continuous, or mixed.



Importance - conceptual

The theorem Is of tremendous importance for
several reasons.

o Both conceptual and practical.

Conceptual: It iIndicates that the sum of a large
number of independent random variables is
approximately normal.

As such, it applies to many situations in
which a random effect is the sum of a large
number of small but independent random
factors.



Noise in many natural or engineered systems
has this property.
In a wide array of contexts, it has been found

empirically that the statistics of noise are well-
described by normal distributions.

The central limit theorem provides a convincing
explanation for this phenomenon.



Importance - practical

Practical: It eliminates the need for detailed
probabilistic models.

Rather, it allows the calculation by
referring to the normal CDF.

Furthermore, these calculations only
require the knowledge of means and
variances.



Approximations Based on CLLT

The central limit theorem allow us to
calculate probabilities related to Z,, as If Z,,
IS normal.

Since normality Is preserved under linear
transformations, this is equivalent to
treating S,, as a normal variable with mean
nu and variance no*



Approximations Based on CLLT

Let S, = X, + -+ X,,, where the X; are I.I.d.
random variables with mean u, variance o*.

If n is large, the probability P(S,, < c¢) can be
approximated by treating §,, as If it were
normal, according to the following procedure.

Calculate the mean nu and variance no?.
Calculate z = (¢ — nu) /o+/n.

Use the approximation
P(S, <c) = d(2).



Approximations example: Plane

We load on a plane 100 packages whose
weights are independent and uniform
between 5 and 50.

Question: What is the probability that the total
welight exceeds 30007?

Let S;0 be the sum of weights. We first find
the mean and variance of the weight of a
single package

5+ 50 , (50— 5)?

— = 275,62 = = 168.75
K 2 ¢ 12




Approximations example: Plane

We then calculate
B 3000 — nu

o\n
Then

P(S,, <3000) = ®(1.92) = 0.9726
o by checking the standard normal table
Hence the desired probabillity (that the

total weight exceeds 3000) Is about
0.0274.

Z = 1.92




Approximations example: Machine

A machine process parts, one at a time, in a
time independently and uniformly distributed
in [1,5].

We will approximate the probability the

machine processes at least 100 parts in 320
time units.

Let X; be the processing time of the i-th part,
and let

S, =X1++X,
be the total processing time of first 100 parts.



Approximations example: Machine

Then we need to calculate P(S;y9 < 320).

Note that u = E[X;] = 3, 0% = var(X;) =
4/3,

320 — nu
7 = = 1.73
o\n

Hence
P(S100 < 320) = ®(1.73) = 0.9582



Approximations example: Polling

We poll n voters and record the fraction

M., of those polled who are In favor of a
particular candidate.

If p Is fraction of the entire voter population

that supports this candidate, then

X, +-+X
Mn= 1 n

)

n
where X; Is a Bernoulli random variable

with parameter p.



Approximations example: Polling

M., has mean p and variance p(1 — p)/n.
We're interested in the probability

P(|M,, — p| = €).

o The probability that the polling error is larger
than some desired accuracy e.

Because of the symmetry of the normal
PDF around the mean, we have

P(IM,, —p| =€) = 2P(M,, —p = ¢€)




Approximations example: Polling

The variance p(1 —p)/nof M,, — p
depends on p and is therefore unknown.

Note that the probability of a large
deviation from the mean increases with
the variance.

Thus, we can obtain an upper bound on
P(M,, —p = €) by assuming that M,, — p
has the largest possible variance 1/4n,
which correspondsto p = 1/2.




Approximations example: Polling

. €
We evaluate the normalized value z = T

And use the normal approximation

P(M,,—p =€) <1— ®(2eyn)
For example: n = 100 and € = 0.1. We
observe, for any p
P(Migo —p =€) < 2 —2®0(2e4/n) = 0.046
This is much smaller (more accurate) than
the estimate of 0.25 that was obtained using
the Chebyshev inequality.




Approximations example: Polling

We consider a reverse problem.

How large a sample size n Is needed if we
wish our estimate M,, to be within 0.01 of p
with probability at least 0.95?

Similar to previous calculations, we have
2 — 20(2e4/n) < 0.05
which leads to n = 9604.

This Is significantly better than the 50,000
that we found using ChebysheVv's inequality.



Approximations - Example

The normal approximation Is increasingly
accurate as n tends to Infinity.

But In practice we are generally faced with
specific and finite values of n.

It would be useful to know how large n
should be before the approximation can be
trusted.



