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Content 

 Continuous Random Variables and PDFs 

 Cumulative Distribution Functions 

 Normal Random Variables 

 Joint PDFs of Multiple Random Variables 

 Conditioning 

 The Continuous Bayes’ Rule 



Continuous Random Variables 

 We’ve learned discrete random variables, 

which can be used for dice rolling, coin 

flipping, etc. 

 Random variables with a continuous range of 

possible values are quite common. 

 velocity of a vehicle traveling along the highway 

 Continuous random variables are useful: 

 finer-grained than discrete random variables 

 able to exploit powerful tools from calculus.  

 



Continuous r.v. and PDFs 

 A random variable 𝑋 is called continuous if 

there is a function 𝑓𝑋 ≥ 0, called the 

probability density function of 𝑋, or PDF, s.t. 

𝑃 𝑋 ∈ 𝐵 =  𝑓𝑋 𝑥 𝑑𝑥
𝐵

 

for every subset 𝐵 ⊆ ℝ.  

 We assume the integral is well-defined. 

 Compared to discrete case: replace 

summation by integral.  



PDF 

 In particular, when 𝐵 = 𝑎, 𝑏 , 

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑓𝑋 𝑥 𝑑𝑥
𝑏

𝑎

 

   is the area under the graph of PDF. 

 



PDF 

 𝑃 𝑎 ≤ 𝑋 ≤ 𝑎 =  𝑓𝑋 𝑥 𝑑𝑥
𝑎

𝑎
= 0. 

∴         𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏  
       = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏  

 The entire area under the graph is equal to 1. 

 𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

= 𝑃 −∞ ≤ 𝑋 ≤ ∞ = 1 



Interpretation of PDF 

 𝑓𝑋(𝑥): “probability mass per unit length” 

 𝑃 𝑥, 𝑥 + 𝛿 =  𝑓𝑋 𝑡 𝑑𝑡
𝑥+𝛿

𝑥
≈ 𝑓𝑋(𝑥) ∙ 𝛿 



Example 1: Uniform 

 Consider a random variable 𝑋 takes value in 

interval 𝑎, 𝑏 . 

 Any subintervals of the same length have the 

same probability. 

 It is called uniform random variable. 

 



Example 1: Uniform 

 Its PDF has the form 

𝑓𝑋 𝑥 =  
1

𝑏 − 𝑎
, if 𝑎 ≤ 𝑥 ≤ 𝑏

0,         otherwise    
 



Example 2: Piecewise Constant 

 When sunny, driving time is 15-20 minutes. 

 When rainy, driving time is 20-25 minutes. 

 With all times equally likely in each case. 

 Sunny with prob. 2/3, rainy with prob. 1/3 

 The PDF of driving time 𝑋 is 

𝑓𝑋 𝑥 =  

𝑐1,         if 15 ≤ 𝑥 ≤ 20

𝑐2, if 20 ≤ 𝑥 ≤ 25
0,   otherwise         

 



Example 2: Piecewise Constant 

 𝑓𝑋 𝑥 =  

𝑐1,         if 15 ≤ 𝑥 ≤ 20

𝑐2,       if 20 ≤ 𝑥 ≤ 25
0,        otherwise         

 



2

3
= 𝑃 𝑠𝑢𝑛𝑛𝑦 =  𝑓𝑋 𝑥 𝑑𝑥

20

15
= 5𝑐1 



1

3
= 𝑃 𝑟𝑎𝑖𝑛𝑦 =  𝑓𝑋 𝑥 𝑑𝑥

25

20
= 5𝑐2 

 Solving this  gives 𝑐1 =
2

15
, 𝑐2 =

1

15
. 



Example 3: large values 

 Consider a random variable 𝑋 with PDF 

𝑓𝑋 𝑥 =  

1

2 𝑥
,  if 0 < 𝑥 ≤ 1

0,       otherwise  

 

 Note that  𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
=  

1

2 𝑥
𝑑𝑥

1

0
= 𝑥 1

0
= 1 

 So it’s a valid PDF. 

 But lim
𝑥→0+

𝑓𝑋(𝑥) = lim
𝑥→0+

1

2 𝑥
= +∞. 

 There, a PDF can take arbitrarily large values. 



Expectation 

 The expectation of a continuous random 

variable 𝑋 is defined by 

𝐄 𝑋 =  𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

 

 As for discrete random variables, the 

expectation can be interpreted as  

 "center of gravity'' of the PDF  

 anticipated average value of 𝑋 in a large number 

of independent repetitions of the experiment.  



Function of random variable 

 For any real-valued function 𝑔, 𝑌 = 𝑔(𝑋) is 

also a random variable.  

 

 The expectation of 𝑔(𝑋) is 

𝐄 𝑔 𝑋 =  𝑔(𝑥)𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

. 

 

 

 



Moments and variance  

 The 𝑛th moment of 𝑋 is defined by 𝐄 𝑋𝑛 . 

 The variance of 𝑋 is defined by 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2   

              =  𝑥 − 𝐄[𝑋] 2𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
 

 0 ≤ 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 

 Please verify the equality.  

 If 𝑌 = 𝑎𝑋 + 𝑏, then 

𝐄 𝑌 = 𝑎𝐄 𝑋 + 𝑏, 𝐕𝐚𝐫 𝑌 = 𝑎2𝐕𝐚𝐫 𝑋 . 



Example: Uniform 

 Consider a uniform random variable with PDF 

𝑓𝑋 𝑥 =  
1

𝑏 − 𝑎
, if 𝑎 ≤ 𝑥 ≤ 𝑏

0,         otherwise    
 

 𝐄 𝑋 =  𝑥 ∙
1

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
∙
1

2
𝑥2 𝑏

𝑎
=

𝑎+𝑏

2
. 

 𝐄 𝑋2 =  
𝑥2

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
∙
1

3
𝑥3 𝑏

𝑎
=

𝑎2+𝑎𝑏+𝑏2

3
. 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 =
(𝑏−𝑎)2

12
. 



Example: Exponential 

 An exponential random variable has PDF  

𝑓𝑋 𝑥 =  𝜆𝑒−𝜆𝑥,  if 𝑥 ≥ 0       
0,         otherwise

 

 Note: 𝑓𝑋 0 = 𝜆. 



Example: Exponential 

 Note:  𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
= −𝑒−𝜆𝑥 ∞

0
= 1. 

