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Continuous Random Variables 

 We’ve learned discrete random variables, 

which can be used for dice rolling, coin 

flipping, etc. 

 Random variables with a continuous range of 

possible values are quite common. 

 velocity of a vehicle traveling along the highway 

 Continuous random variables are useful: 

 finer-grained than discrete random variables 

 able to exploit powerful tools from calculus.  

 



Continuous r.v. and PDFs 

 A random variable 𝑋 is called continuous if 

there is a function 𝑓𝑋 ≥ 0, called the 

probability density function of 𝑋, or PDF, s.t. 

𝑃 𝑋 ∈ 𝐵 =  𝑓𝑋 𝑥 𝑑𝑥
𝐵

 

for every subset 𝐵 ⊆ ℝ.  

 We assume the integral is well-defined. 

 Compared to discrete case: replace 

summation by integral.  



PDF 

 In particular, when 𝐵 = 𝑎, 𝑏 , 

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑓𝑋 𝑥 𝑑𝑥
𝑏

𝑎

 

   is the area under the graph of PDF. 

 



PDF 

 𝑃 𝑎 ≤ 𝑋 ≤ 𝑎 =  𝑓𝑋 𝑥 𝑑𝑥
𝑎

𝑎
= 0. 

∴         𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏  
       = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏  

 The entire area under the graph is equal to 1. 

 𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

= 𝑃 −∞ ≤ 𝑋 ≤ ∞ = 1 



Interpretation of PDF 

 𝑓𝑋(𝑥): “probability mass per unit length” 

 𝑃 𝑥, 𝑥 + 𝛿 =  𝑓𝑋 𝑡 𝑑𝑡
𝑥+𝛿

𝑥
≈ 𝑓𝑋(𝑥) ∙ 𝛿 



Example 1: Uniform 

 Consider a random variable 𝑋 takes value in 

interval 𝑎, 𝑏 . 

 Any subintervals of the same length have the 

same probability. 

 It is called uniform random variable. 

 



Example 1: Uniform 

 Its PDF has the form 

𝑓𝑋 𝑥 =  
1

𝑏 − 𝑎
, if 𝑎 ≤ 𝑥 ≤ 𝑏

0,         otherwise    
 



Example 2: Piecewise Constant 

 When sunny, driving time is 15-20 minutes. 

 When rainy, driving time is 20-25 minutes. 

 With all times equally likely in each case. 

 Sunny with prob. 2/3, rainy with prob. 1/3 

 The PDF of driving time 𝑋 is 

𝑓𝑋 𝑥 =  

𝑐1,         if 15 ≤ 𝑥 ≤ 20

𝑐2, if 20 ≤ 𝑥 ≤ 25
0,   otherwise         

 



Example 2: Piecewise Constant 

 𝑓𝑋 𝑥 =  

𝑐1,         if 15 ≤ 𝑥 ≤ 20

𝑐2,       if 20 ≤ 𝑥 ≤ 25
0,        otherwise         

 



2

3
= 𝑃 𝑠𝑢𝑛𝑛𝑦 =  𝑓𝑋 𝑥 𝑑𝑥

20

15
= 5𝑐1 



1

3
= 𝑃 𝑟𝑎𝑖𝑛𝑦 =  𝑓𝑋 𝑥 𝑑𝑥

25

20
= 5𝑐2 

 Solving this  gives 𝑐1 =
2

15
, 𝑐2 =

1

15
. 



Example 3: large values 

 Consider a random variable 𝑋 with PDF 

𝑓𝑋 𝑥 =  

1

2 𝑥
,  if 0 < 𝑥 ≤ 1

0,       otherwise  

 

 Note that  𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
=  

1

2 𝑥
𝑑𝑥

1

0
= 𝑥 1

0
= 1 

 So it’s a valid PDF. 

 But lim
𝑥→0+

𝑓𝑋(𝑥) = lim
𝑥→0+

1

2 𝑥
= +∞. 

 There, a PDF can take arbitrarily large values. 



Expectation 

 The expectation of a continuous random 

variable 𝑋 is defined by 

𝐄 𝑋 =  𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

 

 As for discrete random variables, the 

expectation can be interpreted as  

 "center of gravity'' of the PDF  

 anticipated average value of 𝑋 in a large number 

of independent repetitions of the experiment.  



Function of random variable 

 For any real-valued function 𝑔, 𝑌 = 𝑔(𝑋) is 

also a random variable.  

 

 The expectation of 𝑔(𝑋) is 

𝐄 𝑔 𝑋 =  𝑔(𝑥)𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

. 

 

 

 



Moments and variance  

 The 𝑛th moment of 𝑋 is defined by 𝐄 𝑋𝑛 . 

 The variance of 𝑋 is defined by 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2   

              =  𝑥 − 𝐄[𝑋] 2𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
 

 0 ≤ 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 

 Please verify the equality.  

 If 𝑌 = 𝑎𝑋 + 𝑏, then 

𝐄 𝑌 = 𝑎𝐄 𝑋 + 𝑏, 𝐕𝐚𝐫 𝑌 = 𝑎2𝐕𝐚𝐫 𝑋 . 



Example: Uniform 

 Consider a uniform random variable with PDF 

𝑓𝑋 𝑥 =  
1

𝑏 − 𝑎
, if 𝑎 ≤ 𝑥 ≤ 𝑏

0,         otherwise    
 

 𝐄 𝑋 =  𝑥 ∙
1

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
∙
1

2
𝑥2 𝑏

𝑎
=

𝑎+𝑏

2
. 

 𝐄 𝑋2 =  
𝑥2

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
∙
1

3
𝑥3 𝑏

𝑎
=

𝑎2+𝑎𝑏+𝑏2

3
. 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 =
(𝑏−𝑎)2

12
. 



Example: Exponential 

 An exponential random variable has PDF  

𝑓𝑋 𝑥 =  𝜆𝑒−𝜆𝑥,  if 𝑥 ≥ 0       
0,         otherwise

 

 Note: 𝑓𝑋 0 = 𝜆. 



Example: Exponential 

 Note:  𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
= −𝑒−𝜆𝑥 ∞

0
= 1. 

 𝑑(𝑒−𝜆𝑥)/𝑑𝑥 = −𝜆𝑒−𝜆𝑥. 

