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more advanced topics 

 We introduce methods that are useful in:  

 deriving the distribution of a function of one or 

multiple random variables;  

 dealing with the sum of independent random 

variables, including the case where the number of 

random variables is itself random;  

 quantifying the degree of dependence between 

two random variables.  

 



 We’ll introduce a number of tools  

 transforms  

 convolutions,  

 

 We’ll refine our understanding of the concept 

of conditional expectation. 



Derived distributions 

 Consider functions 𝑌 = 𝑔(𝑋) of a continuous 

random variable 𝑋.  

 Question: Given the PDF of 𝑋, how to calculate 

the PDF of 𝑌?  

 Also called a derived distribution.  

 The principal method for doing so is the 

following two-step approach. 



Calculation of PDF of 𝑌 =  𝑔(𝑋) 

 
1. Calculate the CDF 𝐹𝑌 of 𝑌 using the formula 

𝐹𝑌 𝑦 = 𝑃 𝑔 𝑋 ≤ 𝑦 =  𝑓𝑋(𝑥)𝑑𝑥
{𝑥|𝑔(𝑥)≤𝑦}

 

 

2. Differentiate 𝐹𝑌 to obtain the PDF 𝑓𝑌 of 𝑌: 

𝑓𝑌 𝑦 =
𝑑𝐹𝑌

𝑑𝑦
𝑦 . 

 

 

 



Example 1 

 Let 𝑋 be uniform on 0,1 , and let 𝑌 = 𝑋.  

 Note that for every 𝑦 ∈ 0,1 , we have 

 

𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦   

                                 = 𝑃 𝑋 ≤ 𝑦  

                                 = 𝑃 𝑋 ≤ 𝑦2  

                                 = 𝑦2 

 



Example 1 

 We then differentiate and obtain the following 

(for 0 ≤ 𝑦 ≤ 1) 

𝑓𝑌 𝑦 =
𝑑𝐹𝑌

𝑑𝑦
𝑦 =

𝑑(𝑦2)

𝑑𝑦
= 2𝑦,  

 Outside the range 0,1 :  

 The CDF 𝐹𝑌(𝑦) is constant: 𝐹𝑌(𝑦) =  
0 for 𝑦 ≤ 0
1 for 𝑦 ≥ 1

  

 Thus by differentiating, 𝑓𝑌 𝑦 = 0 for 𝑦 ∉ 0,1 . 

 



Example 2  

 John Slow is driving from Boston to NYC, a 

distance of 180 miles.  

 The driving speed is constant, whose value is 

uniformly distributed between 30 and 60 

miles per hour.  

 Question: What is the PDF of the duration of the 

trip? 

 



Example 2  

 Let 𝑋 be the speed and let 𝑌 = 𝑔(𝑋) be the 

trip duration: 

𝑔 𝑋 =
180

𝑋
. 

 To find the CDF of 𝑌, we must calculate 

𝑃 𝑌 ≤ 𝑦 = 𝑃
180

𝑋
≤ 𝑦 = 𝑃

180

𝑦
≤ 𝑋 . 

 



Example 2  

 We use the given uniform PDF of 𝑋, which is 

𝑓𝑋 𝑥 =   
1/30 if 30 ≤ 𝑥 ≤ 60,

0 otherwise.        
 

 and the corresponding CDF, which is 

𝐹𝑋 𝑥 =  
0 if 𝑥 ≤ 30,           

(𝑥 − 30)/30, if 30 ≤ 𝑥 ≤ 60,
1 if 60 ≤ 𝑥.           

 

 



Example 2  

 Thus, 

𝐹𝑌 𝑦 = 𝑃
180

𝑦
≤ 𝑋 = 1 − 𝐹𝑋

180

𝑦
 

                 =

0 if 𝑥 ≤
180

60
,           

1 −

180

𝑦
−30

30
if 

180

60
≤ 𝑦 ≤

180

30
,

1 if 
180

30
≤ 𝑦.             

  

 



Example 2  

  =  

0 if 𝑦 ≤ 3,           
2 − (6/𝑦) if 3 ≤ 𝑦 ≤ 6,   

1 if 6 ≤ 𝑦.           
 

 Differentiating this expression, we obtain the 

PDF of 𝑌: 

𝑓𝑌 𝑦 =   

0 if 𝑦 ≤ 3,           

6/𝑦2 if 3 ≤ 𝑦 ≤ 6,   
0 if 6 ≤ 𝑦.           

 

 



Illustration of the whole process 

 The arrows indicate the flow of the calculation. 

 



Example 3 

 Let 𝑌 = 𝑔(𝑋) = 𝑋2, where 𝑋 is a random 

variable with known PDF.  

 For any  𝑦 ≥ 0 , we have 

                     𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦  

                               = 𝑃 𝑋2 ≤ 𝑦    

                               = 𝑃 − 𝑦 ≤ 𝑋 ≤ 𝑦  

                                 =  𝐹𝑋 𝑦 − 𝐹𝑋 − 𝑦 , 

 



Example 3 

 And therefore, by differentiating and using the 

chain rule, 

 

𝑓𝑌 =
1

2 𝑦
𝑓𝑋 𝑦 +

1

2 𝑦
𝑓𝑋 − 𝑦 , 𝑦 ≥ 0. 

 



The Linear Case 

 The PDF of 𝑎𝑋 + 𝑏 in terms of the PDF 𝑋. 

 

 

 

 

 

    

In this figure: 𝑎 = 2 and 𝑏 = 5.  



 

 

 

 As a first step, we obtain the PDF of 𝑎𝑋. The 

range of 𝑌 is wider than the range of 𝑋, by a 

factor of 𝑎.  

 Thus, the PDF must be stretched (scaled 

horizontally) by the factor.  

Intuition 



 

 

 

 But in order to keep the total area under the 

PDF (vertically) by the same factor 𝑎, we 

need to scale down the PDF (vertically) by 

the same factor 𝑎.  

 

Intuition 



 

 

 

 How about 𝑏? 

 The random variable 𝑎𝑋 + 𝑏  is the same as 

𝑎𝑋 except that its values are shifted by 𝑏. 

 Accordingly, we take the PDF of 𝑎𝑋 and shift 

it (horizontally) by 𝑏.  

 

Intuition 



Intuition 

 The end result of these operations is the PDF 

of  𝑌 = 𝑎𝑋 + 𝑏 and is given mathematically by 

𝑓𝑌 𝑦 =
1

𝑎
𝑓𝑋

𝑦 − 𝑏

𝑎
 

 Next: formal verification of this formula. 



Formal calculation 

 Let 𝑋 be a continuous random variable with 

PDF 𝑓𝑋, and let   

𝑌 = 𝑎𝑋 + 𝑏, 

   where 𝑎 and 𝑏 are scalars, with 𝑎 ≠ 0.  

 

 Then, 

𝑓𝑌 𝑦 =
1

𝑎
𝑓𝑋

𝑦 − 𝑏

𝑎
. 

 



Formal calculation 

 First calculate the CDF of 𝑌, and differentiate.  

 (1) Calculate the CDF , we have 

𝐹𝑌 𝑦  = 𝑃 𝑌 ≤ 𝑦  

  = 𝑃 𝑎𝑋 + 𝑏 ≤ 𝑦  

  
= 𝑃 𝑋 ≤

𝑦 − 𝑏

𝑎
 

  
= 𝐹𝑋

𝑦 − 𝑏

𝑎
 



Formal calculation 

 (2) Differentiate this equality and use the 

chain rule, to obtain 

𝑓𝑌 𝑦 =
𝑑𝐹𝑌

𝑑𝑦
𝑦  

                       =
1

𝑎
𝑓𝑋

𝑦 − 𝑏

𝑎
. 

 We only show the steps for the case 

where 𝑎 > 0; the case 𝑎 < 0 is similar. 



Example 4. Linear of Exponential 

 Suppose that 𝑋 is an exponential random 

variable with PDF 

 

𝑓𝑋 𝑥 =  𝜆𝑒−𝜆𝑥,   if 𝑥 ≥ 0,
       0,         otherwise,

 

     

   where λ is a positive parameter.  

