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Background 

 We will discuss fundamental issues related to 

the asymptotic behavior of sequences of 

random variables. 

 

 Our principal context involves a sequence 

𝑋1, 𝑋2, … of independent identically distributed 

(i.i.d.) random variables with mean 𝜇 and 

variance 𝜎2. 



Background 

 Let  

  𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛  

    be the sum of the first 𝑛 of them.  

 

 Limit theorems are mostly concerned with the 

properties of 𝑆𝑛 and related random variables 

as 𝑛 becomes very large. 



Background 

 Because of independence, we have 

var 𝑆𝑛 = var 𝑋1 +⋯+ var(𝑋𝑛) = 𝑛𝜎
2 

 The distribution of 𝑆𝑛 spreads out as 𝑛 
increases  

 Thus 𝑆𝑛 cannot have a meaningful limit. 

 But the situation is different if we consider the 
sample mean 

                   𝑀𝑛 =
𝑋1+⋯+𝑋𝑛

𝑛
=
𝑆𝑛

𝑛
. 



Background 

 A quick calculation yields, 

𝐄[𝑀𝑛] = 𝜇,  var(𝑀𝑛) =
𝜎2

𝑛
. 

 The variance of 𝑀𝑛 decreases to zero as 𝑛 
increases.  

 Thus the bulk of the distribution of 𝑀𝑛 must 

be very close to the mean 𝜇. 

 This phenomenon is the subject of certain 

laws of large numbers 



Background 

 The laws generally assert that the sample 

mean 𝑀𝑛 converges to the true mean 𝜇.  

 These laws provide a mathematical basis for 

the loose interpretation of an expectation 

𝐄[𝑋] = 𝜇 … 

 … as the average of a large number of 

independent samples drawn from the 

distribution of 𝑋. 

 



Background 

 We will also consider a quantity which is 

intermediate between 𝑆𝑛 and 𝑀𝑛.  

 𝑍𝑛 is defined as follows. 

1. subtract 𝑛𝜇 from 𝑆𝑛, to obtain the zero-mean 

random variable 𝑆𝑛 − 𝑛𝜇  

2. then divide by 𝜎 𝑛, to form the random 

variable 

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
 



Background 

 It can be seen that 

𝐄 𝑍𝑛 = 0,  var 𝑍𝑛 = 1 

 Since the mean/variance of 𝑍𝑛 remain 

unchanged as 𝑛 increases, its distribution 

neither spreads, nor shrinks to a point.  

 The central limit theorem is concerned with  

 the asymptotic shape of the distribution of 𝑍𝑛  

 and asserts that 𝑍𝑛 becomes the standard normal 

distribution. 

 



Application 

 Limit theorems are useful for several reasons: 

 

 (a) Conceptually. They provided an 

interpretation of expectations/probabilities in 

terms of a long sequence of identical 

independent experiments. 



Application 

 (b) They allow for an approximate analysis of 

the properties of random variables such as 𝑆𝑛 .  

 This is to be contrasted with an exact analysis 

which requires a formula for the PMF or PDF of 𝑆𝑛 , 
a complicated and tedious task when 𝑛 is large. 

 

 (c) They play a major role in inference and 

statistics, in the presence of large data sets.  
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Markov and Chebyshev Inequalities 

 These inequalities use the mean and possibly 

the variance of a random variable to draw 

conclusions on the probabilities of certain 

events.  

 primarily useful in situations  

 exact values or bounds for the mean and variance 

of a random variable 𝑋 are easily computable.  

 but the distribution of 𝑋 is either unavailable or 

hard to calculate. 



Markov inequality 

 Theorem (Markov Inequality). If a random 

variable 𝑋 can only take nonnegative values, 

then 

              𝑃 𝑋 ≥ 𝑎 ≤  
𝐸 𝑋

𝑎
,  for all 𝑎 > 0 

 If a nonnegative random variable has a small 

mean, then the probability that it takes a large 

value must also be small. 



Markov inequality (proof) 

 To justify the Markov inequality, let us fix a 

positive number 𝑎 and consider the random 

variable 𝑌𝑎 defined by 

𝑌𝑎 =  
0, if 𝑋 < 𝑎,
𝑎, if 𝑋 ≥ 𝑎.

 

 It is seen that the relation 

𝑌𝑎 ≤ 𝑋 

   always holds and therefore 

𝐄 𝑌𝑎 ≤ 𝐄[𝑋]. 



 On the other hand, 

 

𝐄 𝑌𝑎 = 𝑎P 𝑌𝑎 = 𝑎 = 𝑎P X ≥ a  

 

 From which we obtain 

 

𝑎P 𝑋 ≥ 𝑎 ≤ 𝐄(𝑋) 



 Part (a): the PDF of a 

nonnegative random 

variable 𝑋.  

 

 Part (b): the PMF of a 

related random 

variable 𝑌𝑎. 

 

Figure 1: Illustration of the derivation. 



 All of the mass in the 
PDF of 𝑋 that lies 
between 0 and 𝑎 is 
assigned to 0, 

 All of the mass that lies 
above 𝑎 is to 𝑎.  

 Since mass is shifted to 
the left, the expectation 
can only decrease and 
therefore 

    𝐄 𝑋 ≥ 𝐄 𝑌𝑎   
               = 𝑎P 𝑌𝑎 = 𝑎  
            = 𝑎P 𝑋 ≥ 𝑎 .  

Figure 1: Illustration of the derivation. 



Example 1. 

 Let 𝑋 be uniformly distributed in 0,4 . 

 Note that 𝐄[𝑋] = 2.  