 Tail: 𝑃 𝑋 ≥ 𝑎 =  𝜆𝑒−𝜆𝑥𝑑𝑥
∞

𝑎
= −𝑒−𝜆𝑥 ∞

𝑎
= 𝑒−𝜆𝑎  



Example: Exponential 

 𝐄 𝑋 =  𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
= −  𝑥 𝑑𝑒−𝜆𝑥∞

0
 

= −𝑥𝑒−𝜆𝑥  
∞

0
+  𝑒−𝜆𝑥𝑑𝑥

∞

0

= 0 −
𝑒−𝜆𝑥

𝜆
 
∞

0
=

1

𝜆
 

 Recall integral by parts:  𝑢𝑑𝑣 = 𝑢𝑣 −  𝑣𝑑𝑢. 

 𝐄 𝑋2 =  𝑥2𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
 

= −𝑥2𝑒−𝜆𝑥  
∞

0
+  2𝑥𝑒−𝜆𝑥𝑑𝑥

∞

0

=
2

𝜆
𝐄 𝑋 =

2

𝜆2
 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 X 𝟐 = 1/𝜆2 



Example 

 Time 𝑋 of a meteorite first lands in Sahara. 

 An exponential r.v. with mean of 10 days. 

 Since 𝐄 𝑋 = 1/𝜆, we have 𝜆 = 1
10 . 

 Question: What’s the probability of it first lands 

in 6am – 6pm of the first day? 

 𝑃
1

4
≤ 𝑋 ≤

3

4
= 𝑃 𝑋 ≥

1

4
− 𝑃 𝑋 ≥

3

4
 

   = 𝑒−
1

40 − 𝑒−
3

40 = 0.0476. 



Content 

 Continuous Random Variables and PDFs 

 Cumulative Distribution Functions 

 Normal Random Variables 

 Joint PDFs of Multiple Random Variables 

 Conditioning 

 The Continuous Bayes’ Rule 



Cumulative Distribution Function 

 The cumulative distribution function, or CDF, 

of a random variable 𝑋 is 

 𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥   

    =  
 𝑝𝑋 𝑘𝑘≤𝑥 , discrete      

 𝑓𝑋 𝑦 𝑑𝑦
𝑥

−∞
, continuous

 

 The CDF 𝐹𝑋 𝑥  “accumulates” probability “up 

to” the value 𝑥. 



CDF for discrete case 

 



CDF for continuous case 

 



Properties 

 𝐹𝑋 is monotonically increasing: 

if 𝑥 ≤ 𝑦, then 𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑦). 

 lim
𝑥→−∞

𝐹𝑋(𝑥) = 0, lim
𝑥→+∞

𝐹𝑋(𝑥) = 1 

 If 𝑋 is discrete, 𝐹𝑋 is piecewise constant.  

 If 𝑋 is continuous, 𝐹𝑋 is continuous and  

𝐹𝑋 𝑥 =  𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞

,  𝑓𝑋 𝑥 =
𝑑𝐹𝑋

𝑑𝑥
𝑥 . 



Example: maximum of several random 

variables 
 Take a test three times with score in {1, . . , 10} 

 The final score is the maximum of the scores 

𝑋 = max(𝑋1, 𝑋2, 𝑋3) 

 Each 𝑋𝑖 takes values {1, . . , 10} eually likely, 
and different 𝑋𝑖 ’s are independent. 

 The CDF of the final score 𝑋 is 

 𝐹𝑋 𝑘 = 𝑃 𝑋 ≤ 𝑘  

     = 𝑃 𝑋1 ≤ 𝑘 𝑃 𝑋2 ≤ 𝑘 𝑃 𝑋3 ≤ 𝑘  

     = (𝑘/10)3 

 

 



Example: maximum of several random 

variables 
 Take a test three times with score in {1, . . , 10} 

 The final score is the maximum of the scores 

𝑋 = max(𝑋1, 𝑋2, 𝑋3) 

 Each 𝑋𝑖 takes values {1, . . , 10} eually likely, 

and different 𝑋𝑖 ’s are independent. 

 The PDF of the final score 𝑋 is  

 𝑃𝑋 𝑘 = 𝐹𝑋 𝑘 − 𝐹𝑋 𝑘 − 1 =
𝑘

10

3
−

𝑘−1

10

3
  

 

 



Example: Geometric and Exponential 

 CDN for geometric random variable: 

 𝐹𝑔𝑒𝑜 𝑛 =  𝑝(1 − 𝑝)𝑘𝑛
𝑘=1 = 𝑝

1−(1−𝑝)𝑛

1−(1−𝑝)
  

      = 1 − (1 − 𝑝)𝑛 for 𝑛 = 1,2, … 

 CDN for exponential random variable: 

 When 𝑥 ≤ 0: 𝐹𝑒𝑥𝑝 𝑥 = 𝑃 𝑋 ≤ 0 = 0  

 When 𝑥 ≥ 0: 𝐹𝑒𝑥𝑝 𝑥 =  𝜆𝑒−𝜆𝑡𝑑𝑡
𝑥

0
 

    = −𝑒−𝜆𝑡 𝑥
0

= 1 − 𝑒−𝜆𝑥 

 



Example: Geometric and Exponential 

 𝐹𝑔𝑒𝑜 𝑛 = 1 − (1 − 𝑝)𝑛, 𝐹𝑒𝑥𝑝 𝑥 = 1 − 𝑒−𝜆𝑥. 

 If 𝑒−𝜆𝛿 = 1 − 𝑝, then  𝐹𝑒𝑥𝑝 𝑛𝛿 = 𝐹𝑔𝑒𝑜 𝑛 . 
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Normal Random Variable 

 A continuous random variable 𝑋 is normal, or 

Gaussian, if it has a PDF 

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  

   for some 𝜎 > 0. 

 It can be verified that 

 
1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞

= 1 

 



Example 

 A normal PDF and CDF with 𝜇 = 1, 𝜎2 = 1. 

 The PDF is symmetric around its mean 𝜇, and has 

a characteristic bell shape.  

 



Example 

 A normal PDF and CDF with 𝜇 = 1, 𝜎2 = 1. 

 As 𝑥 gets further from 𝜇. the term 𝑒
−

(𝑥−𝜇)2

2𝜎2  

decreases very rapidly. In this figure, the PDF is 

very close to zero outside the interval −1,3 .  

 



Mean and variance 

 The PDF is symmetric around 𝜇, so 

𝐄 𝑋 = 𝜇 

 

 It turns out that 𝐕𝐚𝐫 𝑋 = 𝜎2. 