 𝑑(𝑒−𝜆𝑥)/𝑑𝑥 = −𝜆𝑒−𝜆𝑥. 

 Tail: 𝑃 𝑋 ≥ 𝑎 =  𝜆𝑒−𝜆𝑥𝑑𝑥
∞

𝑎
= −𝑒−𝜆𝑥 ∞

𝑎
= 𝑒−𝜆𝑎  



Example: Exponential 

 𝐄 𝑋 =  𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
= −  𝑥 𝑑𝑒−𝜆𝑥∞

0
 

= −𝑥𝑒−𝜆𝑥  
∞

0
+  𝑒−𝜆𝑥𝑑𝑥

∞

0

= 0 −
𝑒−𝜆𝑥

𝜆
 
∞

0
=

1

𝜆
 

 Recall integral by parts:  𝑢𝑑𝑣 = 𝑢𝑣 −  𝑣𝑑𝑢. 

 𝐄 𝑋2 =  𝑥2𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0
 

= −𝑥2𝑒−𝜆𝑥  
∞

0
+  2𝑥𝑒−𝜆𝑥𝑑𝑥

∞

0

=
2

𝜆
𝐄 𝑋 =

2

𝜆2
 

 𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 X 𝟐 = 1/𝜆2 



Example 

 Time 𝑋 of a meteorite first lands in Sahara. 

 An exponential r.v. with mean of 10 days. 

 Since 𝐄 𝑋 = 1/𝜆, we have 𝜆 = 1
10 . 

 Question: What’s the probability of it first lands 

in 6am – 6pm of the first day? 

 𝑃
1

4
≤ 𝑋 ≤

3

4
= 𝑃 𝑋 ≥

1

4
− 𝑃 𝑋 ≥

3

4
 

   = 𝑒−
1

40 − 𝑒−
3

40 = 0.0476. 
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Cumulative Distribution Function 

 The cumulative distribution function, or CDF, 

of a random variable 𝑋 is 

 𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥   

    =  
 𝑝𝑋 𝑘𝑘≤𝑥 , discrete      

 𝑓𝑋 𝑦 𝑑𝑦
𝑥

−∞
, continuous

 

 The CDF 𝐹𝑋 𝑥  “accumulates” probability “up 

to” the value 𝑥. 



CDF for discrete case 

 



CDF for continuous case 

 



Properties 

 𝐹𝑋 is monotonically increasing: 

if 𝑥 ≤ 𝑦, then 𝐹𝑋(𝑥) ≤ 𝐹𝑋(𝑦). 

 lim
𝑥→−∞

𝐹𝑋(𝑥) = 0, lim
𝑥→+∞

𝐹𝑋(𝑥) = 1 

 If 𝑋 is discrete, 𝐹𝑋 is piecewise constant.  

 If 𝑋 is continuous, 𝐹𝑋 is continuous and  

𝐹𝑋 𝑥 =  𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞

,  𝑓𝑋 𝑥 =
𝑑𝐹𝑋

𝑑𝑥
𝑥 . 



Example: maximum of several random 

variables 
 Take a test three times with score in {1, . . , 10} 

 The final score is the maximum of the scores 

𝑋 = max(𝑋1, 𝑋2, 𝑋3) 

 Each 𝑋𝑖 takes values {1, . . , 10} eually likely, 
and different 𝑋𝑖 ’s are independent. 

 The CDF of the final score 𝑋 is 

 𝐹𝑋 𝑘 = 𝑃 𝑋 ≤ 𝑘  

     = 𝑃 𝑋1 ≤ 𝑘 𝑃 𝑋2 ≤ 𝑘 𝑃 𝑋3 ≤ 𝑘  

     = (𝑘/10)3 

 

 



Example: maximum of several random 

variables 
 Take a test three times with score in {1, . . , 10} 

 The final score is the maximum of the scores 

𝑋 = max(𝑋1, 𝑋2, 𝑋3) 

 Each 𝑋𝑖 takes values {1, . . , 10} eually likely, 

and different 𝑋𝑖 ’s are independent. 

 The PDF of the final score 𝑋 is  

 𝑃𝑋 𝑘 = 𝐹𝑋 𝑘 − 𝐹𝑋 𝑘 − 1 =
𝑘

10

3
−

𝑘−1

10

3
  

 

 



Example: Geometric and Exponential 

 CDN for geometric random variable: 

 𝐹𝑔𝑒𝑜 𝑛 =  𝑝(1 − 𝑝)𝑘𝑛
𝑘=1 = 𝑝

1−(1−𝑝)𝑛

1−(1−𝑝)
  

      = 1 − (1 − 𝑝)𝑛 for 𝑛 = 1,2, … 

 CDN for exponential random variable: 

 When 𝑥 ≤ 0: 𝐹𝑒𝑥𝑝 𝑥 = 𝑃 𝑋 ≤ 0 = 0  

 When 𝑥 ≥ 0: 𝐹𝑒𝑥𝑝 𝑥 =  𝜆𝑒−𝜆𝑡𝑑𝑡
𝑥

0
 

    = −𝑒−𝜆𝑡 𝑥
0

= 1 − 𝑒−𝜆𝑥 

 



Example: Geometric and Exponential 

 𝐹𝑔𝑒𝑜 𝑛 = 1 − (1 − 𝑝)𝑛, 𝐹𝑒𝑥𝑝 𝑥 = 1 − 𝑒−𝜆𝑥. 

 If 𝑒−𝜆𝛿 = 1 − 𝑝, then  𝐹𝑒𝑥𝑝 𝑛𝛿 = 𝐹𝑔𝑒𝑜 𝑛 . 
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Normal Random Variable 

 A continuous random variable 𝑋 is normal, or 

Gaussian, if it has a PDF 

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  

   for some 𝜎 > 0. 

 It can be verified that 

 
1

2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞

= 1 

 



Example 

 A normal PDF and CDF with 𝜇 = 1, 𝜎2 = 1. 

 The PDF is symmetric around its mean 𝜇, and has 

a characteristic bell shape.  

 



Example 

 A normal PDF and CDF with 𝜇 = 1, 𝜎2 = 1. 

 As 𝑥 gets further from 𝜇. the term 𝑒
−

(𝑥−𝜇)2

2𝜎2  

decreases very rapidly. In this figure, the PDF is 

very close to zero outside the interval −1,3 .  