 Then, the Markov inequality asserts that 

P 𝑋 ≥ 2 ≤
2

2
= 1.       

P 𝑋 ≥ 3 ≤
2

3
= 0.67. 

P 𝑋 ≥ 4 ≤
2

4
= 0.5.   



Example 1. 

 By comparing with the exact probabilities 

P 𝑋 ≥ 2 ≤
2

2
= 1.         P 𝑋 ≥ 2 = 0.5.    

P 𝑋 ≥ 3 ≤
2

3
= 0.67.   P 𝑋 ≥ 3 = 0.25. 

P 𝑋 ≥ 4 ≤
2

4
= 0.5.     P 𝑋 ≥ 4 = 0.       

 We see that the bounds provided by the 

Markov inequality can be quite loose. 



Chebyshev inequality 

 Theorem (Chebyshev Inequality). If 𝑋 is a 

random variable with mean 𝜇 and variance 𝜎2, 
then 

P 𝑋 − 𝜇 ≥ 𝑐 ≤
𝜎2

𝑐2
,  for all 𝑐 > 0 

 If a random variable has small variance, then 

the probability that it takes a value far from its 

mean is also small.  

 Note: does not require 𝑋 to be nonnegative. 



Chebyshev inequality (Proof) 

 Let’s prove the Chebyshev inequality 

P 𝑋 − 𝜇 ≥ 𝑐 ≤ 𝜎2/𝑐2  

 Consider the nonnegative random variable 

(𝑋 − 𝜇)2 and apply the Markov inequality: 

P 𝑋 − 𝜇 2 ≥ 𝑐2 ≤
𝐄 𝑋 − 𝜇 2

𝑐2
=
𝜎2

𝑐2
 

 Finally note that the event 𝑋 − 𝜇 2 ≥ 𝑐2 is 

identical to the event 𝑋 − 𝜇 ≥ 𝑐. Thus 

P 𝑋 − 𝜇 ≥ 𝑐 =  P 𝑋 − 𝜇 2 ≥ 𝑐2 ≤ 𝜎2/𝑐2 

 



An alternative form 

 An alternative form is obtained by letting 

𝑐 = 𝑘𝜎, where 𝑘 is positive, which yields 

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
𝜎2

𝑘2𝜎2
=
1

𝑘2
 

 The probability that a random variable that is 

more than 𝑘 standard deviations away from 

its mean is at most 
1

𝑘2
. 



Comparisons  

 The Chebyshev inequality tends to be more 

powerful than the Markov inequality  

 the bounds are more accurate, because it also 

uses information on the variance of 𝑋 

 The mean and the variance of a random 

variable are only a rough summary of its 

properties 

 we cannot expect the bounds to be close 

approximations of the exact probabilities. 



Example 2. uninformative case 

 Let 𝑋 be uniformly distributed in 0,4 .  

 Let us use the Chebyshev inequality  

P 𝑋 − 𝜇 ≥ 𝑐 ≤ 𝜎2/𝑐2  
to bound the probability that |𝑋 − 2| ≥ 1. 

 We have 𝜎2 =
𝑏−𝑎 2

12
=
16

12
=
4

3
, and thus 

𝑃 |𝑋 − 2 ≥ 1 ≤
4

3
 

which is uninformative. 



Example 2. uninformative case 

 let 𝑋 be exponentially distributed with parameter 

𝜆 = 1, so that 𝐄[𝑋] = var(𝑋) = 1.  

 For 𝑐 > 1, Chebyshev inequality yields  

   P 𝑋 ≥ 𝑐 = P 𝑋 − 1 ≥ 𝑐 − 1                              
≤ P 𝑋 − 1 ≥ 𝑐 − 1  

≤
1

𝑐 − 1 2
 

This is again conservative compared to the 

exact answer 𝑃(𝑋 ≥ 𝑐) = 𝑒−𝑐 



Example 3. Upper Bounds 

 When 𝑋 is known to take values in a range 

[𝑎, 𝑏], we claim that 𝜎2 ≤ 𝑏 − 𝑎 2/4. 

 

 If 𝜎2 is unknown, we may use the bound 

𝑏 − 𝑎 2/4 in the Chebyshev inequality, 

P 𝑋 − 𝜇 ≥ 𝑐 ≤
𝑏 − 𝑎 2

4𝑐2
,  for all 𝑐 > 0 



Example 3. Upper Bounds (Proof) 

 For the claim 𝜎2 ≤ 𝑏 − 𝑎 2/4, note that for 

any constant 𝛾 we have 
𝐄[ 𝑋 − 𝛾 2] = 𝐄 𝑋2 − 2𝐄 𝑋 𝛾 + 𝛾2 

 

 This quadratic is minimized when 𝛾 = 𝐄 𝑋 .  

 It follows that, for all 𝜆 ∈ 𝑎, 𝑏 , 

𝜎2 = 𝐄 𝑋 − 𝐄 𝑋 2 ≤ 𝐄 𝑋 − 𝛾 2  

 



Example 3. Upper Bounds (Proof) 

 By letting 𝛾 = (𝑎 + 𝑏)/2, we obtain 

 𝜎2 ≤ 𝐄 𝑋 −
𝑎+𝑏

2

2
  

             = 𝐄 𝑋 − 𝑎 𝑋 − 𝑏 +
𝑏−𝑎 2

4
≤
𝑏−𝑎 2

4
 

 The equality above is verified by calculation, 

 The last inequality follows from the fact 
𝑥 − 𝑎 𝑥 − 𝑏 ≤ 0 

∀𝑥 ∈ 𝑎, 𝑏 . 