Variance 

 𝐕𝐚𝐫 𝑋  

=  
1

2𝜋𝜎
(𝑥 − 𝜇)2𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞
  

=
𝜎2

2𝜋
 𝑦2𝑒−𝑦2/2𝑑𝑦

∞

−∞
           ∵ 𝑦 =

𝑥−𝜇

𝜎
 

=
𝜎2

2𝜋
−𝑦𝑒−

𝑦2

2  ∞
−∞

+
𝜎2

2𝜋
 𝑒−

𝑦2

2 𝑑𝑦
∞

−∞
  

     (integral by parts) 

=
𝜎2

2𝜋
 𝑒−𝑦2/2𝑑𝑦

∞

−∞
  

= 𝜎2  

 



Standard Normal 

 The normal random variable with zero mean 

and unit variance is a standard normal. Its 

CDF is denoted by Φ: 

Φ 𝑦 = 𝑃 𝑌 ≤ 𝑦 =
1

2𝜋
 𝑒−𝑡2/2𝑑𝑡

𝑦

−∞

 

 By symmetry, it holds 

Φ −𝑦 = 1 − Φ(𝑦) 



Standard Normal 

 



Standard Normal  

 Table of Φ(𝑥) for positive 𝑥. 

 Φ −0.5 = 1 − Φ 0.5 = 1 − .6915 = .3085 



 



Standard Normal 

 Let 𝑋 be a normal random variable with mean 𝜇 
and variance 𝜎2. Then 

𝑌 =
𝑋 − 𝜇

𝜎
 

   is normal and 

𝐄 𝑌 =
𝐄[𝑋]−𝜇

𝜎
= 0,  𝐕𝐚𝐫 Y =

𝐕𝐚𝐫[𝑋]

𝜎2 = 1  

   Thus, 𝑌 is standard normal. 
 This fact allows us to calculate the probability of any 

event defined in terms of 𝑋: we redefine the event in 
terms of 𝑦, and then use the standard normal table.  

 



Example 1: Using the normal table 

 annual snowfall at a certain place 

 normal r.v. with mean 𝜇 = 60 and standard 

deviation 𝜎 = 20. 

 Question: What is the probability that this year’s 

snowfall will be at least 80 inches? 

 𝑃 𝑋 ≥ 80 = 𝑃
𝑋−60

20
≥

80−60

20
= 𝑃(𝑌 ≥ 1) 

= 1 − Φ 1 = 1 − .8413 = .1587 



Example 1: Using the normal table 

 In general, we can calculate the CDF for a 

normal random variable as follows. 

 For a normal random variable 𝑋 with mean 𝜇 

and variance 𝜎2, we  

 first “standardize" 𝑋, i.e., subtract 𝜇 and divide by 

𝜎2, to obtain a standard normal random variable 𝑌  

 read the CDF value from standard normal table:  

𝑃 𝑋 ≤ 𝑥 = 𝑃
𝑋 − 𝜇

𝜎
≥

𝑥 − 𝜇

𝜎
= 𝑃 𝑌 ≤

𝑥 − 𝜇

𝜎
= Φ

𝑥 − 𝜇

𝜎
 



Example 2: Signal detection 

 A binary message is transmitted as a signal 𝑠 , 

which is either +1 or −1. 

 The communication corrupts the transmission 

with additional normal noise with mean 𝜇 = 0 

and variance 𝜎2. 

 The receiver concludes that the signal −1 (or 

+ 1) was transmitted if the value received is 

< 0 (or ≥ 0, respectively).  

 



Example 2: Signal detection 2 

 



Example 2: Signal detection 3 

 Question: What is the probability of error? 

 The error occurs whenever −1 is transmitted 

and the noise 𝑁 is at least 1, or whenever +1 

is transmitted and the noise is smaller than 

− 1. 

       𝑃 𝑁 ≥ 1 = 1 − 𝑃 𝑁 < 1  

 = 1 − 𝑃
𝑁−𝜇

𝜎
<

1−𝜇

𝜎
= 1 − Φ

1−𝜇

𝜎
  

 = 1 − Φ
1

𝜎
  

 



Normal Random Variable 

 Normal random variables play an important 

role in a broad range of probabilistic models. 

 The main reason is that they model well the 

additive effect of many independent factors.  

 The sum of a large number of independent 

and identically distributed (not necessarily 

normal) random variables ≈ normal CDF.  

 regardless of CDF of individual random variables. 

 More on this in Chapter 5. 
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Joint PDFs 

 Two continuous random variables associated 

with the same experiment are jointly 

continuous and can be described in terms of 

a joint PDF 𝑓𝑋,𝑌 if 𝑓𝑋,𝑌 is nonnegative function 

that satisfies 

𝑃 𝑋, 𝑌 ∈ 𝐵 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝑥,𝑦 ∈𝐵

 

for every subset 𝐵 of the two-dimensional plane. 



Joint PDFs 

 Normalization:   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
= 1 

 To interpret the joint PDF, let 𝛿 be a small 

positive number,  

 𝑃 𝑎 ≤ 𝑋 ≤ 𝑎 + 𝛿, 𝑐 ≤ 𝑌 ≤ 𝑐 + 𝛿  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
𝑎+𝛿

𝑎

𝑑𝑦
𝑐+𝛿

𝑐

≈ 𝑓𝑋,𝑌(𝑎, 𝑐)𝛿2 

 𝑓𝑋,𝑌 𝑎, 𝑐 : “probability per unit area” in the 

vicinity of 𝑎, 𝑐 . 



Marginal Probability 

 𝑃 𝑋 ∈ 𝐴 = 𝑃 𝑋 ∈ 𝐴, 𝑌 ∈ −∞, ∞  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
∞

−∞

𝑑𝑥
𝐴

 

 Recall 𝑃 𝑋 ∈ 𝐴 =  𝑓𝑋 𝑥 𝑑𝑥
𝑥∈𝐴

 

 Thus the marginal PDF of 𝑋 is given by 

𝑓𝑋 𝑥 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
∞

−∞
  

 Similarly, the marginal PDF of 𝑌 is  

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
  



Example: 2D Uniform PDF 

 Romeo and Juliet have a date at a given time 

 Each will arrive with a delay between 0 and 1 

hour. 

 Let 𝑋, Y denote their delays. 