 



Mean and variance 

 The PDF is symmetric around 𝜇, so 

𝐄 𝑋 = 𝜇 

 

 It turns out that 𝐕𝐚𝐫 𝑋 = 𝜎2. 



Variance 

 𝐕𝐚𝐫 𝑋  

=  
1

2𝜋𝜎
(𝑥 − 𝜇)2𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
∞

−∞
  

=
𝜎2

2𝜋
 𝑦2𝑒−𝑦2/2𝑑𝑦

∞

−∞
           ∵ 𝑦 =

𝑥−𝜇

𝜎
 

=
𝜎2

2𝜋
−𝑦𝑒−

𝑦2

2  ∞
−∞

+
𝜎2

2𝜋
 𝑒−

𝑦2

2 𝑑𝑦
∞

−∞
  

     (integral by parts) 

=
𝜎2

2𝜋
 𝑒−𝑦2/2𝑑𝑦

∞

−∞
  

= 𝜎2  

 



Standard Normal 

 The normal random variable with zero mean 

and unit variance is a standard normal. Its 

CDF is denoted by Φ: 

Φ 𝑦 = 𝑃 𝑌 ≤ 𝑦 =
1

2𝜋
 𝑒−𝑡2/2𝑑𝑡

𝑦

−∞

 

 By symmetry, it holds 

Φ −𝑦 = 1 − Φ(𝑦) 



Standard Normal 

 



Standard Normal  

 Table of Φ(𝑥) for positive 𝑥. 

 Φ −0.5 = 1 − Φ 0.5 = 1 − .6915 = .3085 



 



Standard Normal 

 Let 𝑋 be a normal random variable with mean 𝜇 
and variance 𝜎2. Then 

𝑌 =
𝑋 − 𝜇

𝜎
 

   is normal and 

𝐄 𝑌 =
𝐄[𝑋]−𝜇

𝜎
= 0,  𝐕𝐚𝐫 Y =

𝐕𝐚𝐫[𝑋]

𝜎2 = 1  

   Thus, 𝑌 is standard normal. 
 This fact allows us to calculate the probability of any 

event defined in terms of 𝑋: we redefine the event in 
terms of 𝑦, and then use the standard normal table.  

 



Example 1: Using the normal table 

 annual snowfall at a certain place 

 normal r.v. with mean 𝜇 = 60 and standard 

deviation 𝜎 = 20. 

 Question: What is the probability that this year’s 

snowfall will be at least 80 inches? 

 𝑃 𝑋 ≥ 80 = 𝑃
𝑋−60

20
≥

80−60

20
= 𝑃(𝑌 ≥ 1) 

= 1 − Φ 1 = 1 − .8413 = .1587 



Example 1: Using the normal table 

 In general, we can calculate the CDF for a 

normal random variable as follows. 

 For a normal random variable 𝑋 with mean 𝜇 

and variance 𝜎2, we  

 first “standardize" 𝑋, i.e., subtract 𝜇 and divide by 

𝜎2, to obtain a standard normal random variable 𝑌  

 read the CDF value from standard normal table:  

𝑃 𝑋 ≤ 𝑥 = 𝑃
𝑋 − 𝜇

𝜎
≥

𝑥 − 𝜇

𝜎
= 𝑃 𝑌 ≤

𝑥 − 𝜇

𝜎
= Φ

𝑥 − 𝜇

𝜎
 



Example 2: Signal detection 

 A binary message is transmitted as a signal 𝑠 , 

which is either +1 or −1. 

 The communication corrupts the transmission 

with additional normal noise with mean 𝜇 = 0 

and variance 𝜎2. 

 The receiver concludes that the signal −1 (or 

+ 1) was transmitted if the value received is 

< 0 (or ≥ 0, respectively).  

 



Example 2: Signal detection 2 

 



Example 2: Signal detection 3 

 Question: What is the probability of error? 

 The error occurs whenever −1 is transmitted 

and the noise 𝑁 is at least 1, or whenever +1 

is transmitted and the noise is smaller than 

− 1. 

       𝑃 𝑁 ≥ 1 = 1 − 𝑃 𝑁 < 1  

 = 1 − 𝑃
𝑁−𝜇

𝜎
<

1−𝜇

𝜎
= 1 − Φ

1−𝜇

𝜎
  

 = 1 − Φ
1

𝜎
  

 



Normal Random Variable 

 Normal random variables play an important 

role in a broad range of probabilistic models. 

 The main reason is that they model well the 

additive effect of many independent factors.  

 The sum of a large number of independent 

and identically distributed (not necessarily 

normal) random variables ≈ normal CDF.  

 regardless of CDF of individual random variables. 

 More on this in Chapter 5. 
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Joint PDFs 

 Two continuous random variables associated 

with the same experiment are jointly 

continuous and can be described in terms of 

a joint PDF 𝑓𝑋,𝑌 if 𝑓𝑋,𝑌 is nonnegative function 

that satisfies 

𝑃 𝑋, 𝑌 ∈ 𝐵 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝑥,𝑦 ∈𝐵

 

for every subset 𝐵 of the two-dimensional plane. 



Joint PDFs 

 Normalization:   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
= 1 

 To interpret the joint PDF, let 𝛿 be a small 

positive number,  

 𝑃 𝑎 ≤ 𝑋 ≤ 𝑎 + 𝛿, 𝑐 ≤ 𝑌 ≤ 𝑐 + 𝛿  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
𝑎+𝛿

𝑎

𝑑𝑦
𝑐+𝛿

𝑐

≈ 𝑓𝑋,𝑌(𝑎, 𝑐)𝛿2 

 𝑓𝑋,𝑌 𝑎, 𝑐 : “probability per unit area” in the 

vicinity of 𝑎, 𝑐 . 



Marginal Probability 

 𝑃 𝑋 ∈ 𝐴 = 𝑃 𝑋 ∈ 𝐴, 𝑌 ∈ −∞, ∞  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
∞

−∞

𝑑𝑥
𝐴

 

 Recall 𝑃 𝑋 ∈ 𝐴 =  𝑓𝑋 𝑥 𝑑𝑥
𝑥∈𝐴

 

 Thus the marginal PDF of 𝑋 is given by 

𝑓𝑋 𝑥 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
∞

−∞
  

 Similarly, the marginal PDF of 𝑌 is  

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
  



Example: 2D Uniform PDF 

 Romeo and Juliet have a date at a given time 

 Each will arrive with a delay between 0 and 1 

hour. 