 



Example 3. Upper Bounds (Proof) 

 The bound may be quite conservative, but in 

the absence of further information about 𝑋, it 
cannot be improved. 

 

 Indeed, it is satisfied with equality when 𝑋 
takes the two extreme values 𝑎 and 𝑏 with 

equal probability 1/2. 
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Weak law of large numbers 

 The weak law of large numbers asserts that 
the sample mean of a large number of i.i.d. 
random variables is close to the true mean. 

 i.i.d.: independent identically distributed. 

 This holds with high probability. 

 Consider a sequence 𝑋1, 𝑋2, … of i.i.d. random 
variables with mean 𝜇 and variance 𝜎2,  

 The sample mean is 𝑀𝑛 =
𝑋1+⋯+𝑋𝑛

𝑛
, while the 

true mean is 𝜇. 

 



 We have 

𝐄 𝑀𝑛 =
𝐄 𝑋1 +⋯+ 𝐄 𝑋𝑛

𝑛
=
𝑛𝜇

𝑛
= 𝜇. 

 and 

    var 𝑀𝑛 =
var 𝑋1+⋯+𝑋𝑛

𝑛2
  

   =
var 𝑋1 +⋯+var 𝑋𝑛

𝑛2
  (independence) 

   =
𝑛𝜎2

𝑛2
=
𝜎2

𝑛
  

 



 We apply the Chebyshev inequality and 

obtain  

 P 𝑀𝑛 − 𝜇 ≥ 𝜖 ≤
𝜎2

𝑛𝜖2
,  for any 𝜖 > 0 

 

 For any fixed 𝜖 > 0, the right-hand side of this 

inequality goes to zero as 𝑛 increases. 

 This is the weak law of large numbers.  



The Weak Law of Large Numbers 

 Theorem. Let 𝑋1, 𝑋2, … be independent 

identically distributed random variables with 

mean 𝜇, then ∀𝜖 > 0, we have 
 

   P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞  

 

 Recall:  

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

. 



Intuitively 

 The weak law of large numbers states that for 
large 𝑛, the bulk of the distribution of 𝑀𝑛 is 
concentrated near 𝜇.  

 If we consider a positive length interval 
𝜇 − 𝜖, 𝜇 + 𝜖  around 𝜇, then there is high 

probability that 𝑀𝑛 will fall in that interval. 

 As 𝑛 → ∞, this probability converges to 1. 
 If 𝜖 is very small, we need to wait longer (i.e. need 

a larger value of 𝑛) to assert that 𝑀𝑛 is highly 
likely to fall in that interval. 

 



Example 4. Probabilities and Frequencies 

 Consider an event 𝐴 defined in the context of 

some probabilistic experiment.  

 Let 𝑝 = P(𝐴) be the probability of this event.  

 Consider 𝑛 independent repetitions of the 

experiment, and let 𝑀𝑛 be the fraction of time 

that event 𝐴 occurs;  

 In this context, 𝑀𝑛 is often called the 

empirical frequency of 𝐴. 



Example 4. Probabilities and Frequencies 

 Note that 

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

 

where 𝑋𝑖 is 1 whenever 𝐴 occurs, and 0 
otherwise. In particular, 𝐄 𝑋𝑖 = 𝑝.  

 

 The weak law shows that when 𝑛 is large, the 

empirical frequency is most likely to be 

within 𝜖 of 𝑝. 



Example 4. Probabilities and Frequencies 

 Loosely speaking, this allows us to conclude 

that empirical frequencies are faithful 

estimates of 𝑝.  

 

 Alternatively, this is a step towards 

interpreting the probability 𝑝 as the frequency 

of occurrence of 𝐴. 

 



Example 5. Polling 

 Let 𝑝 be the fraction of voters who support a 

particular candidate for office.  

 We interview 𝑛 "randomly selected" voters 

and record 𝑀𝑛, the fraction of them that 

support the candidate.  

 We view 𝑀𝑛 as our estimate of 𝑝 and would 

like to investigate its properties. 



Example 5. Polling 

 We interpret "randomly selected" to mean 

that the 𝑛 voters are chosen independently 

and uniformly from the given population. 

 Thus, the reply of each person interviewed 

can be viewed as an independent Bernoulli 

random variable 𝑋, with success probability 𝑝 
and variance 𝜎2 = 𝑝(1 − 𝑝).  



Example 5. Polling 

 The Chebyshev inequality yields 

𝑃 𝑀𝑛 − 𝑝 ≥ 𝜖 ≤
1

4𝑛𝜖2
 

 E.g. if 𝜖 = 0.1 and 𝑛 = 100, we obtain 

𝑃 𝑀100 − 𝑝 ≥ 0.1 ≤
1

4 ∗ 100 ∗ 0.12
= 0.25 

 With a sample size of 𝑛 = 100, the probability that 

our estimate is incorrect by more than 0.1 is no 

larger than 0.25. 

 



Example 5. Polling (2) 

 Suppose now that we impose some tight 

specifications on our poll.  

 We would like to have high confidence 

(probability at least 95%) that our estimate 

will be very accurate (within 0.01 of 𝑝).  

 

 Question: How many voters should be sampled? 



Example 5. Polling (2) 

 The only guarantee that we have at this point 

is the inequality 

P 𝑀𝑛 − 𝑝 ≥ 0.01 ≤
1

4 ∗ 𝑛 ∗ 0.012
 

 To satisfy the above specifications: 
1

4 ∗ 𝑛 ∗ 0.012
≤ 1 − 0.95 = 0.05 

  which yields 𝑛 ≥ 50,000 

 



Example 5. Polling (2) 

 This 𝑛 satisfies our specifications, but turns 

out to be fairly conservative. 

 because it is based on the rather loose 

Chebyshev inequality.  