 Assume that no pairs in the unit square is 

more likely than others 

 



Example: 2D Uniform PDF 

 Then the joint PDF is of the form 

 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
𝑐 if 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1
0 otherwise                         

 

 

 By   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
= 1, we get 

𝑐 = 1 

 

 



2D Uniform PDF 

 In general, let 𝑆 be a subset of the two 

dimensional plane. The corresponding 

uniform joint PDF on 𝑆 is defined by 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
1

area of 𝑆
if (𝑥, 𝑦) ∈ 𝑆

0 otherwise   

 



2D Uniform PDF 

 For any subset 𝐴 ⊂ 𝑆, the probability that 

(𝑋, 𝑌) lies in 𝐴 is  

𝑃 𝑋, 𝑌 ∈ 𝐴 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

(𝑥,𝑦)∈𝐴

 

=
1

area of 𝑆
 𝑑𝑥𝑑𝑦

(𝑥,𝑦)∈𝐴

=
area of 𝐴

area of 𝑆
 

 



Example 2 

 Suppose the joint 

PDF of 𝑋, 𝑌 is a 

constant 𝑐 on 𝑆 and 

0 outside. 

 Question: What is 𝑐? 

 Question: What are 

the marginal PDFs of 

𝑋 and 𝑌? 



Example 2 

 Suppose the joint 

PDF of 𝑋, 𝑌 is a 

constant 𝑐 on 𝑆 and 

0 outside. 

 The area of 𝑆 is 4, 

so 𝑐 = 1/4. 

 The marginal PDFs 

of 𝑋, 𝑌 are shown in 

the figure. 



Example: Buffon’s Needle 

 A surface is ruled with  
parallel lines, which at  
distance 𝑑 from each other. 

 Suppose we throw a needle  
of length 𝑙 randomly. 

 Question: What is the  
probability that the needle  
will intersect one of the lines? 

 Assume 𝑙 < 𝑑 so that the needle cannot intersect 
two lines simultaneously.   



Example: Buffon’s Needle 

 𝑋: the distance from the 

middle point of the needle 

and the nearest of the 

parallel lines 

 

 Θ: the acute angle formed 

by the needle and the lines 



 

 

 

 

 We model (𝑋, Θ) with a uniform joint PDF: 

𝑓𝑋,Θ 𝑥, 𝜃 =  

4

𝜋𝑑
if 𝑥 ∈ 0,

𝑑

2
 and 𝜃 ∈ 0,

𝜋

2

0 otherwise                               

 

 



 

 

 

 

 The needle will intersect one of the lines if 

and only if 

𝑋 ≤
𝑙

2
sin Θ 

 



Example: Buffon’s Needle 

 So the probability of intersection is  

    𝑃 𝑋 ≤
𝑙

2
sin Θ =  𝑓𝑋,Θ 𝑥, 𝜃 𝑑𝑥𝑑𝜃

𝑋≤
𝑙
2

sin 𝜃

 

=
4

𝜋𝑑
  𝑑𝑥𝑑𝜃

𝑙
2

sin 𝜃

0

𝜋/2

0

=
4

𝜋𝑑
 

𝑙

2
sin 𝜃 𝑑𝜃

𝜋/2

0

 

=
2𝑙

𝜋𝑑
− cos 𝜃  

𝜋/2

0
=

2𝑙

𝜋𝑑
 



Joint CDFs 

 If 𝑋 and 𝑌 are two random variables 

associated with the same experiment, we 

define their joint CDF by 

 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) 

 



Joint CDFs 

 If 𝑋 and 𝑌 are described by a joint PDF 𝑓𝑋,𝑌, 

then 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

=   𝑓𝑋,𝑌 𝑠, 𝑡 𝑑𝑠𝑑𝑡
𝑦

−∞

𝑥

−∞

 

   and  

𝑓𝑋,𝑌(𝑥, 𝑦) =
𝜕2𝐹𝑋,𝑌

𝜕𝑥𝜕𝑦
(𝑥, 𝑦) 

 



Example 

 Let 𝑋 and 𝑌 be described by a uniform PDF 

on the unit square 0,1 2.  

 The joint CDF is given by 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑥𝑦 

 Then 

𝜕2𝐹𝑋,𝑌

𝜕𝑥𝜕𝑦
𝑥, 𝑦 =

𝜕2 𝑥𝑦

𝜕𝑥𝜕𝑦
𝑥, 𝑦 = 1 = 𝑓𝑋,𝑌(𝑥, 𝑦) 

    for all 𝑥, 𝑦  in the unit square. 

 

 



Expectation 

 If 𝑋 and 𝑌 are jointly continuous random 

variables and 𝑔 is some function, then 

𝑍 = 𝑔 𝑋, 𝑌  

    is also a random variable.  

 And 

𝐄 𝑔 𝑋, 𝑌 =   𝑔(𝑥, 𝑦)𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 



Expectation 

 If 𝑔 𝑋, 𝑌  is a linear function:  
𝑔 𝑋, 𝑌 = 𝑎𝑋 + 𝑏𝑌 + 𝑐 

for some scalars 𝑎, 𝑏, 𝑐. 

 

 then 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐 

 

 “linearity of expectation” 



More than two random variables 

 The joint PDF of 𝑋, 𝑌 and 𝑍 satisfies 

𝑃 𝑋, 𝑌, 𝑍 ∈ 𝐵 =  𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

(𝑥,𝑦,𝑧)∈𝐵

 

    for any set 𝐵. 

 Marginal: 

 𝑓𝑋,𝑌 𝑥, 𝑦 =  𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑧
∞

−∞
 

 𝑓𝑋 𝑥 =   𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑦
∞

−∞
𝑑𝑧

∞

−∞
 



More than two random variables 

 𝐄 𝑔 𝑋, 𝑌, 𝑍 =

   𝑔 𝑥, 𝑦, 𝑧 𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
𝑑𝑧

∞

−∞
 

 

 If 𝑔 is linear, of the form 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍, then 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐𝐄 𝑍  

 

 In general,  

𝐄 𝑎1𝑋1 + ⋯ + 𝑎𝑛𝑋𝑛 = 𝑎1𝐄 𝑋1 + ⋯ + 𝑎𝑛𝐄[𝑋𝑛] 
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Conditioning 

 Similar to the case of discrete random 

variables, we can condition a random 

variable  

 on an event, or  

 on another random variable,  

 

 and define the concepts of conditional PDF 

and conditional expectation.  