But there are no simple and general guidelines.
Much depends on whether the distribution of the
X; Is close to normal and, in particular, whether it
IS symmetric.

For example, Iif the X; are uniform, then Sg Is
already very close to normal.

But If the X; are, say, exponential, a
significantly larger n will be needed before S,
IS close to a normal one.



Approximation to the Binomial

Consider a binomial random variable S,
with parameters n and p.

It can be viewed as the sum of n
Independent Bernoulli random variables
X4 ., X,,, with common parameter p:

S, =X +-+X,
Recall that for each X;

u=p,  o=4p(l-p)




Approximation to the Binomial

We will now use the CLT approximation
forP({k < S, <1}),

o where k and [ are given integers.

We express the event of interest in terms
of a standardized random variable, using
the equivalence
k — Sn— [ —
N _on T _ LT
o\n o\n o\n

k<S,<lo




« By CLT, 2

normal,
P(lk<S,<I)

b k — n,uSS —n,usl—n,u
o\vn o\n o\Vn

N [ —nu k —nu
~o( 7)o (TR

\/_ £ approximates standard




Approximation to the Binomial

A first approximation (a) of a binomial probability
P(k < S,, < 1) is obtained by integrating the area
under the normal PDF from k to [.

An issue happens when k = [: P(S,, = k) will be
approximated as 0.

AN Al

o [ IS [

{(a) {b)




Approximation to the Binomial

A possible remedy (b) Is to Integrate
normal PDF between k —1/2 and [ + 1/2,
to approximate P(k < S,, < D).

If so, P(S,, = k) is no longer 0.

Al _Alh._.

k [ 1§ [

{a) {b)




‘ Approximation to the Binomial

= Plugging ¢ = p, 0 = \/p(1 — p), we get the
following De Moivre-Laplace Approximation to
the Binomial.

= If S, Is a binomial random variable with
parameters n and p, n Is large, and k, [ are
nonnegative integers, then

P(k<S, <D

- ¢(l+1/2—np> q)(k—l/Z—np)
Jnp(1—p) Jnp(1—p)




Approximation to the Binomial

When p Is close to 1/2, in which case the
PMF of the X, Is symmetric, the above
formula yields a very good approximation
for n as low as 40 or 50.

When p Is near 1 or near 0, the quality of
the approximation drops, and a larger
value of n Is needed to maintain the same

accuracy.



Approximation to the Binomial

For example, let S,, be a binomial random
variable with n = 36 and p = 0.5, the exact

calculation
21

pes, <21) = > (°9)(0.5)%6 = 0.8785.
kZ (%)

Using CLT approximation,

21.5 —np
P(S,<21)=® = (0.8709.
Jnp(1 —p)
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The Strong Law of Large Numbers

The strong law of large numbers Is similar
to the weak law In that it also deals with
the convergence of the sample mean to
the true mean.

It is different, however, because it refers to
another type of convergence.

The following Is a general statement of the
strong law of large numbers.



The Strong Law of Large Numbers

Let X, X, ... be a sequence of
Independent identically distributed random

variables with mean .

Then, the sequence of sample means

M, = (X{ + -+ X,,)/n converges to u,
with probabillity 1, in the sense that

X. 4+ ...+ X
P(lim - n=,u)=1

n—00 n




The Strong Law of Large Numbers

In order to interpret the strong law of large
numbers, we need to go back to our
original description of probabilistic models
In terms of sample spaces.

The contemplated experiment is infinitely
long and generates a sequence of values,
one value for each one of the random
variables in the sequence X, X5, ...



The Strong Law of Large Numbers

Thus, It Is best to think of the sample
space as a set of infinite sequences
(x4, x5, ... ) Of real numbers: any such
seguence Is a possible outcome.

Let us now consider the set A consisting of
those sequences (x4, x5, ... ) Whose long-

term average is u, I.e.,
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The Strong Law of Large Numbers

The strong law of large numbers states
that all of the probabillity Is concentrated
on this subset A of the sample space.

Equivalently, the collection of outcomes
that do not belong to A (infinite sequences
whose long-term average is not u) has
probability zero.



The Strong Law of Large Numbers

The difference between the weak and the

strong law Is subtle and deserves close
scrutiny.

The weak law states that the probabillity
P(|M,, — u| = €) of a significant deviation
of M,, from u goes to zero as n — oo,

Still, for any finite n, this probability can be

positive and M,, may once in a while
deviates significantly from pu.



The weak law provides no conclusive
Information on the number of such deviations.

But the strong law does.

According to the strong law, with probability
1, M,, converges to u.