 

 We’ll give a finer bound later. 
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CONVERGENCE IN PROBABILITY 

 We can interpret the weak law of large 

numbers as stating that  

  " 𝑀𝑛 converges to 𝜇."  

 

 However, since 𝑀1, 𝑀2, … is a sequence of 

random variables, not numbers, the meaning 

of convergence has to be made precise. 



Convergence of a Deterministic Sequence 

 Let 𝑎1, 𝑎2, … be a sequence of real numbers, 

and let 𝑎 be another real number. We say 

that 𝑎𝑛 converges to 𝑎, or  
lim
𝑛→∞
𝑎𝑛 = 𝑎, 

if for every 𝜖 > 0 there exists some 𝑛0 such 

that 

𝑎𝑛 − 𝑎 ≤ 𝜖, for all 𝑛 ≥ 𝑛0 

 Intuitively, for any accuracy level 𝜖,  𝑎𝑛 must 

be within 𝜖 of 𝑎, when 𝑛 is large enough. 

 



Convergence in Probability 

 Let 𝑌1, 𝑌2, … be a sequence of random 

variables, and let 𝑎 be a real number.  

 

 We say that the sequence 𝑌𝑛 converges to 

𝑎 in probability, if for every 𝜖 > 0 , we have 

  lim
𝑛→∞
P 𝑌𝑛 − 𝑎 ≥ 𝜖 = 0. 

 



 Given this definition, the weak law of large 

numbers simply states that the sample mean 

converges in probability to the true mean 𝜇. 

 

 More generally, the Chebyshev inequality 

implies the following:  

 If all 𝑌𝑛 have the same mean 𝜇 and var(𝑌𝑛) 
converges to 0, then 𝑌𝑛 converges to 𝜇 in 

probability. 



 Suppose that 𝑌1, 𝑌2… have a PMF or a PDF 

and converge in probability to 𝑎. 

 

 Then "almost all" of the PMF or PDF of 𝑌𝑛 is 

concentrated within 𝜖 of 𝑎 for large values of 

𝑛. 

 



 It is also instructive to rephrase the above 

definition as follows.  

 For every 𝜖 > 0 and for every 𝛿 > 0, there 

exists some 𝑛0 such that 

P 𝑌𝑛 − 𝑎 ≥ 𝜖 ≤ 𝛿,  for all 𝑛 ≥ 𝑛0. 



 Last slide: P 𝑌𝑛 − 𝑎 ≥ 𝜖 ≤ 𝛿. 

 Let’s refer to 𝜖 as the accuracy level, and 𝛿 
as the confidence level.  

 The definition takes the following intuitive 

form. 

 For any given level of accuracy and 

confidence, 𝑌𝑛 will be equal to 𝑎, within these 

levels of accuracy and confidence, provided 

that 𝑛 is large enough. 



Example 6. 

 Consider a sequence of independent random 
variables 𝑋𝑛 that are uniformly distributed in 
the interval [0,1]. 

 Let 𝑌𝑛 = min 𝑋1, …𝑋𝑛 . 

 The sequence of values of 𝑌𝑛 cannot 
increase as 𝑛 increases. 

 Minimum over more numbers is smaller. 

 𝑌𝑛 occasionally decreases  

 whenever a value of 𝑋𝑛 that is smaller than the 
preceding values is obtained.  



 Thus, we expect that 𝑌𝑛 converges to zero.  

 Indeed, for 𝜖 > 0, we have using the 
independence of the 𝑋𝑛, 
𝑃 𝑌𝑛 − 0 ≥ 𝜖 = 𝑃 𝑋1 ≥ 𝜖,… , 𝑋𝑛 ≥ 𝜖  

                                    = 𝑃 𝑋1 ≥ 𝜖 ⋯𝑃(𝑋𝑛 ≥ 𝜖) 
       = (1 − 𝜖)𝑛 

 In particular, 
lim
𝑛→∞
𝑃( 𝑌𝑛 − 0 ≥ 𝜖) = lim

𝑛→∞
(1 − 𝜖)𝑛 = 0 

 Since this is true for every 𝜖 > 0, 𝑌𝑛 converges 
to zero (in probability). 

 

 



Example 7.  

 Let 𝑌 be an exponentially distributed random 

variable with parameter 𝜆 = 1.  

 For any positive integer 𝑛, let 𝑌𝑛 = 𝑌/𝑛.  

 Note: These random variables are dependent. 

 

 We wish to investigate whether the sequence 

𝑌𝑛 converges to zero. 



 For 𝜖 > 0, we have  

 P 𝑌𝑛 − 0 ≥ 𝜖 = P 𝑌𝑛 ≥ 𝜖   

          = P 𝑌 ≥ 𝑛𝜖 = 𝑒−𝑛𝜖 

 In particular,  
lim
𝑛→∞
P 𝑌𝑛 − 0 ≥ 𝜖 = lim

𝑛→∞
𝑒−𝑛𝜖 = 0. 

 

 Since this is the case for every 𝜖 > 0, 𝑌𝑛 
converges to zero, in probability. 

 



Example 8. 

 One might believe that if a sequence 𝑌𝑛 
converges to a number 𝑎, then 𝐄 𝑌𝑛  must 

also converge to 𝑎. 

 The following example shows that this need 

not be the case. 

 This illustrates some of the limitations of the 

notion of convergence in probability. 



Example 8. 