 Let 𝑋, Y denote their delays. 

 Assume that no pairs in the unit square is 

more likely than others 

 



Example: 2D Uniform PDF 

 Then the joint PDF is of the form 

 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
𝑐 if 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1
0 otherwise                         

 

 

 By   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
= 1, we get 

𝑐 = 1 

 

 



2D Uniform PDF 

 In general, let 𝑆 be a subset of the two 

dimensional plane. The corresponding 

uniform joint PDF on 𝑆 is defined by 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
1

area of 𝑆
if (𝑥, 𝑦) ∈ 𝑆

0 otherwise   

 



2D Uniform PDF 

 For any subset 𝐴 ⊂ 𝑆, the probability that 

(𝑋, 𝑌) lies in 𝐴 is  

𝑃 𝑋, 𝑌 ∈ 𝐴 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

(𝑥,𝑦)∈𝐴

 

=
1

area of 𝑆
 𝑑𝑥𝑑𝑦

(𝑥,𝑦)∈𝐴

=
area of 𝐴

area of 𝑆
 

 



Example 2 

 Suppose the joint 

PDF of 𝑋, 𝑌 is a 

constant 𝑐 on 𝑆 and 

0 outside. 

 Question: What is 𝑐? 

 Question: What are 

the marginal PDFs of 

𝑋 and 𝑌? 



Example 2 

 Suppose the joint 

PDF of 𝑋, 𝑌 is a 

constant 𝑐 on 𝑆 and 

0 outside. 

 The area of 𝑆 is 4, 

so 𝑐 = 1/4. 

 The marginal PDFs 

of 𝑋, 𝑌 are shown in 

the figure. 



Example: Buffon’s Needle 

 A surface is ruled with  
parallel lines, which at  
distance 𝑑 from each other. 

 Suppose we throw a needle  
of length 𝑙 randomly. 

 Question: What is the  
probability that the needle  
will intersect one of the lines? 

 Assume 𝑙 < 𝑑 so that the needle cannot intersect 
two lines simultaneously.   



Example: Buffon’s Needle 

 𝑋: the distance from the 

middle point of the needle 

and the nearest of the 

parallel lines 

 

 Θ: the acute angle formed 

by the needle and the lines 



 

 

 

 

 We model (𝑋, Θ) with a uniform joint PDF: 

𝑓𝑋,Θ 𝑥, 𝜃 =  

4

𝜋𝑑
if 𝑥 ∈ 0,

𝑑

2
 and 𝜃 ∈ 0,

𝜋

2

0 otherwise                               

 

 



 

 

 

 

 The needle will intersect one of the lines if 

and only if 

𝑋 ≤
𝑙

2
sin Θ 

 



Example: Buffon’s Needle 

 So the probability of intersection is  

    𝑃 𝑋 ≤
𝑙

2
sin Θ =  𝑓𝑋,Θ 𝑥, 𝜃 𝑑𝑥𝑑𝜃

𝑋≤
𝑙
2

sin 𝜃

 

=
4

𝜋𝑑
  𝑑𝑥𝑑𝜃

𝑙
2

sin 𝜃

0

𝜋/2

0

=
4

𝜋𝑑
 

𝑙

2
sin 𝜃 𝑑𝜃

𝜋/2

0

 

=
2𝑙

𝜋𝑑
− cos 𝜃  

𝜋/2

0
=

2𝑙

𝜋𝑑
 



Joint CDFs 

 If 𝑋 and 𝑌 are two random variables 

associated with the same experiment, we 

define their joint CDF by 

 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) 

 



Joint CDFs 

 If 𝑋 and 𝑌 are described by a joint PDF 𝑓𝑋,𝑌, 

then 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

=   𝑓𝑋,𝑌 𝑠, 𝑡 𝑑𝑠𝑑𝑡
𝑦

−∞

𝑥

−∞

 

   and  

𝑓𝑋,𝑌(𝑥, 𝑦) =
𝜕2𝐹𝑋,𝑌

𝜕𝑥𝜕𝑦
(𝑥, 𝑦) 

 



Example 

 Let 𝑋 and 𝑌 be described by a uniform PDF 

on the unit square 0,1 2.  

 The joint CDF is given by 

𝐹𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑥𝑦 

 Then 

𝜕2𝐹𝑋,𝑌

𝜕𝑥𝜕𝑦
𝑥, 𝑦 =

𝜕2 𝑥𝑦

𝜕𝑥𝜕𝑦
𝑥, 𝑦 = 1 = 𝑓𝑋,𝑌(𝑥, 𝑦) 

    for all 𝑥, 𝑦  in the unit square. 

 

 



Expectation 

 If 𝑋 and 𝑌 are jointly continuous random 

variables and 𝑔 is some function, then 

𝑍 = 𝑔 𝑋, 𝑌  

    is also a random variable.  

 And 

𝐄 𝑔 𝑋, 𝑌 =   𝑔(𝑥, 𝑦)𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 



Expectation 

 If 𝑔 𝑋, 𝑌  is a linear function:  
𝑔 𝑋, 𝑌 = 𝑎𝑋 + 𝑏𝑌 + 𝑐 

for some scalars 𝑎, 𝑏, 𝑐. 

 

 then 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐 

 

 “linearity of expectation” 



More than two random variables 

 The joint PDF of 𝑋, 𝑌 and 𝑍 satisfies 

𝑃 𝑋, 𝑌, 𝑍 ∈ 𝐵 =  𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

(𝑥,𝑦,𝑧)∈𝐵

 

    for any set 𝐵. 

 Marginal: 

 𝑓𝑋,𝑌 𝑥, 𝑦 =  𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑧
∞

−∞
 

 𝑓𝑋 𝑥 =   𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑦
∞

−∞
𝑑𝑧

∞

−∞
 



More than two random variables 

 𝐄 𝑔 𝑋, 𝑌, 𝑍 =

   𝑔 𝑥, 𝑦, 𝑧 𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 𝑑𝑥
∞

−∞
𝑑𝑦

∞

−∞
𝑑𝑧

∞

−∞
 

 

 If 𝑔 is linear, of the form 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍, then 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐𝐄 𝑍  

 

 In general,  

𝐄 𝑎1𝑋1 + ⋯ + 𝑎𝑛𝑋𝑛 = 𝑎1𝐄 𝑋1 + ⋯ + 𝑎𝑛𝐄[𝑋𝑛] 



Content 

 Continuous Random Variables and PDFs 

 Cumulative Distribution Functions 

 Normal Random Variables 

 Joint PDFs of Multiple Random Variables 

 Conditioning 

 The Continuous Bayes’ Rule 



Conditioning 

 Similar to the case of discrete random 

variables, we can condition a random 

variable  

 on an event, or  

 on another random variable,  

 

 and define the concepts of conditional PDF 

and conditional expectation.  