 

 



Example 4. Linear of Exponential 

 Let 𝑌 =  𝑎𝑋 + 𝑏. Then, 

 

𝑓𝑌 𝑦 =  

𝜆

𝑎
𝑒−𝜆(𝑦−𝑏)/𝑎, if (𝑦 − 𝑏)/𝑎 ≥ 0,

0,           otherwise,

 

 

 If 𝑏 = 0 and 𝑎 > 0, then 𝑌 is an exponential 

random variable with parameter λ/𝑎.  

 



Example 4. Linear of Exponential 

 Let 𝑌 =  𝑎𝑋 + 𝑏. Then, 

𝑓𝑌 𝑦 =  

𝜆

𝑎
𝑒−𝜆(𝑦−𝑏)/𝑎, if (𝑦 − 𝑏)/𝑎 ≥ 0,

0,           otherwise,

 

 In general, however, 𝑌 need not be 

exponential.  

 For example, if 𝑎 < 0 and 𝑏 = 0, then the 

range of 𝑌 is the negative real axis. 

 Consider 𝑌 = −𝑋. 

 



Example 5. Linear of Normal 

 Suppose that 𝑋 is a normal random variable 

with mean 𝜇 and variance 𝜎2, and let 

𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 and 𝑏 are scalars, with 

𝑎 ≠ 0.  

 We have 

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  



Example 5. Linear of Normal 

 Therefore, 

                𝑓𝑌 𝑦 =
1

𝑎
 𝑓𝑋 

𝑦−𝑏

𝑎
 

                         =
1

𝑎

1

2𝜋𝜎
𝑒𝑥𝑝 −

𝑦−𝑏

𝑎
−𝜇

2

2𝜎2  

                         = 
1

2𝜋|𝑎|𝜎
𝑒𝑥𝑝 −

(𝑦−𝑏−𝑎𝜇)2

2𝑎2𝜎2   

 

 



Example 5. Linear of Normal 

𝑓𝑌 𝑦 =
1

2𝜋|𝑎|𝜎
𝑒𝑥𝑝 −

(𝑦 − 𝑏 − 𝑎𝜇)2

2𝑎2𝜎2
 

 

 We recognize this as a normal PDF with 

mean 𝑎𝜇 + 𝑏 and variance 𝑎2𝜎2.  

 

 In particular, 𝑌 is a normal random variable. 

 



The Monotonic Case 

 The calculation and the formula for the linear 

case can be generalized to the case where 𝑔 

is a monotonic function.  

 

 Let 𝑋 be a continuous random variable and 

suppose that its range is contained in a 

certain interval 𝐼,  
 𝑓𝑋(𝑥) = 0, ∀𝑥 ∈ 𝐼.  



The Monotonic Case (cont.) 

 We consider the random variable 𝑌 = 𝑔(𝑋), 
and assume that 𝑔 is strictly monotonic over 

the interval 𝐼, so that either 

 (monotonically increasing case) 
𝑔(𝑥) < 𝑔(𝑥′) for all 𝑥, 𝑥′ ∈ 𝐼 satisfying 𝑥 < 𝑥′, or 

 (monotonically decreasing case) 
𝑔(𝑥) > 𝑔(𝑥′) for all 𝑥, 𝑥′ ∈ 𝐼 satisfying 𝑥 < 𝑥′. 

 

 

 

 

 

 

 



The Monotonic Case (cont.) 

 Furthermore, we assume that the function 𝑔 

is differentiable.  

 

 Its derivative will necessarily be  

 nonnegative in the increasing case 

 nonpositive in the decreasing case 



The Monotonic Case (cont.) 

 An important fact is that a strictly monotonic 

function can be “inverted”.  

 There is some function ℎ, called the inverse 

of 𝑔, such that for all 𝑥 ∈ 𝐼, we have 

 

𝑦 = 𝑔 𝑥  if and only if 𝑥 = ℎ(𝑦). 

 



The Monotonic Case (cont.) 

 In Example 2, the inverse of the function 

𝑔(𝑥) = 180/𝑥 is ℎ(𝑦) = 180/𝑦, because we 

have 𝑦 = 180/𝑥 if and only if 𝑥 = 180/𝑦.  

 Other such examples of pairs of inverse 

functions include 

𝑔 𝑥 =  𝑎𝑥 + 𝑏, ℎ 𝑦 =
𝑦 − 𝑏

𝑎
. 

  where 𝑎 and 𝑏 are scalars with 𝑎 ≠ 0 

 



The Monotonic Case (cont.) 

   and 

𝑔 𝑥 = 𝑒𝑎𝑥, ℎ 𝑦 =
ln 𝑦

𝑎
. 

   where 𝑎 is a nonzero scalar. 

 

 For strictly monotonic functions 𝑔, the 

following is a convenient analytical formula 

for the PDF of the function 𝑌 = 𝑔(𝑋). 

 



 Suppose that 𝑔 is strictly monotonic and that 

for some function ℎ and all 𝑥 in the range of 𝑋 

we have 

𝑦 = 𝑔 𝑥  if and only if 𝑥 = ℎ(𝑦). 

 Assume that ℎ is differentiable.  

 Then, the PDF of 𝑌 in the region where 

𝑓𝑌 𝑦 > 0 is given by  

𝑓𝑌 𝑦 = 𝑓𝑋 ℎ(𝑦)
𝑑ℎ

𝑑𝑦
(𝑦)  

 

The monotonic case (cont.) 



Verification  

 Assume that 𝑔 increasing.  

 We have 

𝐹𝑌 𝑦 = 𝑃 𝑔(𝑋) ≤ 𝑦  

            = 𝑃 𝑋 ≤ ℎ(𝑦)  

      = 𝐹𝑋 ℎ(𝑦) , 

 The second equality can be 

justified the monotonically 

increasing property of 𝑔. 



 Last slide: 𝐹𝑌 𝑦 = 𝐹𝑋 ℎ(𝑦)  

 By differentiating this relation, using also the 

chain rule, we obtain 
 

𝑓𝑌 𝑦 =
𝑑𝐹𝑌

𝑑𝑦
𝑦  

                                            = 𝑓𝑋 (ℎ(𝑦)) 
𝑑ℎ

𝑑𝑦
𝑦  

 



 Because 𝑔 is monotonically increasing, ℎ is 

also monotonically increasing, so its 

derivative is nonnegative: 
𝑑ℎ

𝑑𝑦
𝑦 =

𝑑ℎ

𝑑𝑦
𝑦  

 

 This justifies the PDF formula for a 

monotonically increasing function 𝑔.  



 The case of monotonically decreasing 

function is similar.  

 We differentiate instead the relation 

𝐹𝑌 𝑦 = 𝑃 𝑔(𝑋) ≤ 𝑦  

                                       = 𝑃 𝑋 ≥ ℎ(𝑦)  

                               = 1 − 𝐹𝑋 ℎ(𝑦) , 

 When 𝑔 is decreasing, the event 𝑔 𝑋 ≤ 𝑦  

is the same as the event 𝑋 ≥ ℎ 𝑦 . 



Example: quadratic function revisited 

 Let 𝑌 = 𝑔(𝑋) = 𝑋2, where 𝑋 is a continuous 

uniform random variable on (0, 1].  

 𝑔 is strictly monotonic within this interval. 

 Its inverse is ℎ(𝑦) = 𝑦.  

 Thus, for any 𝑦 ∈ 0,1 , we have 

 

𝑓𝑋 𝑦 = 1.         
𝑑ℎ

𝑑𝑦
𝑦 =  

1

2 𝑦
. 

 



Example: quadratic function revisited 

 𝑓𝑋 𝑦 = 1.         
𝑑ℎ

𝑑𝑦
𝑦 =  

1

2 𝑦
 

 

 Thus  

𝑓𝑌 𝑦 =   

1

2 𝑦
, if 𝑦 ∈ 0,1 ,

0,     otherwise.

 

 

 



Functions of more random variables 

 Consider now functions of 2 or more r.v. 

 Recall the two-step procedure for one r.v. 

1. calculates the CDF  

2. differentiates to obtain the PDF. 

 This applies to the case with ≥ 2 r.v. as well. 



Example: archer shooting 

 Two archers shoot at a target.  

 The distance of each shot from the center of 

the target is uniformly distributed from 0 to 1, 

independent of the other shot.  

 Question: What is the PDF of the distance of the 

losing shot from the center? 



Example: archer shooting 

 Let 𝑋 and 𝑌 be the distances from the center 

of the first and second shots, respectively.  