Conditioning a r.v. on an event 

 The conditional PDF of a continuous random 

variable 𝑋, given an event 𝐴 with 𝑃 𝐴 > 0, is 

defined as a nonnegative function 𝑓𝑋|𝐴 that 

satisfies 

𝑃 𝑋 ∈ 𝐵 𝐴 =  𝑓𝑋|𝐴 𝑥 𝑑𝑥
𝐵

, 

    for any subset 𝐵 of the real line. 

 



Conditioning a r.v. on an event 

 

 In particular, taking 𝐵 = ℝ 

 𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

= 1. 

    So 𝑓𝑋|𝐴 is a legitimate PDF. 



Conditioning on event {𝑋 ∈ 𝐴} 

 If we condition on event {𝑋 ∈ 𝐴}, with 

𝑃 𝑋 ∈ 𝐴 > 0, then 

  𝑃 𝑋 ∈ 𝐵 𝑋 ∈ 𝐴   

=
𝑃(𝑋 ∈ 𝐵, 𝑋 ∈ 𝐴)

𝑃(𝑋 ∈ 𝐴)
                           

=
 𝑓𝑋 𝑥 𝑑𝑥
𝐴∩𝐵

𝑃(𝑋 ∈ 𝐴)
                                  

 



Conditioning on event {𝑋 ∈ 𝐴} 

 Comparing with the earlier formula gives 

𝑓𝑋|{𝑋∈𝐴} 𝑥 =  

𝑓𝑋 𝑥

𝑃(𝑋 ∈ 𝐴)
, if 𝑋 ∈ 𝐴,    

0, otherwise.

 

 The conditional PDF is zero outside the 

conditioning set.  

 Within the conditioning set, the conditional PDF 

has the same shape as the unconditional one, 

except that scaled by a factor 1/𝑃(𝑋 ∈ 𝐴) 

 



Conditioning on event {𝑋 ∈ 𝐴} 



Example: exp. r.v. is memoryless 

 The time 𝑇 until a new light bulb burns out is 

an exponential random variable with 

parameter 𝜆. 

 Alice turns the light on, leaves the room, and 

when she returns, 𝑡 time units later, finds the 

light bulb is still on, which corresponds to the 

event 

𝐴 = {𝑇 > 𝑡} 



Example: exp. r.v. is memoryless 

 Let 𝑋 be the additional time until the light bulb 

burns out. 

 Question: What’s the conditional CDF of 𝑋 given 

the event 𝐴?  

      𝑃 𝑋 > 𝑥 𝐴 = 𝑃 𝑇 > 𝑡 + 𝑥 𝑇 > 𝑡  

    =
𝑃(𝑇 > 𝑡 + 𝑥 and 𝑇 > 𝑡)

𝑃(𝑇 > 𝑡)
=

𝑃(𝑇 > 𝑡 + 𝑥)

𝑃(𝑇 > 𝑡)
 

    =
𝑒−𝜆(𝑡+𝑥)

𝑒−𝜆𝑡
= 𝑒−𝜆𝑥 



Example: exp. r.v. is memoryless 

 Last slide: 𝑃 𝑋 > 𝑥 𝐴 = 𝑒−𝜆𝑥. 

 Recall tail probability of exponential r.v.: 
𝑃 𝑋 ≥ 𝑎 = 𝑒−𝜆𝑎. 

 Observation: The conditional CDF of 𝑋 is 

exponential with parameter 𝐴, regardless of 

the time 𝑡 that elapsed between the lighting 

of the bulb and Alice's arrival.  

 Thus the exponential random variable is 

called memoryless.  



Conditioning with multiple r.v. 

 Suppose 𝑋 and 𝑌 are jointly continuous random 
variables, with joint PDF 𝑓𝑋,𝑌. 

 If we condition on a positive probability event of 
the form 𝐶 = {(𝑋, 𝑌) ∈ 𝐴}, we have 

𝑓𝑋,𝑌|𝐶 𝑥, 𝑦 =  

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑃(𝐶)
if 𝑥, 𝑦 ∈ 𝐴,

0 otherwise.

 

  The conditional PDF of 𝑋, given event 𝐶, is 

𝑓𝑋|𝐶 𝑥 =  𝑓𝑋,𝑌|𝐶 𝑥, 𝑦 𝑑𝑦
∞

−∞

 



Total probability theorem 

 If the events 𝐴1, ⋯ , 𝐴𝑛 form a partition of the 

sample space, then 

𝑓𝑋 𝑥 =  𝑃(𝐴𝑖)𝑓𝑋|𝐴𝑖
(𝑥)

𝑛

𝑖=1

 

 Next we give a proof. 



Proof of total probability theorem 

 By the total probability theorem from Chapter 

1, we have 

 𝑃 𝑋 ≤ 𝑥 =  𝑃 𝐴𝑖 𝑃(𝑋 ≤ 𝑥|𝐴𝑖)
𝑛
𝑖=1   

 This formula can be written as 

 𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞

=  𝑃 𝐴𝑖  𝑓𝑋|𝐴𝑖
𝑡 𝑑𝑡

𝑥

−∞

𝑛

𝑖=1

 

 Then take the derivative with respect to 𝑥 and 

get the result. 



Example: Taking train 

 The metro train arrives at the station every 

quarter hour starting at 6:00 a.m. 

 You walk into the station between 7:10-7:30 

a.m. uniformly. 

 Question: What’s the PDF of the time you have to 

wait for the first train to arrive? 



Example: Taking train 

 Denote the time of your arrival by 𝑋, which is 

then a uniform random variable on 7:10-7:30 

 Let 𝑌 be the waiting time. 

 

 Let 𝐴 and 𝐵 be the events 

𝐴 = 7: 10 ≤ 𝑋 ≤ 7: 15 = {𝑏𝑜𝑎𝑟𝑑 7: 15 𝑡𝑟𝑎𝑖𝑛} 
𝐵 = 7: 15 < 𝑋 ≤ 7: 30 = {𝑏𝑜𝑎𝑟𝑑 7: 30 𝑡𝑟𝑎𝑖𝑛} 

 



Example: Taking train 

 Condition on event 𝐴, 𝑌 is uniform on 0-5 

 Condition on event 𝐵, 𝑌 is uniform on 0-15 

 Total probability theorem:  

𝑓𝑌 𝑦 = 𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃 𝐵 𝑓𝑌|𝐵 𝑦  

 For 0 ≤ 𝑦 ≤ 5, 

𝑓𝑌 𝑦 =
1

4
∙
1

5
+

3

4
∙

1

15
=

1

10
 

 For 5 < 𝑦 ≤ 15, 

𝑓𝑌 𝑦 =
1

4
∙ 0 +

3

4
∙

1

15
=

1

20
 



Example: Taking train 

 



Conditioning one r.v. on another 

 Let 𝑋 and 𝑌 be continuous random variables 
with joint PDF 𝑓𝑋,𝑌. 