Conditioning a r.v. on an event 

 The conditional PDF of a continuous random 

variable 𝑋, given an event 𝐴 with 𝑃 𝐴 > 0, is 

defined as a nonnegative function 𝑓𝑋|𝐴 that 

satisfies 

𝑃 𝑋 ∈ 𝐵 𝐴 =  𝑓𝑋|𝐴 𝑥 𝑑𝑥
𝐵

, 

    for any subset 𝐵 of the real line. 

 



Conditioning a r.v. on an event 

 

 In particular, taking 𝐵 = ℝ 

 𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

= 1. 

    So 𝑓𝑋|𝐴 is a legitimate PDF. 



Conditioning on event {𝑋 ∈ 𝐴} 

 If we condition on event {𝑋 ∈ 𝐴}, with 

𝑃 𝑋 ∈ 𝐴 > 0, then 

  𝑃 𝑋 ∈ 𝐵 𝑋 ∈ 𝐴   

=
𝑃(𝑋 ∈ 𝐵, 𝑋 ∈ 𝐴)

𝑃(𝑋 ∈ 𝐴)
                           

=
 𝑓𝑋 𝑥 𝑑𝑥
𝐴∩𝐵

𝑃(𝑋 ∈ 𝐴)
                                  

 



Conditioning on event {𝑋 ∈ 𝐴} 

 Comparing with the earlier formula gives 

𝑓𝑋|{𝑋∈𝐴} 𝑥 =  

𝑓𝑋 𝑥

𝑃(𝑋 ∈ 𝐴)
, if 𝑋 ∈ 𝐴,    

0, otherwise.

 

 The conditional PDF is zero outside the 

conditioning set.  

 Within the conditioning set, the conditional PDF 

has the same shape as the unconditional one, 

except that scaled by a factor 1/𝑃(𝑋 ∈ 𝐴) 

 



Conditioning on event {𝑋 ∈ 𝐴} 



Example: exp. r.v. is memoryless 

 The time 𝑇 until a new light bulb burns out is 

an exponential random variable with 

parameter 𝜆. 

 Alice turns the light on, leaves the room, and 

when she returns, 𝑡 time units later, finds the 

light bulb is still on, which corresponds to the 

event 

𝐴 = {𝑇 > 𝑡} 



Example: exp. r.v. is memoryless 

 Let 𝑋 be the additional time until the light bulb 

burns out. 

 Question: What’s the conditional CDF of 𝑋 given 

the event 𝐴?  

      𝑃 𝑋 > 𝑥 𝐴 = 𝑃 𝑇 > 𝑡 + 𝑥 𝑇 > 𝑡  

    =
𝑃(𝑇 > 𝑡 + 𝑥 and 𝑇 > 𝑡)

𝑃(𝑇 > 𝑡)
=

𝑃(𝑇 > 𝑡 + 𝑥)

𝑃(𝑇 > 𝑡)
 

    =
𝑒−𝜆(𝑡+𝑥)

𝑒−𝜆𝑡
= 𝑒−𝜆𝑥 



Example: exp. r.v. is memoryless 

 Last slide: 𝑃 𝑋 > 𝑥 𝐴 = 𝑒−𝜆𝑥. 

 Recall tail probability of exponential r.v.: 
𝑃 𝑋 ≥ 𝑎 = 𝑒−𝜆𝑎. 

 Observation: The conditional CDF of 𝑋 is 

exponential with parameter 𝐴, regardless of 

the time 𝑡 that elapsed between the lighting 

of the bulb and Alice's arrival.  

 Thus the exponential random variable is 

called memoryless.  



Conditioning with multiple r.v. 

 Suppose 𝑋 and 𝑌 are jointly continuous random 
variables, with joint PDF 𝑓𝑋,𝑌. 

 If we condition on a positive probability event of 
the form 𝐶 = {(𝑋, 𝑌) ∈ 𝐴}, we have 

𝑓𝑋,𝑌|𝐶 𝑥, 𝑦 =  

𝑓𝑋,𝑌(𝑥, 𝑦)

𝑃(𝐶)
if 𝑥, 𝑦 ∈ 𝐴,

0 otherwise.

 

  The conditional PDF of 𝑋, given event 𝐶, is 

𝑓𝑋|𝐶 𝑥 =  𝑓𝑋,𝑌|𝐶 𝑥, 𝑦 𝑑𝑦
∞

−∞

 



Total probability theorem 

 If the events 𝐴1, ⋯ , 𝐴𝑛 form a partition of the 

sample space, then 

𝑓𝑋 𝑥 =  𝑃(𝐴𝑖)𝑓𝑋|𝐴𝑖
(𝑥)

𝑛

𝑖=1

 

 Next we give a proof. 



Proof of total probability theorem 

 By the total probability theorem from Chapter 

1, we have 

 𝑃 𝑋 ≤ 𝑥 =  𝑃 𝐴𝑖 𝑃(𝑋 ≤ 𝑥|𝐴𝑖)
𝑛
𝑖=1   

 This formula can be written as 

 𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞

=  𝑃 𝐴𝑖  𝑓𝑋|𝐴𝑖
𝑡 𝑑𝑡

𝑥

−∞

𝑛

𝑖=1

 

 Then take the derivative with respect to 𝑥 and 

get the result. 



Example: Taking train 

 The metro train arrives at the station every 

quarter hour starting at 6:00 a.m. 

 You walk into the station between 7:10-7:30 

a.m. uniformly. 

 Question: What’s the PDF of the time you have to 

wait for the first train to arrive? 



Example: Taking train 

 Denote the time of your arrival by 𝑋, which is 

then a uniform random variable on 7:10-7:30 

 Let 𝑌 be the waiting time. 