 𝑍: the distance of the losing shot: 

𝑍 = max 𝑋, 𝑌 . 

 Since 𝑋 and 𝑌 are uniformly distributed over 

0,1 ,  

 we have, for all 𝑧 ∈ 0, 1 ,  

𝑃 𝑋 ≤ 𝑧 = 𝑃 𝑌 ≤ 𝑧 = 𝑧. 

 



Example: archer shooting 

 Thus, using the independence of 𝑋 and 𝑌, we 

have for all 𝑧 ∈ 0,1 ,  

𝐹𝑍 𝑧 = 𝑃 max {𝑋, 𝑌} ≤ 𝑧  

                                  =  𝑃 𝑋 ≤ 𝑧, 𝑌 ≤ 𝑧  

                           = 𝑃 𝑋 ≤ 𝑧 𝑃 𝑌 ≤ 𝑧  

                           = 𝑧2. 

 Differentiating, we obtain 

𝑓𝑍 𝑧 =   
2𝑧, if 0 ≤ 𝑧 ≤ 1.
0, otherwise. 

 

 



Example: 𝑌/𝑋 

 Let 𝑋 and 𝑌 be independent random 

variables that are uniformly distributed on the 

interval [0, 1].  

 

 Question: What is the PDF of the random 

variable 𝑍 = 𝑌/𝑋? 



 

 

 

 

 The value 𝑃(𝑌/𝑋 ≤ 𝑧) is equal to shaded 

subarea of unit square.  

 The figure on the left deals with the case where 

0 ≤ 𝑧 ≤ 1.  

 The figure on the right refers to the case where 𝑧 > 1. 

 



 

 

 

 

 We will find the PDF of 𝑍 by first finding its CDF 

and then differentiating.  

 We consider separately the case 0 ≤ 𝑧 ≤ 1 and 

𝑧 > 1.  



 

 

 

 

 𝐹𝑧 𝑧 = 𝑃 𝑌/𝑋 ≤ 𝑧  

=  
𝑧/2,              if 0 ≤ 𝑧 ≤ 1,
1 − 1/2𝑧,   if 𝑧 > 1,        
0,                  otherwise    

 



Example: 𝑌/𝑋 

     𝐹𝑧 𝑧 = 𝑃 𝑌/𝑋 ≤ 𝑧  

=  
𝑧/2,              if 0 ≤ 𝑧 ≤ 1,
1 − 1/2𝑧,   if 𝑧 > 1,        
0,                 otherwise    

 

 By differentiating, we obtain the pdf of 𝑍: 

𝑓𝑧 𝑧 =   

1/2,     if 0 ≤ 𝑧 ≤ 1,

1/(2𝑧2),  if 𝑧 > 1,              
0,         otherwise    

 

 

 



Example: Romeo and Juliet 

 Romeo and Juliet have a date at a given 

time, and each, independently, will be late by 

an amount of time that is exponentially 

distributed with parameter 𝜆.  

 

 Question: What is the PDF of difference between 

their times of arrival? 

 



Example: 𝑋 − 𝑌 

 We denote by 𝑋 and 𝑌 the amounts by which 

Romeo and Juliet are late, respectively.  

 We want to find the PDF of 𝑍 = 𝑋 − 𝑌, 

assuming that 𝑋 and 𝑌 are independent and 

exponentially distributed with parameter λ. 

 We will first calculate the CDF 𝐹𝑍(𝑧) by 

considering separately the cases 𝑧 ≥ 0 and 

𝑧 < 0. 



For 𝑧 ≥ 0 

 𝐹𝑍 𝑧 = 𝑃 𝑋 − 𝑌 ≤ 𝑧  

             = 1 − 𝑃 𝑋 − 𝑌 > 𝑧  

             = 1 −   𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥
∞

𝑧+𝑦
𝑑𝑦 

∞

0
 

                = 1 −  𝜆𝑒−𝜆𝑦  𝜆𝑒−𝜆𝑥 𝑑𝑥
∞

𝑧+𝑦
𝑑𝑦

∞

0
 

                = 1 −  𝜆𝑒−𝜆𝑦𝑒−𝜆 𝑧+𝑦 𝑑𝑦
∞

0
 

             = 1 − 𝑒−𝜆𝑧  𝜆𝑒−2𝜆𝑦𝑑𝑦
∞

0
  

                = 1 −
1

2
𝑒−𝜆𝑧 //  2𝜆𝑒−2𝜆𝑦𝑑𝑦

∞

0
= 1. 



𝑧 < 0 

 For the case 𝑧 < 0, we can use a similar 

calculation, but we can also argue using 

symmetry.  

 Indeed, the symmetry of the situation implies 

that the random variables 𝑍 = 𝑋 − 𝑌 and 

– 𝑍 = 𝑌 − 𝑋 have the same distribution. 

 



𝑧 < 0 

 Thus we have 𝐹𝑍 𝑧 = 1 − 𝐹𝑍 −𝑧 . 

 Recall when 𝑧 > 0: 𝐹𝑍 𝑧 = 1 −
1

2
𝑒−𝜆𝑧 

 Thus for 𝑧 < 0: 

 𝐹𝑍 𝑧 = 1 − 𝐹𝑍 −𝑧   

   = 1 − 1 −
1

2
𝑒−𝜆 −𝑧     //  −𝑧 > 0 

   =
1

2
𝑒𝜆𝑧 

 



together 

 Combining the two cases 𝑧 ≥ 0 and 𝑧 < 0: 

𝐹𝑍 𝑧 =   
1 −

1

2
𝑒−𝜆𝑧,  if 𝑧 ≥ 0,

1

2
𝑒𝜆𝑧,             if 𝑧 < 0.

 

 Differentiating: 

𝑓𝑍 𝑧 =   
(𝜆/2)𝑒−𝜆𝑧,  if 𝑧 ≥ 0,

(𝜆/2)𝑒𝜆𝑧,    if 𝑧 < 0.
 

 



together 

 

 This is known as a 

two-sided exponential 

PDF,  

 Also called the 

Laplace PDF. 

 𝑓 𝑥 𝜇, 𝑏 =
1

2𝑏
𝑒−

𝑥−𝜇

𝑏 . 

(see wiki page) 

https://en.wikipedia.org/wiki/Laplace_distribution


Convolution 

 We now consider an important example of a 

function 𝑍 of two random variables, namely, 

the case where 𝑍 = 𝑋 + 𝑌, for independent 𝑋 

and 𝑌.  

 For some initial insight, we start by deriving a 

PMF formula for the case where 𝑋 and 𝑌 are 

discrete.  

 



 Let 𝑍 = 𝑋 + 𝑌, where 𝑋 and 𝑌 are 

independent integer-valued random variables 

with PMFs 𝑃𝑋 and 𝑃𝑌, respectively.  

 Then, for any integer 𝑧,  

          𝑝𝑍 𝑧 = 𝑃 𝑋 + 𝑌 = 𝑧  

                        =  𝑃 𝑋 = 𝑥, 𝑌 = 𝑦  {(𝑥,𝑦)|𝑥+𝑦=𝑧}  

    =  𝑃 𝑋 = 𝑥, 𝑌 = 𝑧 − 𝑥  𝑥   

    =  𝑝𝑋 𝑥 𝑝𝑌 𝑧 − 𝑥𝑥  



 The resulting PMF 𝑝𝑧 is called the 

convolution of the PMFs of 𝑋 and 𝑌.  

 



 Suppose now that 𝑋 and 𝑌 are independent 

continuous random variables with PDFs 𝑓𝑥 

and 𝑓𝑦, respectively.  

 

 We wish to find the PDF of 𝑍 = 𝑋 + 𝑌.  

 Two steps: 

 find the joint PDF of 𝑋 and 𝑍 

 integrate to find the PDF of 𝑍. 

 



 We first note that  

        𝑃 𝑍 ≤ 𝑧 𝑋 = 𝑥 = 𝑃 𝑋 + 𝑌 ≤ 𝑧 𝑋 = 𝑥  

                                 = 𝑃 𝑥 + 𝑌 ≤ 𝑧 𝑋 = 𝑥  

                      = 𝑃 𝑥 + 𝑌 ≤ 𝑧  

                                 = 𝑃 𝑌 ≤ 𝑧 − 𝑥  

 The third equality follows from the independence 

of 𝑋 and 𝑌. 