 For any 𝑦 with 𝑓𝑌 𝑦 > 0, the conditional PDF of 
𝑋 given that 𝑌 = 𝑦, is 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
. 

 This is analogous to the formula  

𝑃𝑋|𝑌 𝑥 𝑦 =
𝑃𝑋,𝑌 𝑥, 𝑦

𝑃𝑌 𝑦
 

for the discrete case. 



Conditioning one random variable on 

another 
 Because 

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞

, 

    then 

 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

= 1, 

    for any fixed 𝑦.  

 Thus 𝑓𝑋|𝑌 𝑥 𝑦  is a legitimate PDF. 

 



Example: Circular uniform PDF 

 Bob throws a dart at a circular target of radius 

𝑟. 

 He always hits the target. 

 All points of impact  
(𝑥, 𝑦) are equally likely. 

 Then the joint PDF of  

the random variables  
𝑋, 𝑌 is uniform. 



Example: Circular uniform PDF 

 Because the area of the circle is 𝜋𝑟2, 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
1

𝜋𝑟2
if 𝑥2 + 𝑦2 ≤ 𝑟2,

0 otherwise.

 

 

 To calculate the conditional PDF 𝑓𝑋|𝑌(𝑥|𝑦), let 

us find the marginal PDF 𝑓𝑌(𝑦). 

 



Example: Circular uniform PDF 

 For 𝑦 > 𝑟, 𝑓𝑋|𝑌 𝑥 𝑦 = 0 

 For |𝑦| ≤ 𝑟,  

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞

          

            =
1

𝜋𝑟2
 𝑑𝑥
𝑥2+𝑦2≤𝑟2

=
1

𝜋𝑟2
 𝑑𝑥

𝑟2−𝑦2

− 𝑟2−𝑦2
 

                  =
2 𝑟2 − 𝑦2

𝜋𝑟2
 

 



Example: Circular uniform PDF 

 The conditional PDF is  

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
=

1
𝜋𝑟2

2
𝜋𝑟2 𝑟2 − 𝑦2

                    

           =
1

2 𝑟2 − 𝑦2
, if  𝑥2 + 𝑦2 ≤ 𝑟2 

 Thus for a fixed value of 𝑦, the conditional 

PDF 𝑓𝑋|𝑌 is uniform. 



Conditional probability on zero event 

 Let us fix some small positive numbers 𝛿1 and 𝛿2, 
and condition on the event 

𝐵 = 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2 . 

 Then  
𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2  

                =
𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 and 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2)

𝑃(𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2)
 

≈
𝑓𝑋,𝑌 𝑥, 𝑦 𝛿1𝛿2

𝑓𝑌 𝑦 𝛿2
= 𝑓𝑋|𝑌 𝑥 𝑦 𝛿1,                   

    which is independent of 𝛿2 



Conditional probability on zero event 

 Let 𝛿2 → 0, we get 

𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 𝑌 = 𝑦 ≈ 𝑓𝑋|𝑌 𝑥 𝑦 𝛿1 

   for 𝛿1 small, and more generally 

𝑃 𝑋 ∈ 𝐴 𝑌 = 𝑦 =  𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
𝐴

 

 This gives a conditional probability on the 

zero event {𝑌 = 𝑦}. 



Example: Vehicle speed 

 The speed of a typical vehicle that drives past 

a police radar is an exponential random 

variable 𝑋 with mean 50. 

 The police radar’s measurement 𝑌 has an 

error which is modeled as a normal random 

variable with zero mean and standard 

derivation equal to one tenth of the vehicle’s 

speed. 



Example: Vehicle speed 

 Question: What is the joint PDF of 𝑋 and 𝑌? 

 

 First, 𝑓𝑋 𝑥 =
1

50
𝑒−

𝑥

50, for 𝑥 ≥ 0 

 Also, conditioned on 𝑋 = 𝑥, the measurement 

𝑌 has a normal PDF with mean 𝑥 and 

variance 𝑥2/100. Thus  

𝑓𝑌|𝑋 𝑦 𝑥 =
1

2𝜋(𝑥/10)
𝑒− 𝑦−𝑥 2/(2𝑥2/100). 

 



Example: Vehicle speed 

 Thus, for all 𝑥 ≥ 0 and all 𝑦, 

 

   𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌|𝑋 𝑦 𝑥   

    =
1

50
𝑒

𝑥

50
10

2𝜋𝑥
𝑒

−
50(𝑦−𝑥)2

𝑥2  



Conditioning for more than two 

random variables 

 𝑓𝑋.𝑌|𝑍 𝑥, 𝑦 𝑧 =
𝑓𝑋,𝑌,𝑍(𝑥,𝑦,𝑧)

𝑓𝑍(𝑧)
, if 𝑓𝑍 𝑧 > 0. 

 𝑓𝑋|𝑌,𝑍 𝑥 𝑦, 𝑧 =
𝑓𝑋,𝑌,𝑍(𝑥,𝑦,𝑧)

𝑓𝑌,𝑍(𝑦,𝑧)
, if 𝑓𝑌,𝑍 𝑦, 𝑧 > 0. 

 

 There is an analog of the multiplication rule 

 
𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑓𝑋|𝑌,𝑍 𝑥 𝑦, 𝑧 𝑓𝑌|𝑍 𝑦 𝑧 𝑓𝑍 𝑧  



Conditional Expectation 

 For a continuous random variable 𝑋, its 

conditional expectation 𝐄[𝑋|𝐴] given an event 

𝐴 with 𝑃 𝐴 > 0 is 

𝐄 𝑋 𝐴 =  𝑥𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

 

 The conditional expectation of 𝑋 given that       

𝑌 = 𝑦 is  

𝐸[𝑋|𝑌 = 𝑦] =  𝑥𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

 

 



The expected value rule 

 For a function 𝑔(𝑋), we have 

𝐄 𝑔 𝑋 𝐴 =  𝑔 𝑥 𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

 

    and 

𝐄 𝑔 𝑋 𝑌 = 𝑦 =  𝑔 𝑥 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

 



Total expectation theorem 1 

 Let 𝐴1, ⋯ , 𝐴𝑛 be disjoint events that form a 

partition of the sample space, and assume 

that 𝑃 𝐴𝑖 > 0 for all 𝑖. Then 

𝑓𝑋 𝑥 =  𝑃(𝐴𝑖)𝑓𝑋|𝐴𝑖
(𝑥)

𝑛

𝑖=1

. 