 

 Let 𝐴 and 𝐵 be the events 

𝐴 = 7: 10 ≤ 𝑋 ≤ 7: 15 = {𝑏𝑜𝑎𝑟𝑑 7: 15 𝑡𝑟𝑎𝑖𝑛} 
𝐵 = 7: 15 < 𝑋 ≤ 7: 30 = {𝑏𝑜𝑎𝑟𝑑 7: 30 𝑡𝑟𝑎𝑖𝑛} 

 



Example: Taking train 

 Condition on event 𝐴, 𝑌 is uniform on 0-5 

 Condition on event 𝐵, 𝑌 is uniform on 0-15 

 Total probability theorem:  

𝑓𝑌 𝑦 = 𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃 𝐵 𝑓𝑌|𝐵 𝑦  

 For 0 ≤ 𝑦 ≤ 5, 

𝑓𝑌 𝑦 =
1

4
∙
1

5
+

3

4
∙

1

15
=

1

10
 

 For 5 < 𝑦 ≤ 15, 

𝑓𝑌 𝑦 =
1

4
∙ 0 +

3

4
∙

1

15
=

1

20
 



Example: Taking train 

 



Conditioning one r.v. on another 

 Let 𝑋 and 𝑌 be continuous random variables 
with joint PDF 𝑓𝑋,𝑌. 

 For any 𝑦 with 𝑓𝑌 𝑦 > 0, the conditional PDF of 
𝑋 given that 𝑌 = 𝑦, is 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
. 

 This is analogous to the formula  

𝑃𝑋|𝑌 𝑥 𝑦 =
𝑃𝑋,𝑌 𝑥, 𝑦

𝑃𝑌 𝑦
 

for the discrete case. 



Conditioning one random variable on 

another 
 Because 

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞

, 

    then 

 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

= 1, 

    for any fixed 𝑦.  

 Thus 𝑓𝑋|𝑌 𝑥 𝑦  is a legitimate PDF. 

 



Example: Circular uniform PDF 

 Bob throws a dart at a circular target of radius 

𝑟. 

 He always hits the target. 

 All points of impact  
(𝑥, 𝑦) are equally likely. 

 Then the joint PDF of  

the random variables  
𝑋, 𝑌 is uniform. 



Example: Circular uniform PDF 

 Because the area of the circle is 𝜋𝑟2, 

𝑓𝑋,𝑌 𝑥, 𝑦 =  
1

𝜋𝑟2
if 𝑥2 + 𝑦2 ≤ 𝑟2,

0 otherwise.

 

 

 To calculate the conditional PDF 𝑓𝑋|𝑌(𝑥|𝑦), let 

us find the marginal PDF 𝑓𝑌(𝑦). 

 



Example: Circular uniform PDF 

 For 𝑦 > 𝑟, 𝑓𝑋|𝑌 𝑥 𝑦 = 0 

 For |𝑦| ≤ 𝑟,  

𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑥
∞

−∞

          

            =
1

𝜋𝑟2
 𝑑𝑥
𝑥2+𝑦2≤𝑟2

=
1

𝜋𝑟2
 𝑑𝑥

𝑟2−𝑦2

− 𝑟2−𝑦2
 

                  =
2 𝑟2 − 𝑦2

𝜋𝑟2
 

 



Example: Circular uniform PDF 

 The conditional PDF is  

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
=

1
𝜋𝑟2

2
𝜋𝑟2 𝑟2 − 𝑦2

                    

           =
1

2 𝑟2 − 𝑦2
, if  𝑥2 + 𝑦2 ≤ 𝑟2 

 Thus for a fixed value of 𝑦, the conditional 

PDF 𝑓𝑋|𝑌 is uniform. 



Conditional probability on zero event 

 Let us fix some small positive numbers 𝛿1 and 𝛿2, 
and condition on the event 

𝐵 = 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2 . 

 Then  
𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2  

                =
𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 and 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2)

𝑃(𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿2)
 

≈
𝑓𝑋,𝑌 𝑥, 𝑦 𝛿1𝛿2

𝑓𝑌 𝑦 𝛿2
= 𝑓𝑋|𝑌 𝑥 𝑦 𝛿1,                   

    which is independent of 𝛿2 



Conditional probability on zero event 

 Let 𝛿2 → 0, we get 

𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿1 𝑌 = 𝑦 ≈ 𝑓𝑋|𝑌 𝑥 𝑦 𝛿1 

   for 𝛿1 small, and more generally 

𝑃 𝑋 ∈ 𝐴 𝑌 = 𝑦 =  𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
𝐴

 

 This gives a conditional probability on the 

zero event {𝑌 = 𝑦}. 



Example: Vehicle speed 

 The speed of a typical vehicle that drives past 

a police radar is an exponential random 

variable 𝑋 with mean 50. 

 The police radar’s measurement 𝑌 has an 

error which is modeled as a normal random 

variable with zero mean and standard 

derivation equal to one tenth of the vehicle’s 

speed. 



Example: Vehicle speed 

 Question: What is the joint PDF of 𝑋 and 𝑌? 

 

 First, 𝑓𝑋 𝑥 =
1

50
𝑒−

𝑥

50, for 𝑥 ≥ 0 

 Also, conditioned on 𝑋 = 𝑥, the measurement 

𝑌 has a normal PDF with mean 𝑥 and 

variance 𝑥2/100. Thus  

𝑓𝑌|𝑋 𝑦 𝑥 =
1

2𝜋(𝑥/10)
𝑒− 𝑦−𝑥 2/(2𝑥2/100). 

 



Example: Vehicle speed 

 Thus, for all 𝑥 ≥ 0 and all 𝑦, 

 

   𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌|𝑋 𝑦 𝑥   

    =
1

50
𝑒

𝑥

50
10

2𝜋𝑥
𝑒

−
50(𝑦−𝑥)2

𝑥2  



Conditioning for more than two 

random variables 

 𝑓𝑋.𝑌|𝑍 𝑥, 𝑦 𝑧 =
𝑓𝑋,𝑌,𝑍(𝑥,𝑦,𝑧)

𝑓𝑍(𝑧)
, if 𝑓𝑍 𝑧 > 0. 

 𝑓𝑋|𝑌,𝑍 𝑥 𝑦, 𝑧 =
𝑓𝑋,𝑌,𝑍(𝑥,𝑦,𝑧)

𝑓𝑌,𝑍(𝑦,𝑧)
, if 𝑓𝑌,𝑍 𝑦, 𝑧 > 0. 