 𝑃 𝑍 ≤ 𝑧 𝑋 = 𝑥 = 𝑃(𝑌 ≤ 𝑧 − 𝑥) 

 By differentiating both sides with respect to 𝑧, 

we see that 𝑓𝑍|𝑋 𝑧|𝑥 = 𝑓𝑌 𝑧 − 𝑥 .  

 Using the multiplication rule, we have 

 

𝑓𝑋,𝑍 𝑥, 𝑧 = 𝑓𝑋 𝑥 𝑓𝑍|𝑋 𝑧|𝑥  

                                        = 𝑓𝑋 𝑥 𝑓𝑌 𝑧 − 𝑥   

 



 𝑓𝑋,𝑍 𝑥, 𝑧 = 𝑓𝑋 𝑥 𝑓𝑌 𝑧 − 𝑥   

 Thus 𝑓𝑍 𝑧 =  𝑓𝑋,𝑍 𝑥, 𝑧  𝑑𝑥
∞

−∞
 

       =  𝑓𝑋 𝑥 𝑓𝑌 𝑧 − 𝑥  𝑑𝑥
∞

−∞
 

 The formula is entirely analogous to the one for 

the discrete case 

 𝑝𝑍 𝑧 =  𝑝𝑋 𝑥 𝑝𝑌 𝑧 − 𝑥𝑥  

 Except the summation is replaced by an integral and 

the PMFs are replaced by PDFs.  

 



Example: convolution  

 The random variables 𝑋 and 𝑌 are 

independent and uniformly distributed in the 

interval 0, 1 .  

 The PDF of 𝑍 = 𝑋 + 𝑌 is  

 

𝑓𝑍 𝑧 =  𝑓𝑋 𝑥 𝑓𝑌 𝑧 − 𝑥  𝑑𝑥
∞

−∞

 

 



Example: convolution  

 The integrand 𝑓𝑋 𝑥 𝑓𝑌 𝑧 − 𝑥  is nonzero (and 

equal to 1) for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑧 − 𝑥 ≤ 1.  

 Combining these two inequalities, the integrand 

is 1 for max {0, 𝑧 − 1} ≤ 𝑥 ≤ min {1, 𝑧}  

 and 0 otherwise. 

 𝑓𝑍 𝑧 =   
min 1, 𝑧 − max 0, 𝑧 − 1 , 0 ≤ 𝑧 ≤ 2,
0,                                                 otherwise,

 



Example: sum of normals 

 Message: The Sum of Two Independent Normal 

Random Variables in Normal. 

 Let 𝑋 and 𝑌 be independent normal random 

variables with means 𝜇𝑥, 𝜇𝑦, and variances 

σ𝑥
2, σ𝑦

2 , respectively, and let 𝑍 = 𝑋 + 𝑌. 

 𝑓𝑍 𝑧 =  
1

2𝜋 𝜎𝑥
𝑒𝑥𝑝 −

𝑥−𝜇𝑥
2

2𝜎𝑥
2

∞

−∞
  

    
1

2𝜋 𝜎𝑦
𝑒𝑥𝑝 −

𝑧−𝑥− 𝜇𝑦
2

2𝜎𝑦
2  

 



Example: sum of normals 

 This integral can be evaluated in closed form, 

but the details are tedious and are omitted.  

 Answer turns out to be 

  𝑓𝑍 𝑧 =
1

2𝜋(𝜎𝑥
2+𝜎𝑦

2)
𝑒𝑥𝑝 −

𝑧−𝜇𝑥− 𝜇𝑦
2

2(𝜎𝑥
2+𝜎𝑦

2)
 

 It’s a normal PDF with mean 𝜇𝑥+𝜇𝑦 and 

variance 𝜎𝑥
2 + 𝜎𝑦

2.  



Example: sum of normals 

 We therefore reach the conclusion that the 

sum of two independent normal random 

variables is normal.  

 

 Given that scalar multiples of normal random 

variables are also normal, it follows that 

𝑎𝑋 + 𝑏𝑌 is also normal, for any nonzero 𝑎 

and 𝑏.  

 



Example: 𝑋 − 𝑌 

 The convolution formula can also be used to 

find the PDF of 𝑋 − 𝑌, when 𝑋 and 𝑌 are 

independent, by viewing 𝑋 − 𝑌 as the sum of 

𝑋 and −𝑌.  

 Note: the PDF of −𝑌 is given by 𝑓−𝑌 𝑦 =
𝑓𝑌 −𝑦 . 

 Thus 𝑓𝑋−𝑌 𝑧 =  𝑓𝑋 𝑥 𝑓−𝑌 𝑧 − 𝑥 𝑑𝑥
∞

−∞
  

                         =  𝑓𝑋 𝑥 𝑓𝑌 𝑥 − 𝑧 𝑑𝑥
∞

−∞
 

 



Example: 𝑋 − 𝑌 

 When applying the convolution formula, often 

the most delicate step was to determine the 

correct limits for the integration.  

 

 This is often tedious and error prone, but can 

be bypassed using a graphical method. 

 



Graphical Calculation of Convolutions 

 
 We use a dummy variable 𝑡 as the argument 

of the different functions involved in this 

discussion.  

 Consider two PDFs 𝑓𝑋 𝑡  and 𝑓𝑌 𝑡 . For a 

fixed value of 𝑧, the graphical evaluation of 

the convolution 

𝑓𝑍 𝑧 =  𝑓𝑋 𝑡 𝑓𝑌 𝑧 − 𝑡 𝑑𝑡
∞

−∞

 

   consists of the following steps: 

 



 We plot 𝑓𝑌 𝑧 − 𝑡  as a function of 𝑡.  

 This plot has the same shape as the plot of 𝑓𝑌 𝑡  

except that it is first “flipped” and then shifted by 

an amount 𝑧.  

 If 𝑧 > 0, this is a shift to the right, if 𝑧 < 0, this is a 

shift to the left. 

 We place the plots of 𝑓𝑋 𝑡  and 𝑓𝑌 𝑧 − 𝑡  on 

top of each other, and form their product. 



 Calculate the value of 𝑓𝑍 𝑧  by calculating the 

integral of the product graph. 

 

 By varying the amount 𝑧 by which we are 

shifting, we obtain 𝑓𝑍 𝑧  for any 𝑧. 

 



 

 

 

 

 

 
 

 

 𝐹(𝑧) = integral of function shown in the last plot. 
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Covariance and Correlation 

 Covariance and correlation – the measurement 

of the strength and direction of the relation 

between 2 random variables. 

 



Covariance 

 The covariance of two random variables 𝑋 

and 𝑌 are defined as 

cov 𝑋, 𝑌 = E 𝑋 − E 𝑋 𝑌 − 𝐄 𝑌 . 

 Alternatively 

cov 𝑋, 𝑌 = E 𝑋𝑌 − E 𝑋 E 𝑌 . 

 Exercise: verify that the two definitions are 

equivalent.  

 



Covariance - Properties 

 For any random variable 𝑋, 𝑌, and 𝑍, and any 

scalars 𝑎 and 𝑏: 

 cov 𝑋, 𝑋 = var 𝑋 ,  

 cov 𝑋, 𝑎𝑌 + 𝑏 = 𝑎 ⋅ cov 𝑋, 𝑌 ,  

 cov 𝑋, 𝑌 + 𝑍 = cov 𝑋, 𝑌 + cov 𝑋, 𝑍 . 

 

 Exercise: verify these. 



Covariance - Properties 

 Independent random variables are 

uncorrelated. In fact, 

cov 𝑋, 𝑌 = E 𝑋𝑌 − E 𝑋 E 𝑌 = 0. 

 

 But not vice versa, as illustrated by the next 

example. 



Covariance - Example 

 𝑋, 𝑌  is uniformly distributed over 

1,0 , 0,1 , −1,0 , (0, −1) , then 

E 𝑋𝑌 = 0 

since either 𝑋 or 𝑌 is 0.  

 Also E 𝑋 = E 𝑌 = 0. Thus 

cov 𝑋, 𝑌 = 0. 

 But X and Y are not independent. 

For example, 𝑋 ≠ 0 ⇒ 𝑌 = 0. 