 From here, we can get 

𝐄 𝑋 =  𝑃 𝐴𝑖 𝐄[𝑋|𝐴𝑖]

𝑛

𝑖=1

. 



Total expectation theorem 2 

 When conditioned on a random variable, we 

have  

𝐄 𝑋 =  𝐄 𝑋 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦
∞

−∞

 



Proof  

  𝐄 𝑋 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦
∞

−∞
 

=   𝑥𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

𝑓𝑌 𝑦 𝑑𝑦
∞

−∞

 

=   𝑥𝑓𝑋|𝑌 𝑥 𝑦
∞

−∞

𝑓𝑌 𝑦 𝑑𝑥𝑑𝑦
∞

−∞

 

=   𝑥𝑓𝑋,𝑌(𝑥, 𝑦)
∞

−∞

𝑑𝑥𝑑𝑦
∞

−∞

 

=  𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

= 𝐄[𝑋] 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 Suppose the random variable 𝑋 has the PDF 

𝑓𝑋 𝑥 =  
1/3 if 0 ≤ 𝑥 ≤ 1
2/3 if 1 < 𝑥 ≤ 2
0 otherwise

 

 Consider the events 

𝐴1 = 𝑋 lies in the first interval 0,1        
𝐴2 = {𝑋 lies in the second interval (1,2]} 



Example: Mean and Variance of a 

Piecewise Constant PDF 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 Then 

𝑃 𝐴1 = 1/3, 𝑃 𝐴2 = 2/3. 

 And the conditional PDFs 𝑓𝑋|𝐴1
 and 𝑓𝑋|𝐴2

 are 

uniform.  

 Recall previous result: Uniform random 

variable 𝑌 on 𝑎, 𝑏  has 𝐄 𝑌2 =
𝑎2+𝑎𝑏+𝑏2

3
. 

 Thus  𝐄 𝑋 𝐴1 = 1/2,  𝐄 𝑋 𝐴2 = 3/2 

𝐄 𝑋2 𝐴1 = 1/3, 𝐄 𝑋2 𝐴2 = 7/3 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 And 

  𝐄 𝑋 = 𝑃 𝐴1 𝐄 𝑋 𝐴1 + 𝑃 𝐴2 𝐄 𝑋 𝐴2  

  =
1

3
∙
1

2
+

2

3
∙
3

2
=

7

6
.  

   𝐄 𝑋2 = 𝑃 𝐴1 𝐄 𝑋2 𝐴1 + 𝑃 𝐴2 𝐄 𝑋2 𝐴2   

  =
1

3
∙
1

3
+

2

3
∙
7

3
=

15

9
. 

 Thus, the variance is 

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 =
15

9
−

49

36
=

11

36
. 

     



Independence 

 Two continuous random variables 𝑋 and 𝑌 

are independent if their joint PDF is the 

product of the marginal PDFs 

𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) 

    for all 𝑥, 𝑦. 

 It is equivalent to 

𝑓𝑋|𝑌 𝑥 𝑦 = 𝑓𝑋(𝑥) 

    for all 𝑦 with 𝑓𝑌 𝑦 > 0 and all 𝑥. 



Independence 

 

 Three continuous random variables 𝑋, 𝑌 and 

𝑍 are independent if  

𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)𝑓𝑍(𝑧) 

    for all 𝑥, 𝑦, 𝑧. 



Example: Independent normal 

random variables 
 Let 𝑋 and 𝑌 be independent normal random 

variables with means 𝜇𝑥 , 𝜇𝑦, and variance 

𝜎𝑥
2, 𝜎𝑦

2, respectively. Their joint PDF is of the 

form 

     𝑓𝑋,𝑌 𝑥, 𝑦   

 = 𝑓𝑋 𝑥 𝑓𝑌 𝑦  

  =
1

2𝜋𝜎𝑥𝜎𝑦
exp −

𝑥−𝜇𝑥
2

2𝜎𝑥
2 −

𝑦−𝜇𝑦
2

2𝜎𝑦
2  



Example: Independent normal 

random variables 
The ellipses are the contours of the PDF: 

 𝑓𝑋,𝑌 𝑥, 𝑦 =
1

2𝜋𝜎𝑥𝜎𝑦
exp −

𝑥−𝜇𝑥
2

2𝜎𝑥
2 −

𝑦−𝜇𝑦
2

2𝜎𝑦
2   

 



Independence 

 If 𝑋 and 𝑌 are independent, then any two 

events of the form {𝑋 ∈ 𝐴} and {𝑌 ∈ 𝐵} are 

independent.  

     𝑃 𝑋 ∈ 𝐴 and 𝑌 ∈ 𝐵  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
𝑦∈𝐵

𝑑𝑥
𝑥∈𝐴

  

=   𝑓𝑋 𝑥 𝑓𝑌 𝑦 𝑑𝑦
𝑦∈𝐵

𝑑𝑥
𝑥∈𝐴

  

=  𝑓𝑋 𝑥 𝑑𝑥
𝑥∈𝐴  𝑓𝑌 𝑦 𝑑𝑦

𝑦∈𝐵
  

= 𝑃 𝑋 ∈ 𝐴 𝑃(𝑌 ∈ 𝐵)  



Independence 

 In particular, when 𝐴 = (𝑋 ≤ 𝑥), 𝐵 = (𝑌 ≤ 𝑦): 

 
𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦  

 

 Thus 𝐹𝑋,𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌 𝑦 . 



Independence 

 If 𝑋 and 𝑌 are independent, then 

𝐄 𝑋𝑌 = 𝐄 𝑋 𝐄 𝑌  

    More generally, for any two functions 𝑔, ℎ 

𝐄 𝑔 𝑋 ℎ 𝑌 = 𝐄 𝑔 𝑋 𝐄 ℎ 𝑌  

 

 Also, if 𝑋 and 𝑌 are independent, then 

𝐕𝐚𝐫 𝑋 + 𝑌 = 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫 𝑌  



Content 
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The continuous Bayes’ rule 

 In many situations, we represent an 

unobserved phenomenon by a random 

variable 𝑋 with PDF 𝑓𝑋. 