 

 There is an analog of the multiplication rule 

 
𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑓𝑋|𝑌,𝑍 𝑥 𝑦, 𝑧 𝑓𝑌|𝑍 𝑦 𝑧 𝑓𝑍 𝑧  



Conditional Expectation 

 For a continuous random variable 𝑋, its 

conditional expectation 𝐄[𝑋|𝐴] given an event 

𝐴 with 𝑃 𝐴 > 0 is 

𝐄 𝑋 𝐴 =  𝑥𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

 

 The conditional expectation of 𝑋 given that       

𝑌 = 𝑦 is  

𝐸[𝑋|𝑌 = 𝑦] =  𝑥𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

 

 



The expected value rule 

 For a function 𝑔(𝑋), we have 

𝐄 𝑔 𝑋 𝐴 =  𝑔 𝑥 𝑓𝑋|𝐴 𝑥 𝑑𝑥
∞

−∞

 

    and 

𝐄 𝑔 𝑋 𝑌 = 𝑦 =  𝑔 𝑥 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

 



Total expectation theorem 1 

 Let 𝐴1, ⋯ , 𝐴𝑛 be disjoint events that form a 

partition of the sample space, and assume 

that 𝑃 𝐴𝑖 > 0 for all 𝑖. Then 

𝑓𝑋 𝑥 =  𝑃(𝐴𝑖)𝑓𝑋|𝐴𝑖
(𝑥)

𝑛

𝑖=1

. 

 From here, we can get 

𝐄 𝑋 =  𝑃 𝐴𝑖 𝐄[𝑋|𝐴𝑖]

𝑛

𝑖=1

. 



Total expectation theorem 2 

 When conditioned on a random variable, we 

have  

𝐄 𝑋 =  𝐄 𝑋 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦
∞

−∞

 



Proof  

  𝐄 𝑋 𝑌 = 𝑦 𝑓𝑌 𝑦 𝑑𝑦
∞

−∞
 

=   𝑥𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

𝑓𝑌 𝑦 𝑑𝑦
∞

−∞

 

=   𝑥𝑓𝑋|𝑌 𝑥 𝑦
∞

−∞

𝑓𝑌 𝑦 𝑑𝑥𝑑𝑦
∞

−∞

 

=   𝑥𝑓𝑋,𝑌(𝑥, 𝑦)
∞

−∞

𝑑𝑥𝑑𝑦
∞

−∞

 

=  𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

= 𝐄[𝑋] 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 Suppose the random variable 𝑋 has the PDF 

𝑓𝑋 𝑥 =  
1/3 if 0 ≤ 𝑥 ≤ 1
2/3 if 1 < 𝑥 ≤ 2
0 otherwise

 

 Consider the events 

𝐴1 = 𝑋 lies in the first interval 0,1        
𝐴2 = {𝑋 lies in the second interval (1,2]} 



Example: Mean and Variance of a 

Piecewise Constant PDF 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 Then 

𝑃 𝐴1 = 1/3, 𝑃 𝐴2 = 2/3. 

 And the conditional PDFs 𝑓𝑋|𝐴1
 and 𝑓𝑋|𝐴2

 are 

uniform.  

 Recall previous result: Uniform random 

variable 𝑌 on 𝑎, 𝑏  has 𝐄 𝑌2 =
𝑎2+𝑎𝑏+𝑏2

3
. 

 Thus  𝐄 𝑋 𝐴1 = 1/2,  𝐄 𝑋 𝐴2 = 3/2 

𝐄 𝑋2 𝐴1 = 1/3, 𝐄 𝑋2 𝐴2 = 7/3 



Example: Mean and Variance of a 

Piecewise Constant PDF 
 And 

  𝐄 𝑋 = 𝑃 𝐴1 𝐄 𝑋 𝐴1 + 𝑃 𝐴2 𝐄 𝑋 𝐴2  

  =
1

3
∙
1

2
+

2

3
∙
3

2
=

7

6
.  

   𝐄 𝑋2 = 𝑃 𝐴1 𝐄 𝑋2 𝐴1 + 𝑃 𝐴2 𝐄 𝑋2 𝐴2   

  =
1

3
∙
1

3
+

2

3
∙
7

3
=

15

9
. 

 Thus, the variance is 

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 =
15

9
−

49

36
=

11

36
. 

     



Independence 

 Two continuous random variables 𝑋 and 𝑌 

are independent if their joint PDF is the 

product of the marginal PDFs 

𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) 

    for all 𝑥, 𝑦. 

 It is equivalent to 

𝑓𝑋|𝑌 𝑥 𝑦 = 𝑓𝑋(𝑥) 

    for all 𝑦 with 𝑓𝑌 𝑦 > 0 and all 𝑥. 



Independence 

 

 Three continuous random variables 𝑋, 𝑌 and 

𝑍 are independent if  

𝑓𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)𝑓𝑍(𝑧) 

    for all 𝑥, 𝑦, 𝑧. 



Example: Independent normal 

random variables 
 Let 𝑋 and 𝑌 be independent normal random 

variables with means 𝜇𝑥 , 𝜇𝑦, and variance 

𝜎𝑥
2, 𝜎𝑦

2, respectively. Their joint PDF is of the 

form 

     𝑓𝑋,𝑌 𝑥, 𝑦   

 = 𝑓𝑋 𝑥 𝑓𝑌 𝑦  

  =
1

2𝜋𝜎𝑥𝜎𝑦
exp −

𝑥−𝜇𝑥
2

2𝜎𝑥
2 −

𝑦−𝜇𝑦
2

2𝜎𝑦
2  



Example: Independent normal 

random variables 
The ellipses are the contours of the PDF: 

 𝑓𝑋,𝑌 𝑥, 𝑦 =
1

2𝜋𝜎𝑥𝜎𝑦
exp −

𝑥−𝜇𝑥
2

2𝜎𝑥
2 −

𝑦−𝜇𝑦
2

2𝜎𝑦
2   

 



Independence 

 If 𝑋 and 𝑌 are independent, then any two 

events of the form {𝑋 ∈ 𝐴} and {𝑌 ∈ 𝐵} are 

independent.  