 

 



Correlation Coefficient 

 For any random variable 𝑋, 𝑌 with nonzero 
variances, the correlation coefficient 𝜌 𝑋, 𝑌  of 
them is defined as 

𝜌(𝑋, 𝑌) =
cov(𝑋, 𝑌)

var 𝑋 var(𝑌)
. 

 It may be viewed as a normalized version of the 
covariance cov(𝑋, 𝑌). 
 Recall cov 𝑋, 𝑋 = var 𝑋 . 

 It’s easily verified that 

−1 ≤ 𝜌(𝑋, 𝑌) ≤ 1 



Correlation coefficient: Properties 

 𝜌 𝑋, 𝑌 = 1 iff ∃ a positive number 𝑐 s.t. 

𝑋 − E 𝑋 = 𝑐 𝑌 − E 𝑌 .  

 If 𝜌 𝑋, 𝑌 > 0, then the values of 𝑋 − E 𝑋  and 

𝑌 − E 𝑌  “tend” to have the same sign. 

 𝜌 𝑋, 𝑌 = −1 iff ∃ a negative number 𝑐 s.t. 

𝑋 − E 𝑋 = 𝑐(𝑌 − E[𝑌]). 

 If 𝜌 𝑋, 𝑌 < 0, then the values of 𝑋 − E 𝑋  and 

𝑌 − E 𝑌  “tend” to have the opposite sign. 



Correlation coefficient: Examples 

 Consider 𝑛 independent tosses, with head 

probability 𝑝.  

 𝑋 = number of heads  

 𝑌 = number of tails  

 Then 𝑋 + 𝑌 = 𝑛, and thus var 𝑌 = var 𝑋 , 

E 𝑋 + E 𝑌 = E 𝑋 + 𝑌 = 𝑛 = 𝑋 + 𝑌. 

 Hence, 

𝑋 − E 𝑋 = −(𝑌 − E 𝑌 ) 

 



𝜌 𝑋, 𝑌  Examples 

 Las slide: 𝑋 − E 𝑋 = −(𝑌 − E 𝑌 ) 

 Then, 

        cov 𝑋, 𝑌 = E 𝑋 − E 𝑋 𝑌 − E 𝑌  
                           = −E 𝑋 − E 𝑋 2  
                           = −var 𝑋 . 

 Hence, 

𝜌 𝑋, 𝑌 =
cov 𝑋, 𝑌

var 𝑋 var 𝑌
=

−var(𝑋)

var 𝑋 var 𝑋
= −1. 



Variance of Summations 

 We know that in general 

var 𝑋1 + 𝑋2 ≠ var 𝑋1 + var 𝑋2  

 A more precise statement:  

var 𝑋1 + 𝑋2 = var 𝑋1 + var 𝑋2  

      +2 ∙ cov 𝑋1, 𝑋2  

 In general, let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be random variables 

with finite variance, then we have 

 var  𝑋𝑖𝑖 =  var(𝑋𝑖)𝑖 +  cov(𝑋𝑖 , 𝑋𝑗)𝑖≠𝑗   



Variance of Summations 

 Proof. Let 𝑋 𝑖 = 𝑋𝑖 − E 𝑋𝑖 , 

          var  𝑋𝑖

𝑖

= E  𝑋 𝑖

𝑖

2

 

                                   =   E 𝑋 𝑖𝑋 𝑗
𝑗𝑖

 

=  E 𝑋 𝑖
2

𝑖

+  E 𝑋 𝑖𝑋 𝑗
𝑖≠𝑗

 

                                  =  var(𝑋𝑖)

𝑖

+  cov(𝑋𝑖 , 𝑋𝑖)

𝑖≠𝑗

. 

 



Variance of Summations – Example 

 Consider 𝑛 people throwing their hats in a 

box and pick a hat at random.  

 𝑋 = number of people who pick their own 

hats.  

 𝑋𝑖 =  
1 if the 𝑖−th person picks its own hat,

0 otherwise.
  

 Then 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛. 

 And E 𝑋𝑖 =
1

𝑛
. 



Variance of Summations – Example 

 For 𝑖 ≠ 𝑗, we have 

        cov 𝑋𝑖 , 𝑋𝑗 = E 𝑋𝑖𝑋𝑗 − E 𝑋𝑖 E 𝑋𝑗  

                              =
1

𝑛(𝑛 − 1)
−

1

𝑛2
 

                              =
1

𝑛2(𝑛 − 1)
. 

 Also 

              var 𝑋𝑖 =
1

𝑛
1 −

1

𝑛
. 

 



Variance of Summations – Example 

 Recall 

var  𝑋𝑖

𝑖

=  var(𝑋𝑖)

𝑖

+  cov(𝑋𝑖 , 𝑋𝑖)

𝑖≠𝑗

. 

 We have 

var 𝑋 = 𝑛
1

𝑛
1 −

1

𝑛
+

𝑛 𝑛 − 1

𝑛2 𝑛 − 1
= 1. 
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 We revisit the conditional expectation of a 

random variable 𝑋 given another random 

variable 𝑌. 

 We introduced a random variable, denoted by 

𝐄[𝑋|𝑌], that takes value 𝐄 𝑋 𝑌 = 𝑦  when 𝑌 

takes the value 𝑦.  

 Since 𝐄 𝑋 𝑌 = 𝑦  is a function of 𝑦, 𝐄 𝑋 𝑌  is 

a function of 𝑌.  



Example: coin 

 A biased coin.  

 𝑌 = the probability of heads  

 𝑌 is itself random, with a known distribution 
over the interval [0,1].  

 We toss the coin 𝑛 times.  

 𝑋 = the number of heads obtained.  

 Then, for any 𝑦 ∈ 0,1 , we have 
𝐄 𝑋|𝑌 = 𝑦 = 𝑛𝑦  

 so 𝐄 𝑋|𝑌  is the random variable 𝑛𝑌. 



 Since 𝐄[𝑋|𝑌] is a random variable, it has an 
expectation 𝐄 𝐄 𝑋 𝑌  of its own,  

 which can be calculated using the expected 
value rule:  

𝐄 𝐄 𝑋 𝑌 =  
 𝐄 𝑋|𝑌 = 𝑦 𝑝𝑌(𝑦)𝑦 𝑌 discrete      

 𝐄 𝑋|𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦
∞

−∞
𝑌 continuous

  

 By  total probability theorem, RHS = 𝐄 𝑋 . 

 Law of Iterated Expectations:  

𝐄 𝐄 𝑋 𝑌 = 𝐄 𝑋 . 

 



Example: coin 

 𝑌 = the probability of heads for our coin  

 𝑌 is uniformly distributed over the interval 

0,1 .  

 Since 𝐄 𝑋|𝑌 = 𝑛𝑌 and 𝐄 𝑌 = 1/2.  

 By the law of iterated expectations, we have  

𝐄[𝑋] = 𝐄 𝐄 𝑋 𝑌 = 𝐄 𝑛𝑌 = 𝑛𝐄 𝑌 =
𝑛

2
  

 

 



Example: stick breaking 

 We start with a stick of length ℓ.  

 Break it at a point which is chosen randomly 

and uniformly over its length,  

 Keep the left piece.  

 Repeat the same process on this piece.  

 Question: What is the expected length of the piece 

that we are left with after breaking twice? 



 𝑌 = the length of the piece after we break for 

the first time.  

 𝑋 = the length after we break for the second 

time.  

 We have 𝐄 𝑋 𝑌 = 𝑌/2,  

 since the breakpoint is chosen uniformly over a 

piece of length 𝑌.  

 For a similar reason, 𝐄 𝑌 = ℓ/2.  

 ∴ 𝐄 𝑋 = 𝐄 𝐄 𝑋 𝑌 = 𝐄 𝑌/2 = 𝐄[𝑌]/2 = ℓ/4. 
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Transforms 

 We introduce the transform associated with a 

random variable.  

 The transform provides us with an alternative 

representation of a probability law.  

 It’s not particularly intuitive, but it is often 

convenient for certain types of mathematical 

manipulations. 

 



Transforms 

 The transform associated with a random 

variable 𝑋, also referred to as the 

associated moment generating function, is 

a function 𝑀𝑋 𝑠  of a scalar parameter 𝑠, 

defined by 

𝑀𝑋 𝑠 = E 𝑒𝑠𝑋 . 