 Consider a sequence of discrete random 

variables 𝑌𝑛 with the following distribution: 

 

P 𝑌𝑛 = 𝑦 =

1 −
1

𝑛
for 𝑦 = 0,   

1

𝑛
for 𝑦 =  𝑛2,

0 otherwise.  

 

 



Example 8. 

 For every 𝜖 > 0, we have 

lim
𝑛→∞
P( 𝑌𝑛 ≥ 𝜖) = lim

𝑛→∞

1

𝑛
= 0 

 

 Thus 𝑌𝑛 converges to zero in probability. 

 On the other hand, 𝐄 𝑌𝑛 =
𝑛2

𝑛
= 𝑛, which 

goes to infinity as 𝑛 increases. 

 



Content 

 Markov and Chebyshev Inequalities 

 The Weak Law of Large Numbers 

 Convergence in Probability 

 The Central Limit Theorem 

 The Strong Law of Large Numbers 



Sample mean 

 According to the weak law of large 

numbers,  

 the distribution of the sample mean  

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

 

is increasingly concentrated in the near 

vicinity of the true mean 𝜇.  

 In particular, its variance tends to zero. 



Sample sum and normalized mean 

 On the other hand, the variance of the sum 
𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 = 𝑛𝑀𝑛 

increases to infinity.   

 And the distribution of 𝑆𝑛 cannot be said to 

converge to anything meaningful.  

 An intermediate view is obtained by 

considering the deviation 𝑆𝑛 − 𝑛𝜇 of 𝑆𝑛, and 

scaling it by a factor proportional to 1/ 𝑛. 



Formally 

 Let 𝑋1, ⋯ , 𝑋𝑛 be a sequence of 

independent identically distributed random 

variable with mean 𝜇 and variance 𝜎2 

 

 Define  

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
=
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
. 

 



Mean and variance 

 An easy calculation yields 

E[𝑍𝑛] =
E 𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
= 0 

 

 For variance, we have 

var 𝑍𝑛 =
var 𝑋1 +⋯+ 𝑋𝑛

𝜎 𝑛 2
=
𝑛𝜎2

𝑛𝜎2
= 1 

 



The Central Limit Theorem 

 Theorem (The Central Limit Theorem) The 

CDF of 𝑍𝑛 =
𝑋1+⋯+𝑋𝑛−𝑛𝜇

𝜎 𝑛
 converges to 

standard normal CDF 

Φ 𝑧 =
1

2𝜋
 𝑒−𝑥

2/2𝑑𝑥
𝑧

−∞

 

in the sense that  

lim
𝑛→∞
P 𝑍𝑛 ≤ 𝑧 = Φ(𝑧) 

 



Generality  

 The central limit theorem is surprisingly 

general.  

 Besides independence, and the implicit 

assumption that the mean and variance 

are finite, it places no other requirement 

on the distribution of the 𝑋𝑖,  

 which could be discrete, continuous, or mixed.  

 



Importance - conceptual 

 The theorem is of tremendous importance for 
several reasons. 

 Both conceptual and practical.  

 Conceptual: It indicates that the sum of a large 
number of independent random variables is 
approximately normal. 

 As such, it applies to many situations in 
which a random effect is the sum of a large 
number of small but independent random 
factors.  



 Noise in many natural or engineered systems 

has this property.  

 In a wide array of contexts, it has been found 

empirically that the statistics of noise are well-

described by normal distributions. 

 The central limit theorem provides a convincing 

explanation for this phenomenon.  

 



Importance - practical 

 Practical: It eliminates the need for detailed 

probabilistic models.  

 Rather, it allows the calculation by 

referring to the normal CDF. 

 Furthermore, these calculations only 

require the knowledge of means and 

variances.  

 

 



Approximations Based on CLT 

 The central limit theorem allow us to 

calculate probabilities related to 𝑍𝑛 as if 𝑍𝑛 
is normal.  

 Since normality is preserved under linear 

transformations, this is equivalent to 

treating 𝑆𝑛 as a normal variable with mean 

𝑛𝜇 and variance 𝑛𝜎2 

 



Approximations Based on CLT 

 Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛, where the 𝑋𝑖 are i.i.d. 
random variables with mean 𝜇, variance 𝜎2.  

 If 𝑛 is large, the probability P 𝑆𝑛 ≤ 𝑐  can be 
approximated by treating 𝑆𝑛 as if it were 
normal, according to the following procedure. 

I. Calculate the mean 𝑛𝜇 and variance 𝑛𝜎2. 

II. Calculate 𝑧 = (𝑐 − 𝑛𝜇)/𝜎 𝑛. 

III. Use the approximation 

P 𝑆𝑛 ≤ 𝑐 ≈ Φ 𝑧 . 



Approximations example: Plane 

 We load on a plane 100 packages whose 
weights are independent and uniform 
between 5 and 50.  

 Question: What is the probability that the total 
weight exceeds 3000? 

 Let 𝑆100 be the sum of weights. We first find 
the mean and variance of the weight of a 
single package 

𝜇 =
5 + 50

2
= 27.5, 𝜎2 =

50 − 5 2

12
= 168.75 



Approximations example: Plane 

 We then calculate 

𝑧 =
3000 − 𝑛𝜇

𝜎 𝑛
= 1.92 

 Then 

P 𝑆𝑛 ≤ 3000 ≈ Φ(1.92) ≈ 0.9726 
 by checking the standard normal table 

 Hence the desired probability (that the 
total weight exceeds 3000) is about 
0.0274. 



Approximations example: Machine 

 A machine process parts, one at a time, in a 
time independently and uniformly distributed 
in [1,5].  