 We make a noisy measurement 𝑌, which is 

modeled in terms of a conditional PDF 𝑓𝑌|𝑋 

 Once the value of 𝑌 is measured, what 

information does it provide on the unknown 

value of 𝑋? 



The continuous Bayes’ rule 

 

 

 

 The information is provided by the conditional 

PDF 𝑓𝑋|𝑌 𝑥 𝑦 . By 𝑓𝑋𝑓𝑌|𝑋 = 𝑓𝑋,𝑌 = 𝑓𝑌𝑓𝑋|𝑌, it 

follows that 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋 𝑥 𝑓𝑌|𝑋 𝑦 𝑥

𝑓𝑌 𝑦
 

 



The continuous Bayes’ rule 

 Based on the normalization property 

 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

= 1, 

    an equivalent expression is 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋(𝑥)𝑓𝑌|𝑋(𝑦|𝑥)

 𝑓𝑋 𝑥′ 𝑓𝑌|𝑋 𝑦 𝑥′ 𝑑𝑥′∞

−∞

 

 𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥′, 𝑦 𝑑𝑥′
∞

−∞
 

         =  𝑓𝑋 𝑥′ 𝑓𝑌|𝑋 𝑦 𝑥′ 𝑑𝑥′∞

−∞
  



Example: Light bulbs 

 A light bulb is known to have an exponentially 

distributed lifetime 𝑌.  

 However, the company has been 

experiencing quality control problems: On 

any given day, the parameter 𝜆 of the PDF of 

𝑌 is a uniform random variable Λ on [1, 3/2]. 

 We test a light bulb and record its lifetime.  

 Question: What can we say about 𝜆? 

 What is 𝑓Λ|𝑌 𝜆 𝑦 ? 



Example: Light bulbs 

 The parameter 𝜆 in terms of a uniform 

random variable Λ with PDF 

𝑓Λ 𝜆 = 2,  for 1 ≤ 𝜆 ≤ 3/2 

 Then by continuous Bayes’ rule, for 1 ≤ 𝜆 ≤
3

2
 

𝑓Λ|𝑌 𝜆 𝑦 =
𝑓Λ(𝜆)𝑓𝑌|Λ(𝑦|𝜆)

 𝑓Λ 𝑡 𝑓𝑌|Λ 𝑦 𝑡 𝑑𝑡
∞

−∞

       

=
2𝜆𝑒−𝜆𝑦

 2𝑡𝑒−𝑡𝑦𝑑𝑡
3/2

1

 

. 



Inference about a discrete random 

variable 
 In some cases, the unobserved phenomenon 

is inherently discrete. 

 Example. Consider a binary signal which is 

observed in the presence of normally 

distributed noise. 

 Example. Consider a medical diagnosis that 

is made on the basis of continuous 

measurements, such as temperature and 

blood counts. 



Inference about a discrete random 

variable 
 Instead of working with the conditioning event 

{𝑌 = 𝑦}, which has zero probability, let us first 

condition on the event {𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿}, then 

take the limit as 𝛿 → 0. 

𝑃 𝐴 𝑌 = 𝑦 ≈ 𝑃 𝐴 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿

=
𝑃 𝐴 𝑃 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿

𝑃 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿
≈

𝑃 𝐴 𝑓𝑌|𝐴 𝑦 𝛿

𝑓𝑌 𝑦 𝛿

=
𝑃 𝐴 𝑓𝑌|𝐴 𝑦

𝑓𝑌 𝑦
 

. 



Inference about a discrete random 

variable 
 The denominator 𝑓𝑌 𝑦  can be evaluated by 

total probability theorem 

𝑓𝑌 𝑦 = 𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃(𝐴𝑐)𝑓𝑌|𝐴𝑐(𝑦) 

    so that 

𝑃 𝐴 𝑌 = 𝑦 =
𝑃(𝐴)𝑓𝑌|𝐴 𝑦

𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃(𝐴𝑐)𝑓𝑌|𝐴𝑐(𝑦) 
 



Inference about a discrete random 

variable 
 Consider an event 𝐴 of the form 𝑁 = 𝑛  

 𝑁 is a discrete random variable with PMF 𝑝𝑁 

 Let 𝑌 be a continuous random variable which 

is described by a conditional PDF 𝑓𝑌|𝑁(𝑦|𝑛). 

𝑃 𝑁 = 𝑛 𝑌 = 𝑦 =
𝑝𝑁(𝑛)𝑓𝑌|𝑁(𝑦|𝑛)

𝑓𝑌(𝑦)

=
𝑝𝑁(𝑛)𝑓𝑌|𝑁(𝑦|𝑛)

 𝑝𝑁(𝑖)𝑓𝑌|𝑁(𝑦|𝑖)𝑖

 



Example: Signal Detection 

 A binary signal 𝑆 is transmitted with 

𝑃 𝑆 = 1 = 𝑝, 𝑃 𝑆 = −1 = 1 − 𝑝 

 The received signal is 𝑌 = 𝑁 + 𝑆, where 𝑁 is 

standard normal noise. 

 What is the prob. that 𝑆 = 1, as a function of 

the observed value 𝑦 of 𝑌? 

 Conditional on 𝑆 = 𝑠, the random variable 𝑌 

has a normal distribution with mean 𝑠 and 

variance 1. 

 



Example: Signal Detection 

𝑃 𝑆 = 1 𝑌 = 𝑦  =
𝑝𝑆(1)𝑓𝑌|𝑆(𝑦|1)

𝑓𝑌(𝑦)
  

   =

𝑝

2𝜋
𝑒− 𝑦−1 2/2

𝑝

2𝜋
𝑒− 𝑦−1 2/2+

1−𝑝

2𝜋
𝑒− 𝑦+1 2/2

  

   =
𝑝𝑒𝑦

𝑝𝑒𝑦+(1−𝑝)𝑒−𝑦  



Example: Signal Detection 

 Notice that 

lim
𝑦→−∞

𝑃(𝑆 = 1|𝑌 = 𝑦) = 0 

lim
𝑦→∞

𝑃(𝑆 = 1|𝑌 = 𝑦) = 1 

    which is consistent with intuition. 

 