 The simpler notation 𝑀(𝑠) can also be 

used whenever the underlying random 

variable 𝑋 is clear from the context.  



Transforms 

 For the defining formula 𝑀𝑋 𝑠 = E 𝑒𝑠𝑋  

 When 𝑋 is a discrete random variable, the 

transform is given by 

𝑀(𝑠) =  𝑒𝑠𝑥

𝑥
𝑝𝑋 𝑥 . 

 When 𝑋 is a continuous random variable: 

𝑀(𝑠) =  𝑒𝑠𝑥
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥. 

 



Example – a specific discrete r.v. 

 Let 

𝑝𝑋 𝑥 =  

1/2 if 𝑥 = 2,
1/6 if 𝑥 = 3,
1/3 if 𝑥 = 5.

 

 We have 

𝑀 𝑠 = E 𝑒𝑠𝑋 =
1

2
𝑒2𝑠 +

1

6
𝑒3𝑠 +

1

3
𝑒5𝑠. 

 



Example - Poisson 

 Now consider the transform associated 

with a Poisson random variable.  

 Let 𝑋 be a Poisson random variable with 

parameter 𝜆: 

𝑝𝑋 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
, 𝑥 = 0,1,2, . . . 

 The transform is  

𝑀 𝑠 = E 𝑒𝑠𝑋 =  𝑒𝑠𝑥∞
𝑥=0

𝜆𝑥𝑒−𝜆

𝑥!
  

 



Example - Poisson 

 We can simply this formula 

𝑀 𝑠 =  𝑒𝑠𝑥∞
𝑥=0

𝜆𝑥𝑒−𝜆

𝑥!
  

 Let 𝑎 = 𝑒𝑠𝜆,  

      𝑀 𝑠 = 𝑒−𝜆  
𝑎𝑥

𝑥!
∞
𝑥=0 = 𝑒−𝜆𝑒𝑎 = 𝑒𝜆(𝑒𝑠−1). 

 



Example - Exponential 

 Let 𝑋 be an exponential random variable with 

parameter 𝜆 

𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥,  𝑥 ≥ 0. 

 Then, for 𝑠 < 𝜆,  

       𝑀 𝑠 = E 𝑒𝑠𝑋 = 𝜆  𝑒𝑠𝑥𝑒−𝜆𝑥𝑑𝑥
∞

0
 

                    =
𝜆𝑒 𝑠−𝜆 𝑥

𝑠 − 𝜆
 
0

∞
          𝑖𝑓 𝑠 < 𝜆  

                    =
𝜆

𝜆 − 𝑠
 



Transforms - Note 

 It is important to realize that the transform 
is not a number but rather a function of a 
parameter 𝑠.  

 Thus,  we are dealing with a 
transformation that starts with a function, 
e.g., a PDF, and results in a new function.  

 Strictly speaking, 𝑀 𝑠  is only defined for 
those values of 𝑠 for which E 𝑒𝑠𝑋  is finite. 

 As in the preceding example. 



Example - 𝑎𝑋 + 𝑏 

 We consider the transform associated with 

a linear function of a random variable.  

 Let 𝑀𝑋(𝑠) be the transform associated 

with a random variable 𝑋.  

 Consider a new random variable  

𝑌 = 𝑎𝑋 + 𝑏. 

 



Example - 𝑎𝑋 + 𝑏 

 We then have 

             𝑀𝑌 𝑠 = E 𝑒𝑠(𝑎𝑋+𝑏)  
                            = 𝑒𝑏𝑠E 𝑒𝑠𝑎𝑋  
                            = 𝑒𝑏𝑠𝑀𝑋 𝑠𝑎 . 

 For example, if 𝜆 = 1, so that  

𝑀𝑋 𝑠 = 1/(1 − 𝑠) 
and if 𝑌 = 2𝑋 + 3, then 

             𝑀𝑌 𝑠 = 𝑒3𝑠/(1 − 2𝑠) 

 



Example - Normal 

 Consider the transform associated with a 

normal random variable.  

 Let 𝑋 be a normal random variable with 

mean 𝜇 and variance 𝜎2.  

 We first consider the special case of 

standard normal variable 𝑌 

𝑓𝑌 𝑦 =
1

2𝜋
𝑒−𝑦2/2. 

 



Example - Normal 

 The associated transform is 

𝑀𝑌 𝑠 =  
1

2𝜋
𝑒−𝑦2/2𝑒𝑠𝑦𝑑𝑦

∞

−∞

 

=
1

2𝜋
 𝑒−(𝑦2/2)+𝑠𝑦𝑑𝑦

∞

−∞

 

                           = 𝑒𝑠2/2
1

2𝜋
 𝑒−(𝑦−𝑠)2/2𝑑𝑦

∞

−∞

 

                     = 𝑒𝑠2/2 

 

 

 



Example - Normal 

 For general normal random variable 𝑋 with 

mean 𝜇 and variance 𝜎2 

𝑋 = 𝜎𝑌 + 𝜇  

 By applying transform of linear functions, 

we obtain 

𝑀𝑋 𝑠 = 𝑒𝑠𝜇𝑀𝑌 𝑠𝜎 = 𝑒
𝜎2𝑠2

2
+𝜇𝑠

 

 

 



From Transforms to Moments 

 Why we gave transform an alternative 

name moment generating function?  

 The moments of a random variable are 

easily computed from the associated 

transform.  

 Consider the definition 

𝑀(𝑠) =  𝑒𝑠𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

. 



From Transforms to Moments 

 Take derivative of both sides of 

𝑀(𝑠) =  𝑒𝑠𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

. 

 We obtain 
𝑑

𝑑𝑠
𝑀 𝑠 =

𝑑

𝑑𝑠
 𝑒𝑠𝑥𝑓𝑋 𝑥 𝑑𝑥

∞

−∞

 

             =  𝑥𝑒𝑠𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

 

 

 



From Transforms to Moments 

 Last slide: 
𝑑

𝑑𝑠
𝑀 𝑠 =  𝑥𝑒𝑠𝑥𝑓𝑋 𝑥 𝑑𝑥

∞

−∞
 

 Take 𝑠 = 0 
𝑑

𝑑𝑠
𝑀 𝑠  

𝑠=0

= E 𝑋  

 Generally, differentiating 𝑛 times, we get 
𝑑𝑛

𝑑𝑠𝑛
𝑀 𝑠  

𝑠=0

= E 𝑋𝑛  

 

 



Moments - Example 

 Let 

𝑝𝑋 𝑥 =  

1/2 if 𝑥 = 2,
1/6 if 𝑥 = 3,
1/3 if 𝑥 = 5.

 

 Recall that  

𝑀 𝑠 =
1

2
𝑒2𝑠 +

1

6
𝑒3𝑠 +

1

3
𝑒5𝑠. 

 

 



Moments - Example 

 𝑀 𝑠 =
1

2
𝑒2𝑠 +

1

6
𝑒3𝑠 +

1

3
𝑒5𝑠. 

 Then 

E 𝑋 =
𝑑

𝑑𝑠
𝑀 𝑠  

𝑠=0

=
1

2
⋅ 2 +

1

6
⋅ 3 +

1

3
⋅ 5 =

19

6
 

 Also 

E 𝑋2 =
𝑑2

𝑑𝑠2
𝑀 𝑠  

𝑠=0

=
1

2
⋅ 4 +

1

6
⋅ 9 +

1

3
⋅ 25 =

71

6
 

 

 



Moments - Example 

 For an exponential random variable with 

PDF 

𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0. 

 We found earlier that  

𝑀 𝑠 =
𝜆

𝜆 − 𝑠
 

 Thus 
𝑑

𝑑𝑠
𝑀 𝑠 =

𝜆

𝜆−𝑠 2, 
𝑑2

𝑑𝑠2 𝑀 𝑠 =
2𝜆

𝜆−𝑠 3. 



Moments - Example 

 Similarly 

E 𝑋 =
𝑑

𝑑𝑠
𝑀 𝑠  

𝑠=0

=
𝜆

𝜆 − 𝑠 2
 
𝑠=0

=
1

𝜆
 

 Also 

E 𝑋2 =
𝑑2

𝑑𝑠2
𝑀 𝑠  

𝑠=0

=
2𝜆

𝜆 − 𝑠 3
 
𝑠=0

=
2

𝜆2
 

 

 



Moments - Example 

 We note two more useful and generic 

properties of transforms.  