 We will approximate the probability the 
machine processes at least 100 parts in 320 
time units. 

 Let 𝑋𝑖 be the processing time of the 𝑖-th part, 
and let 

𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 
be the total processing time of first 100 parts.  



Approximations example: Machine 

 Then we need to calculate P 𝑆100 ≤ 320 .  

 Note that 𝜇 = 𝐄 𝑋𝑖 = 3, 𝜎
2 = var 𝑋𝑖 =

4/3, 

𝑧 =
320 − 𝑛𝜇

𝜎 𝑛
= 1.73 

 Hence 

P 𝑆100 ≤ 320 ≈ Φ(1.73) ≈ 0.9582 

 



Approximations example: Polling 

 We poll 𝑛 voters and record the fraction 

𝑀𝑛 of those polled who are in favor of a 

particular candidate.  

 If 𝑝 is fraction of the entire voter population 

that supports this candidate, then 

𝑀𝑛 =
𝑋1 +⋯+ 𝑋𝑛
𝑛

, 

where 𝑋𝑖 is a Bernoulli random variable 

with parameter 𝑝.  



Approximations example: Polling 

 𝑀𝑛 has mean 𝑝 and variance 𝑝 1 − 𝑝 /𝑛.  

 We’re interested in the probability 

P 𝑀𝑛 − 𝑝 ≥ 𝜖 .  

 The probability that the polling error is larger 

than some desired accuracy 𝜖.  

 Because of the symmetry of the normal 

PDF around the mean, we have  

P 𝑀𝑛 − 𝑝 ≥ 𝜖 ≈ 2P 𝑀𝑛 − 𝑝 ≥ 𝜖  



Approximations example: Polling 

 The variance 𝑝 1 − 𝑝 /𝑛 of 𝑀𝑛 − 𝑝 
depends on 𝑝 and is therefore unknown.  

 Note that the probability of a large 
deviation from the mean increases with 
the variance.  

 Thus, we can obtain an upper bound on 
P 𝑀𝑛 − 𝑝 ≥ 𝜖  by assuming that 𝑀𝑛 − 𝑝 
has the largest possible variance 1/4𝑛, 
which corresponds to 𝑝 = 1/2. 



Approximations example: Polling 

 We evaluate the normalized value 𝑧 =
𝜖

1/(2 𝑛)
 

 And use the normal approximation 

P 𝑀𝑛 − 𝑝 ≥ 𝜖 ≤ 1 − Φ(2𝜖 𝑛) 

 For example: 𝑛 = 100 and 𝜖 = 0.1. We 
observe, for any 𝑝 
P 𝑀100 − 𝑝 ≥ 𝜖 ≤ 2 − 2Φ 2𝜖 𝑛 = 0.046 

 This is much smaller (more accurate) than 
the estimate of 0.25 that was obtained using 
the Chebyshev inequality.  

 

 



Approximations example: Polling 

 We consider a reverse problem.  

 How large a sample size 𝑛 is needed if we 

wish our estimate 𝑀𝑛 to be within 0.01 of 𝑝 
with probability at least 0.95?  

 Similar to previous calculations, we have 

2 − 2Φ 2𝜖 𝑛 ≤ 0.05 
which leads to 𝑛 ≥ 9604. 

 This is significantly better than the 50,000 

that we found using Chebyshev's inequality.  

 

 

 



Approximations - Example 

 The normal approximation is increasingly 

accurate as 𝑛 tends to infinity.  

 But in practice we are generally faced with 

specific and finite values of 𝑛.  

 It would be useful to know how large n 

should be before the approximation can be 

trusted.  



 But there are no simple and general guidelines. 

Much depends on whether the distribution of the 

𝑋𝑖 is close to normal and, in particular, whether it 

is symmetric.  

 For example, if the 𝑋𝑖 are uniform, then 𝑆8 is 

already very close to normal.  

 But if the 𝑋𝑖 are, say, exponential, a 

significantly larger 𝑛 will be needed before 𝑆𝑛 
is close to a normal one.  



Approximation to the Binomial  

 Consider a binomial random variable 𝑆𝑛 
with parameters 𝑛 and 𝑝.  

 It can be viewed as the sum of 𝑛 
independent Bernoulli random variables 

𝑋1, … , 𝑋𝑛, with common parameter 𝑝: 
𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 

 Recall that for each 𝑋𝑖 

𝜇 = 𝑝, 𝜎 = 𝑝(1 − 𝑝) 



Approximation to the Binomial  

 We will now use the CLT approximation 

for P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙 ,  

 where 𝑘 and 𝑙 are given integers.  

 We express the event of interest in terms 

of a standardized random variable, using 

the equivalence  

𝑘 ≤ 𝑆𝑛 ≤ 𝑙 ⇔
𝑘 − 𝑛𝜇

𝜎 𝑛
≤
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
≤
𝑙 − 𝑛𝜇

𝜎 𝑛
 



 By CLT, 
𝑆𝑛−𝑛𝜇

𝜎 𝑛
 approximates standard 

normal,  

       P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙  

= P
𝑘 − 𝑛𝜇

𝜎 𝑛
≤
𝑆𝑛 − 𝑛𝜇

𝜎 𝑛
≤
𝑙 − 𝑛𝜇

𝜎 𝑛

≈ Φ
𝑙 − 𝑛𝜇

𝜎 𝑛
− Φ
𝑘 − 𝑛𝜇

𝜎 𝑛
 

 



Approximation to the Binomial  

 A first approximation (a) of a binomial probability 

P(𝑘 ≤ 𝑆𝑛 ≤ 𝑙) is obtained by integrating the area 

under the normal PDF from 𝑘 to 𝑙.  