This implies that for any given € > 0, the
probability that the difference |M,, — u| will
exceed € an infinite number of times Is equal
to zero.



Probabilities and Frequencies

Consider an event A defined in terms of
some probabilistic experiment.

o Denote u = P(A4).

Consider a sequence of independent
repetitions of the same experiment.

Let M,, be the fraction of the first n
repetitions in which A occurs.



Probabilities and Frequencies

The strong law of large numbers asserts
that M,, converges to u, with probabllity 1.
2 P(lim M, =p) =1

n—00

In contrast, the weak law of large numbers
asserts that M,, converges to P(4) In
probability.

aVe>0, P(|IM,, —ul =€) -0, asn — oo,



Probabilities and Frequencies

We have often talked intuitively about the
probability of an event A as the frequency
with which it occurs in an infinitely long
seguence of independent trials.

The strong law backs this intuition and
establishes that the long-term frequency of
occurrence of A Is indeed equal to P(4),
with essential certainty.



Convergence with Probability 1

The convergence concept behind the
strong law Is different than the notion
employed Iin the weak law.

We provide here a definition and some
discussion of this new convergence
concept.



Convergence with Probability 1

Let Y;,Y,, - be a sequence of random
variables (not necessarily independent).

Let ¢ be a real number.

We say that, Y,, converges to ¢ with
probability 1 (or almost surely) If

P(limYn=c) =1

n—>00



Convergence with Probability 1

Similar to our earlier discussion, a proper
Interpretation of this type of convergence
Involves a sample space consisting of
Infinite sequences.

All of the probabillity is concentrated on
those sequences that converge to c.

This does not mean that other sequences
are impossible, only that their total
probability Is zero.



Convergence with Probability 1

Let X, X,, ... be a sequence of
Independent random variables that are
uniformly distributed in [0,1]. Let

Y, = min(Xy, X5, -+, X,)).

We will show that Y,, converges to O with
probability 1.



Convergence with Probability 1

We first observe Y,, Is nonincreasing, I.e.,
Yn = Yn+1-
Since Y,, = 0 Is bounded, it has a limit Y.
Foranysmalle > 0,Y > e iff X; > €, Vi.
Therefore,
P(Y>¢)=PX;>¢Vi)=(1—-¢e)"
Letting n — oo, we have P(Y > ¢) =0
Hence, P(Y = 0) = 1.




Convergence with Probability 1

Convergence with probabllity 1 implies
convergence In probability, but the
converse Is not necessarily true.

Our last example illustrates the difference
between convergence in probability and
convergence with probability 1.



Convergence with Probability 1

Consider a discrete-time arrival process.

The set of time Is partitioned into consecutive
Intervals of the form

I, = {2k 2k +1,... 2k+1 — 1},
Note the length of I, Increases as k
Increases.

During each interval I, there Is exactly one
arrival, and all times within an interval are
equally likely.

o The arrivals are assumed to be independent.



Convergence with Probability 1

Define Y,, = 1 If there Is an arrival at time
n, and Y,, =0 if there is no arrival.

We have P(Y,, # 0) = 1/2%,ifn € I,.
Therefore,

1
limP(Y,, #0) = lim — = 0.

n—oo k— o0 Zk

We conclude that Y,, converges to O In
probability.



Convergence with Probability 1

However, the total number of arrivals is
Infinite.

Therefore, Y., Is unity for infinitely many
values of n.

So the event limY,, = 0 has O probabillity.

n—>00

It doesn’t converge with probability 1.



Convergence with Probability 1

Intuitively, the following is happening.

At any given time, there is only a small, and
diminishing with n, probability of a substantial
deviation from O,

o which implies convergence in probability.
On the other hand, given enough time, a

substantial deviation from O is certain to
OCCuUr.

o For this reason, we do not have convergence with
probability 1.



Summary

Weak law of large numbers
o Ve>0, P(IM,, —u| =€) - 0, asn — oo,

o Indicates that the sample mean M,, is very likely

to be close to the true mean u, as the sample size
Increases.

o Based on the Chebyshev inequality.



Summary

Central limit theorem
Q 711_{210 P(Z, < z) = ®(z), where

Xi++Xp—n
Zn — 4 " U
® is the CDF of the standard normal.
o Asserts that the sum of a large number of
Independent random variables is approximately
normal.

o Can be used for approximation.




Summary

Strong law of large numbers.

uP(lim =u)=1

n—0oo n
o Makes a more emphatic connection of
probabllities and relative frequencies,

o Is often an important tool in theoretical studies.

X14+Xn