 For any random variable 𝑋, we have 

𝑀𝑋 0 = E 𝑒0𝑋 = 1 

 And if 𝑋 takes only nonnegative integer 

values, then 

lim
𝑠→−∞

𝑀𝑋 𝑠 = P(𝑋 = 0) 

 



Inversion of Transforms 

 A very important property of the transform 

𝑀𝑋 𝑠  is that it can be inverted,  

 That is, it can be used to determine the 

probability law of the random variable 𝑋.  

 To do this, some appropriate mathematical 

conditions are required, which are satisfied 

in all of the following examples. 



Inversion of Transforms 

 

 Formally, the transform 𝑀𝑋 𝑠  associated 

with a random variable 𝑋 uniquely 

determines the CDF of 𝑋,  

 assuming that 𝑀𝑋 𝑠  is finite for all 𝑠 in some 

interval −𝑎, 𝑎 , where 𝑎 is a positive number. 



Inversion of Transforms - Example 

 We are told that the transform associated 

with a random variable 𝑋 is 

𝑀𝑋 𝑠 =
1

4
𝑒−𝑠 +

1

2
+

1

8
𝑒4𝑠 +

1

8
𝑒5𝑠 

 Then we can infer that 𝑋 is a discrete 

random variable.  

 The different values that 𝑋 can take can 

be read from the corresponding 

exponents, and are −1, 0, 4, and 5. 



Inversion of Transforms - Example 

 𝑀𝑋 𝑠 =
1

4
𝑒−𝑠 +

1

2
+

1

8
𝑒4𝑠 +

1

8
𝑒5𝑠 

 The probability of each value 𝑥 is given by 

the coefficient multiplying the 

corresponding 𝑒𝑠𝑥 term: 

P 𝑋 = −1 = 1/4 

P 𝑋 = 0 = 1/2 

P 𝑋 = 4 = 1/8 

P 𝑋 = 5 = 1/8 
 



Inversion of Transforms - Example 

 We are told that the transform associated 
with a random variable 𝑋 is of the form  

𝑀 𝑠 =
𝑝𝑒𝑠

1 − (1 − 𝑝)𝑒𝑠
. 

   where 0 < 𝑝 ≤ 1.  

 Recall the formula for the geometric series 
valid (for −1 < 𝛼 < 1): 

1

1 − 𝛼
= 1 + 𝛼 + 𝛼2 + ⋯ 



Inversion of Transforms - Example 

 We use the formula with 𝛼 = (1 − 𝑝)𝑒𝑠, and 
for 𝑠 sufficiently close to zero so that 
1 − 𝑝 𝑒𝑠 < 1.  

 We obtain 

   𝑀 𝑠 = 𝑝𝑒𝑠(1 + 1 − 𝑝 𝑒𝑠  
                        + 1 − 𝑝 2𝑒2𝑠 + 1 − 𝑝 3𝑒3𝑠 + ⋯ ) 

 We can infer that 

𝑃 𝑋 = 𝑘 = 𝑝 1 − 𝑝 𝑘−1,  𝑘 = 1, 2, … 

 which is the geometric distribution with 
parameter 𝑝.  

 



Inversion of Transforms - Example 

 We address the transform associated with a 
mixture of two distributions.  

 Consider a neighborhood bank has three 
tellers, two of them fast, one slow.  

 The time to assist a customer is exponentially 
distributed with parameter 𝜆 = 6 at the fast 
tellers, and 𝜆 = 4 at the slow teller.  

 Alice enters the bank and chooses a teller at 
random, we try to find the PDF of the time 𝑋 
it takes.  



Inversion of Transforms - Example 

 We have 

𝑓𝑋 𝑥 =
2

3
6𝑒−6𝑥 +

1

3
4𝑒−4𝑥, 𝑥 ≥ 0 

 Then 

𝑀 𝑠 =  𝑒𝑠𝑥
2

3
6𝑒−6𝑥 +

1

3
4𝑒−4𝑥

∞

0

𝑑𝑥 

                                  =
2

3
 𝑒𝑠𝑥6𝑒−6𝑥𝑑𝑥 +

∞

0

1

3
 𝑒𝑠𝑥4𝑒−4𝑥𝑑𝑥

∞

0

 

                                  =
2

3

6

6 − 𝑠
+

1

3

4

4 − 𝑠
,  for 𝑠 < 4 

 

 

 



Sums of Independent Variables 

 Transform methods are particularly 

convenient when dealing with a sum of 

random variables.  

 An important result is that addition of 

independent random variables 

corresponds to multiplication of 

transforms. 



Sums of Independent Variables 

 We 𝑋 and 𝑌 be independent random 

variables, and let 𝑍 = 𝑋 + 𝑌. By definition 

we have 

𝑀𝑍 𝑠 = E 𝑒𝑠𝑍 = E 𝑒𝑠𝑋𝑒𝑠𝑌  

 Since 𝑋 and 𝑌 are independent, 𝑒𝑠𝑋 and 

 𝑒𝑠𝑌 are independent as well. Hence, 

𝑀𝑍 𝑠 = 𝑀𝑋 𝑠 𝑀𝑌 𝑠  

 



Sums of Independent Variables 

 

 Generally, 𝑋1, ⋯ , 𝑋𝑛 is a collection of 

independent random variables, and 

𝑍 = 𝑋1 + ⋯ + 𝑋𝑛 

 Then, 

𝑀𝑍 𝑠 = 𝑀𝑋1
𝑠 ⋯ 𝑀𝑋𝑛

𝑠  

 



Sums of Variables - Example 

 We address the transform associated with 

the binomial.  

 Let 𝑋1, ⋯ , 𝑋𝑛 be independent Bernoulli 

random variables with a common 

parameter 𝑝. Then 

𝑀𝑋𝑖
𝑠 = 1 − 𝑝 𝑒0𝑠 + 𝑝𝑒1𝑠 = 1 − 𝑝 + 𝑝𝑒𝑠 

 For 𝑍 = 𝑋1 + ⋯ + 𝑋𝑛, 

𝑀𝑍 𝑠 = (1 − 𝑝 + 𝑝𝑒𝑠)𝑛 



Sums of Variables - Example 

 We will show that the sum of independent 

Poisson random variables is Poisson. 

 Let 𝑋 and 𝑌 be independent Poisson 

random variables with means 𝜆 and 𝜇, 

respectively. 

 Let 𝑍 = 𝑋 + 𝑌 

𝑀𝑋 𝑠 = 𝑒𝜆(𝑒𝑠−1) 

𝑀𝑌 𝑠 = 𝑒𝜇(𝑒𝑠−1) 



Sums of Variables - Example 

 We have 

𝑀𝑍 𝑠 = 𝑀𝑋 𝑠 𝑀𝑌 𝑠 = 𝑒(𝜆+𝜇)(𝑒𝑠−1) 

 Thus, transform associated with 𝑋 is the 

same as the transform associated with a 

Poisson random variable with mean 𝜆 + 𝜇.  

 By the uniqueness property of transforms, 

𝑍 is Poisson with mean 𝜆 + 𝜇. 

 



Sums of Variables - Example 

 We will show that the sum of independent 

normal random variables is normal. 

 Let 𝑋 and 𝑌 be independent normal 

random variables with means 𝜇𝑥 and𝜇𝑦, 

and variances 𝜎𝑥
2, 𝜎𝑦

2, respectively. 

 Let 𝑍 = 𝑋 + 𝑌 



Sums of Variables - Example 

 Then 

𝑀𝑋 𝑠 = 𝑒
𝜎𝑥

2𝑠2

2
+𝜇𝑥𝑠

 

𝑀𝑌 𝑠 = 𝑒
𝜎𝑦

2𝑠2

2
+𝜇𝑦𝑠

 

 and 

𝑀𝑍 𝑠 = 𝑒
(𝜎𝑥

2+𝜎𝑦
2)𝑠2

2
+(𝜇𝑥+𝜇𝑦)𝑠

 

 It corresponds to 𝑁 𝜇𝑥 + 𝜇𝑦, 𝜎𝑥
2 + 𝜎𝑦

2 . 



Transforms Associated w/ Joint Dist. 