 An issue happens when 𝑘 = 𝑙: P 𝑆𝑛 = 𝑘  will be 

approximated as 0. 



Approximation to the Binomial  

 A possible remedy (b) is to integrate 

normal PDF between 𝑘 − 1/2 and 𝑙 + 1/2, 
to approximate P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙 .  

 If so, P 𝑆𝑛 = 𝑘  is no longer 0. 



Approximation to the Binomial  

 Plugging 𝜇 = 𝑝, 𝜎 = 𝑝(1 − 𝑝), we get the 
following De Moivre-Laplace Approximation to 
the Binomial.  

 If 𝑆𝑛 is a binomial random variable with 
parameters 𝑛 and 𝑝, 𝑛 is large, and 𝑘, 𝑙 are 
nonnegative integers, then  

   P 𝑘 ≤ 𝑆𝑛 ≤ 𝑙  

≈ Φ
𝑙 + 1/2 − 𝑛𝑝

𝑛𝑝(1 − 𝑝)
− Φ
𝑘 − 1/2 − 𝑛𝑝

𝑛𝑝(1 − 𝑝)
 



Approximation to the Binomial  

 When 𝑝 is close to 1/2, in which case the 

PMF of the 𝑋𝑖 is symmetric, the above 

formula yields a very good approximation 

for 𝑛 as low as 40 or 50.  

 When 𝑝 is near 1 or near 0, the quality of 

the approximation drops, and a larger 

value of 𝑛 is needed to maintain the same 

accuracy.  



Approximation to the Binomial  

 For example, let 𝑆𝑛 be a binomial random 

variable with 𝑛 = 36 and 𝑝 = 0.5, the exact 

calculation 

P 𝑆𝑛 ≤ 21 =  
36
𝑘

21

𝑘=0

0.5 36 = 0.8785. 

 Using CLT approximation,  

P 𝑆𝑛 < 21 ≈ Φ
21.5 − 𝑛𝑝

𝑛𝑝 1 − 𝑝
= 0.879. 

 

 



Content 

 Markov and Chebyshev Inequalities 

 The Weak Law of Large Numbers 

 Convergence in Probability 

 The Central Limit Theorem 

 The Strong Law of Large Numbers 



The Strong Law of Large Numbers 

 The strong law of large numbers is similar 

to the weak law in that it also deals with 

the convergence of the sample mean to 

the true mean.  

 It is different, however, because it refers to 

another type of convergence.  

 The following is a general statement of the 

strong law of large numbers.  



The Strong Law of Large Numbers 

 Let 𝑋1, 𝑋2, … be a sequence of 

independent identically distributed random 

variables with mean 𝜇.  

 Then, the sequence of sample means 

𝑀𝑛 = (𝑋1 +⋯+ 𝑋𝑛)/𝑛 converges to 𝜇, 
with probability 1, in the sense that 

P lim
𝑛→∞

𝑋1 +⋯+ 𝑋𝑛
𝑛

=𝜇 = 1 



The Strong Law of Large Numbers 

 In order to interpret the strong law of large 

numbers, we need to go back to our 

original description of probabilistic models 

in terms of sample spaces.  

 The contemplated experiment is infinitely 

long and generates a sequence of values, 

one value for each one of the random 

variables in the sequence 𝑋1, 𝑋2, … 



The Strong Law of Large Numbers 

 Thus, it is best to think of the sample 

space as a set of infinite sequences 

𝑥1, 𝑥2, …  of real numbers: any such 

sequence is a possible outcome. 

 Let us now consider the set 𝐴 consisting of 

those sequences 𝑥1, 𝑥2, …  whose long-

term average is 𝜇, i.e.,  

𝑥1, 𝑥2, … ∈ 𝐴  ⇔ lim
𝑛→∞

𝑥1 +⋯+ 𝑥𝑛
𝑛

=𝜇 



The Strong Law of Large Numbers 

 The strong law of large numbers states 

that all of the probability is concentrated 

on this subset 𝐴 of the sample space.  

 

 Equivalently, the collection of outcomes 

that do not belong to 𝐴 (infinite sequences 

whose long-term average is not 𝜇) has 

probability zero. 



The Strong Law of Large Numbers 

 The difference between the weak and the 
strong law is subtle and deserves close 
scrutiny.  

 The weak law states that the probability 
P 𝑀𝑛 − 𝜇 ≥ 𝜖  of a significant deviation 
of 𝑀𝑛 from 𝜇 goes to zero as 𝑛 → ∞.  

 Still, for any finite 𝑛, this probability can be 
positive and 𝑀𝑛 may once in a while 
deviates significantly from 𝜇.  



 The weak law provides no conclusive 

information on the number of such deviations.  

 But the strong law does.  

 According to the strong law, with probability 

1, 𝑀𝑛 converges to 𝜇.  

 This implies that for any given 𝜖 > 0, the 

probability that the difference 𝑀𝑛 − 𝜇  will 

exceed 𝜖 an infinite number of times is equal 

to zero.  

 



Probabilities and Frequencies 

 Consider an event 𝐴 defined in terms of 

some probabilistic experiment.  

 Denote 𝜇 = 𝑃 𝐴 . 

 Consider a sequence of independent 

repetitions of the same experiment.  

 Let 𝑀𝑛 be the fraction of the first 𝑛 
repetitions in which 𝐴 occurs.  



Probabilities and Frequencies 

 The strong law of large numbers asserts 

that 𝑀𝑛 converges to 𝜇, with probability 1.  