 Consider random variables 𝑋1, ⋯ , 𝑋𝑛, the 

associated multivariate transform is a 

function with 𝑛 parameters 

𝑀𝑋1,⋯,𝑋𝑛
𝑠1, ⋯ , 𝑠𝑛 = E[𝑒𝑠1𝑋1+⋯+𝑠𝑛𝑋𝑛] 

 The inversion property of transforms can 

be extended to the multivariate case. 



Transforms for Common Discrete r.v. 

 
 



Transforms for Common Continuous 

Random Variables  

  



Content 

 Derived Distributions  

 Covariance and Correlation  

 Conditional Expectation and Variance 

Revisited  

 Transforms 

 Sum of a Random Number of Independent 

Random Variables 



Sums of A Random Number of Independent 

Random Variables 

 So far we have always assumed that the 

number of variables in the sum is known 

and fixed. 

 

 Now we will consider the case where the 

number of random variables being added 

is itself random. 



Sums of A Random Number of Independent 

Random Variables 

 That is, we consider 

𝑌 = 𝑋1 + ⋯ + 𝑋𝑁 

 Where 𝑋1, ⋯ , 𝑋𝑁 are identical and 

independent random variables.  

 And 𝑁 is a random variable that takes 

nonnegative integer values. 

 Assume that its PMF is 𝑝𝑁. 

 



 Denote by E[𝑋] and var(𝑋) the common 

mean and variance, respectively, of the 𝑋𝑖.  

 We wish to derive formulas for the mean, 

variance, and the transform of 𝑌. 

 We address this by first conditioning on 

event 𝑁 = 𝑛. 

Sums of A Random Number of Independent 

Random Variables 



 Firstly, 

E 𝑌 𝑁 = 𝑛 = E 𝑋1 + ⋯ + 𝑋𝑛 = 𝑛E[𝑋] 

 Hence, 

E 𝑌 𝑁 = 𝑁 ⋅ E 𝑋  

 Recall that E 𝑌 𝑁  is a random variable, which 
takes value E 𝑌 𝑁 = 𝑛  when 𝑁 = 𝑛. 

 Then by the law of iterated expectations, we 
obtain 

E 𝑌 = E E 𝑌 𝑁 = E[𝑁]E[𝑋] 

 

Sums of A Random Number of Independent 

Random Variables 



 Similarly, 

var 𝑌 𝑁 = 𝑛 = var 𝑋1 + ⋯+ 𝑋𝑛

= 𝑛 ∙ var 𝑋 . 

 Law of total variance: (proof omitted) 

   var 𝑋 = E var 𝑋 𝑌 + var 𝐸 𝑋|𝑌 . 

 var 𝑌 = E var 𝑌 𝑁 + var E 𝑌 𝑁  
                  = E 𝑁 ∙ var(𝑋) + var 𝑁 ⋅ E 𝑋  
                  = E 𝑁 var 𝑋 + E[𝑋]2var(𝑁) 

Sums of A Random Number of Independent 

Random Variables 



 Similarly, we can compute the transform. 

 For each 𝑛, 

E 𝑒𝑠𝑌 𝑁 = 𝑛 = E 𝑒𝑠𝑋1 ⋯𝑒𝑠𝑋𝑛 = 𝑀𝑋(𝑠)𝑛 

 Then, 

𝑀𝑌 𝑠 = E 𝑒𝑠𝑌   

      = E E 𝑒𝑠𝑌|𝑁    // iterated expectation 

      = E 𝑀𝑋(𝑠)𝑁   

      =  𝑀𝑋 𝑠 𝑛𝑝𝑁(𝑛)∞
𝑛=0 . 

 

Sums of A Random Number of Independent 

Random Variables 



 Observe that 𝑀𝑋(𝑠)𝑛 = 𝑒𝑛∙log 𝑀𝑋(𝑠) 

 We have, 

                𝑀𝑌 𝑠 =  𝑒𝑛∙log 𝑀𝑋(𝑠)𝑝𝑁(𝑛)∞
𝑛=0 . 

 Recall 

                𝑀𝑁 𝑠 = 𝐄 𝑒𝑠𝑁 =  𝑒𝑠𝑛𝑝𝑁(𝑛)∞
𝑛=0 . 

 Thus 𝑀𝑌 𝑠 = 𝑀𝑁 log 𝑀𝑋 𝑠 . 

 𝑀𝑌 𝑠  is obtained from the formula for 𝑀𝑁 𝑠 , 

with 𝑠 replaced with log 𝑀𝑋(𝑠). 

 

 

Sums of A Random Number of Independent 

Random Variables 



Summary of A Random Number of 

Independent Random Variables 

 Expectation:  
E 𝑌 𝑁 = 𝑁 ⋅ E 𝑋  

 

 Variance:  
var 𝑌 = E 𝑁 var 𝑋 + E[𝑋]2var(𝑁) 

 

 Transform:  
𝑀𝑌 𝑠 = 𝑀𝑁 log 𝑀𝑋 𝑠  



Examples 

 A remote village has three gas stations.  

 Each gas station is open on any given day 

with probability 1/2, independently of the 

others.  

 The amount of gas 𝑋 for each station is 

uniformly distributed between 0 and 1000.  

 Let 𝑁 be number of open gas stations and 

𝑌 the total gas available. 



Examples 

 Firstly, 𝑁 is binomial and 

𝑀𝑁 𝑠 = 1 − 𝑝 + 𝑝𝑒𝑠 3 =
1

8
1 + 𝑒𝑠 3 

 The transform 𝑀𝑋 𝑠  for the amount 𝑋 of gas in 

one gas station is 𝑀𝑋 𝑠 =
𝑒1000𝑠−1

1000𝑠
. 

 Recall for uniform(𝑎, 𝑏): 𝑀𝑍 𝑠 =
𝑒𝑠𝑏−𝑒𝑠𝑎

𝑠(𝑏−𝑎)
. 

 𝑀𝑌 𝑠 = 𝑀𝑁 log 𝑀𝑋 𝑠 : Replace 𝑒𝑠 in 𝑀𝑁 𝑠  with 
𝑀𝑋 𝑠  and we get 

                𝑀𝑌 𝑠 =
1

8
1 +

𝑒1000𝑠 − 1

1000𝑠

3

 

 



Examples 

 Now we discuss the sum of a geometric 

number of independent exponential random 

variables. 

 Suppose Alice visits a number of bookstores 

for a certain book.  

 Any store carries the book with probability 𝑝.  

 Alice spends an exponentially random 

amount of time 𝑋𝑖 at store 𝑖, with mean 𝜆.  
 Once she find it, she stops. 



Examples 

 Alice will keep visiting bookstores until she 

buys the book.  

 The time spent in each is independent of 

everything else.  

 We wish to find the mean, variance, and 

PDF of the total time spent in bookstores.  



Examples 

 𝑁 = the total number of stores she visits. 
 Geometric random variable with parameter 𝑝. 

 𝑌 = the total time spent in bookstores.  

 𝑌 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁 
 Each 𝑋𝑖: exponential random variable with parameter 

𝜆. 

 E 𝑌 = E 𝑁 E 𝑋 =
1

𝑝𝜆
 

 var 𝑌 = E 𝑁 var 𝑋 + E 𝑋 2var 𝑁  

=
1

𝑝

1

𝜆2
+

1

𝜆2

1 − 𝑝

𝑝2
=

1

𝑝2𝜆2
 

 



Examples 

 Recall 

𝑀𝑋 𝑠 =
𝜆

𝜆 − 𝑠
 

𝑀𝑁 𝑠 =
𝑝𝑒𝑠

1 − (1 − 𝑝)𝑒𝑠
 

 We obtain 

𝑀𝑌 𝑠 =
𝑝𝑀𝑋 𝑠

1 − (1 − 𝑝)𝑀𝑋 𝑠
=

𝑝𝜆

𝑝𝜆 − 𝑠
 

 



Examples 

 Last slide: 𝑀𝑌 𝑠 =
𝑝𝜆

𝑝𝜆−𝑠
 

 

 We recognize this as the transform 

associated with an exponentially 

distributed r.v. with parameter 𝑝𝜆, thus 

𝑓𝑌 𝑦 = 𝑝𝜆𝑒−𝑝𝜆𝑦,  𝑦 ≥ 0 

 