 P lim
𝑛→∞
𝑀𝑛 = 𝜇 = 1 

 In contrast, the weak law of large numbers 

asserts that 𝑀𝑛 converges to P(𝐴) in 

probability. 

 ∀𝜖 > 0, P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞. 



Probabilities and Frequencies 

 We have often talked intuitively about the 

probability of an event 𝐴 as the frequency 

with which it occurs in an infinitely long 

sequence of independent trials.  

 The strong law backs this intuition and 

establishes that the long-term frequency of 

occurrence of 𝐴 is indeed equal to P(𝐴), 
with essential certainty. 



Convergence with Probability 1 

 The convergence concept behind the 

strong law is different than the notion 

employed in the weak law.  

 

 We provide here a definition and some 

discussion of this new convergence 

concept.  



Convergence with Probability 1 

 Let 𝑌1, 𝑌2, ⋯ be a sequence of random 

variables (not necessarily independent).  

 Let 𝑐 be a real number.  

 We say that , 𝑌𝑛 converges to 𝑐 with 

probability 1 (or almost surely) if 

P lim
𝑛→∞
𝑌𝑛 =𝑐 = 1 

 



Convergence with Probability 1 

 Similar to our earlier discussion, a proper 
interpretation of this type of convergence 
involves a sample space consisting of 
infinite sequences. 

 All of the probability is concentrated on 
those sequences that converge to 𝑐.  

 This does not mean that other sequences 
are impossible, only that their total 
probability is zero.  

 



Convergence with Probability 1 

 Let 𝑋1, 𝑋2, … be a sequence of 

independent random variables that are 

uniformly distributed in 0,1 . Let 

𝑌𝑛 = min (𝑋1, 𝑋2, ⋯ , 𝑋𝑛). 

 

 We will show that 𝑌𝑛 converges to 0 with 

probability 1. 



Convergence with Probability 1 

 We first observe 𝑌𝑛 is nonincreasing, i.e., 

𝑌𝑛 ≥ 𝑌𝑛+1.  

 Since 𝑌𝑛 ≥ 0 is bounded, it has a limit 𝑌.  

 For any small 𝜖 > 0, 𝑌 > 𝜖 iff 𝑋𝑖 > 𝜖, ∀𝑖.  

 Therefore,  

P 𝑌 > 𝜖 = P 𝑋𝑖 > 𝜖, ∀𝑖 = 1 − 𝜖
𝑛 

 Letting 𝑛 → ∞, we have P 𝑌 > 𝜖 = 0 

 Hence, P 𝑌 = 0 = 1. 

 

 



Convergence with Probability 1 

 Convergence with probability 1 implies 

convergence in probability, but the 

converse is not necessarily true.  

 

 Our last example illustrates the difference 

between convergence in probability and 

convergence with probability 1.  

 



Convergence with Probability 1 

 Consider a discrete-time arrival process.  

 The set of time is partitioned into consecutive 
intervals of the form  

𝐼𝑘 = 2
𝑘, 2𝑘 + 1,⋯2𝑘+1 − 1 . 

 Note the length of 𝐼𝑘 increases as 𝑘 
increases. 

 During each interval 𝐼𝑘, there is exactly one 
arrival, and all times within an interval are 
equally likely.  
 The arrivals are assumed to be independent. 

 



Convergence with Probability 1 

 Define 𝑌𝑛 = 1 if there is an arrival at time 

𝑛, and 𝑌𝑛 =0 if there is no arrival.  

 We have P 𝑌𝑛 ≠ 0 = 1/2
𝑘 , if 𝑛 ∈ 𝐼𝑘.  

 Therefore, 

lim
𝑛→∞
P 𝑌𝑛 ≠ 0 = lim

𝑘→∞

1

2𝑘
= 0. 

 We conclude that 𝑌𝑛 converges to 0 in 

probability. 

 



Convergence with Probability 1 

 However, the total number of arrivals is 

infinite.  

 Therefore, 𝑌𝑛 is unity for infinitely many 

values of 𝑛.  

 So the event lim
𝑛→∞
𝑌𝑛 = 0 has 0 probability.  

 It doesn’t converge with probability 1. 



Convergence with Probability 1 

 Intuitively, the following is happening.  

 At any given time, there is only a small, and 
diminishing with 𝑛, probability of a substantial 
deviation from 0,  

 which implies convergence in probability.  

 On the other hand, given enough time, a 
substantial deviation from 0 is certain to 
occur.  

 For this reason, we do not have convergence with 
probability 1.  



Summary  

 Weak law of large numbers  

 ∀𝜖 > 0, P 𝑀𝑛 − 𝜇 ≥ 𝜖 → 0,  as 𝑛 → ∞. 

 Indicates that the sample mean 𝑀𝑛 is very likely 

to be close to the true mean 𝜇, as the sample size  

increases.  

 Based on the Chebyshev inequality. 



Summary 

 Central limit theorem 

 lim
𝑛→∞
P 𝑍𝑛 ≤ 𝑧 = Φ 𝑧 , where  

 𝑍𝑛 =
𝑋1+⋯+𝑋𝑛−𝑛𝜇

𝜎 𝑛
 

 Φ is the CDF of the standard normal. 

 Asserts that the sum of a large number of 

independent random variables is approximately 

normal. 

 Can be used for approximation. 



Summary 

 Strong law of large numbers. 

 P lim
𝑛→∞

𝑋1+⋯+𝑋𝑛

𝑛
=𝜇 = 1 

 Makes a more emphatic connection of 

probabilities and relative frequencies,  

 Is often an important tool in theoretical studies.  

 