     𝑃 𝑋 ∈ 𝐴 and 𝑌 ∈ 𝐵  

=   𝑓𝑋,𝑌 𝑥, 𝑦 𝑑𝑦
𝑦∈𝐵

𝑑𝑥
𝑥∈𝐴

  

=   𝑓𝑋 𝑥 𝑓𝑌 𝑦 𝑑𝑦
𝑦∈𝐵

𝑑𝑥
𝑥∈𝐴

  

=  𝑓𝑋 𝑥 𝑑𝑥
𝑥∈𝐴  𝑓𝑌 𝑦 𝑑𝑦

𝑦∈𝐵
  

= 𝑃 𝑋 ∈ 𝐴 𝑃(𝑌 ∈ 𝐵)  



Independence 

 In particular, when 𝐴 = (𝑋 ≤ 𝑥), 𝐵 = (𝑌 ≤ 𝑦): 

 
𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦  

 

 Thus 𝐹𝑋,𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌 𝑦 . 



Independence 

 If 𝑋 and 𝑌 are independent, then 

𝐄 𝑋𝑌 = 𝐄 𝑋 𝐄 𝑌  

    More generally, for any two functions 𝑔, ℎ 

𝐄 𝑔 𝑋 ℎ 𝑌 = 𝐄 𝑔 𝑋 𝐄 ℎ 𝑌  

 

 Also, if 𝑋 and 𝑌 are independent, then 

𝐕𝐚𝐫 𝑋 + 𝑌 = 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫 𝑌  



Content 

 Continuous Random Variables and PDFs 

 Cumulative Distribution Functions 

 Normal Random Variables 

 Joint PDFs of Multiple Random Variables 

 Conditioning 

 The Continuous Bayes’ Rule 



The continuous Bayes’ rule 

 In many situations, we represent an 

unobserved phenomenon by a random 

variable 𝑋 with PDF 𝑓𝑋. 

 We make a noisy measurement 𝑌, which is 

modeled in terms of a conditional PDF 𝑓𝑌|𝑋 

 Once the value of 𝑌 is measured, what 

information does it provide on the unknown 

value of 𝑋? 



The continuous Bayes’ rule 

 

 

 

 The information is provided by the conditional 

PDF 𝑓𝑋|𝑌 𝑥 𝑦 . By 𝑓𝑋𝑓𝑌|𝑋 = 𝑓𝑋,𝑌 = 𝑓𝑌𝑓𝑋|𝑌, it 

follows that 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋 𝑥 𝑓𝑌|𝑋 𝑦 𝑥

𝑓𝑌 𝑦
 

 



The continuous Bayes’ rule 

 Based on the normalization property 

 𝑓𝑋|𝑌 𝑥 𝑦 𝑑𝑥
∞

−∞

= 1, 

    an equivalent expression is 

𝑓𝑋|𝑌 𝑥 𝑦 =
𝑓𝑋(𝑥)𝑓𝑌|𝑋(𝑦|𝑥)

 𝑓𝑋 𝑥′ 𝑓𝑌|𝑋 𝑦 𝑥′ 𝑑𝑥′∞

−∞

 

 𝑓𝑌 𝑦 =  𝑓𝑋,𝑌 𝑥′, 𝑦 𝑑𝑥′
∞

−∞
 

         =  𝑓𝑋 𝑥′ 𝑓𝑌|𝑋 𝑦 𝑥′ 𝑑𝑥′∞

−∞
  



Example: Light bulbs 

 A light bulb is known to have an exponentially 

distributed lifetime 𝑌.  

 However, the company has been 

experiencing quality control problems: On 

any given day, the parameter 𝜆 of the PDF of 

𝑌 is a uniform random variable Λ on [1, 3/2]. 

 We test a light bulb and record its lifetime.  

 Question: What can we say about 𝜆? 

 What is 𝑓Λ|𝑌 𝜆 𝑦 ? 



Example: Light bulbs 

 The parameter 𝜆 in terms of a uniform 

random variable Λ with PDF 

𝑓Λ 𝜆 = 2,  for 1 ≤ 𝜆 ≤ 3/2 

 Then by continuous Bayes’ rule, for 1 ≤ 𝜆 ≤
3

2
 

𝑓Λ|𝑌 𝜆 𝑦 =
𝑓Λ(𝜆)𝑓𝑌|Λ(𝑦|𝜆)

 𝑓Λ 𝑡 𝑓𝑌|Λ 𝑦 𝑡 𝑑𝑡
∞

−∞

       

=
2𝜆𝑒−𝜆𝑦

 2𝑡𝑒−𝑡𝑦𝑑𝑡
3/2

1

 

. 



Inference about a discrete random 

variable 
 In some cases, the unobserved phenomenon 

is inherently discrete. 

 Example. Consider a binary signal which is 

observed in the presence of normally 

distributed noise. 

 Example. Consider a medical diagnosis that 

is made on the basis of continuous 

measurements, such as temperature and 

blood counts. 



Inference about a discrete random 

variable 
 Instead of working with the conditioning event 

{𝑌 = 𝑦}, which has zero probability, let us first 

condition on the event {𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿}, then 

take the limit as 𝛿 → 0. 

𝑃 𝐴 𝑌 = 𝑦 ≈ 𝑃 𝐴 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿

=
𝑃 𝐴 𝑃 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿

𝑃 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝛿
≈

𝑃 𝐴 𝑓𝑌|𝐴 𝑦 𝛿

𝑓𝑌 𝑦 𝛿

=
𝑃 𝐴 𝑓𝑌|𝐴 𝑦

𝑓𝑌 𝑦
 

. 



Inference about a discrete random 

variable 
 The denominator 𝑓𝑌 𝑦  can be evaluated by 

total probability theorem 

𝑓𝑌 𝑦 = 𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃(𝐴𝑐)𝑓𝑌|𝐴𝑐(𝑦) 

    so that 

𝑃 𝐴 𝑌 = 𝑦 =
𝑃(𝐴)𝑓𝑌|𝐴 𝑦

𝑃 𝐴 𝑓𝑌|𝐴 𝑦 + 𝑃(𝐴𝑐)𝑓𝑌|𝐴𝑐(𝑦) 
 



Inference about a discrete random 

variable 
 Consider an event 𝐴 of the form 𝑁 = 𝑛  

 𝑁 is a discrete random variable with PMF 𝑝𝑁 

 Let 𝑌 be a continuous random variable which 

is described by a conditional PDF 𝑓𝑌|𝑁(𝑦|𝑛). 

𝑃 𝑁 = 𝑛 𝑌 = 𝑦 =
𝑝𝑁(𝑛)𝑓𝑌|𝑁(𝑦|𝑛)

𝑓𝑌(𝑦)

=
𝑝𝑁(𝑛)𝑓𝑌|𝑁(𝑦|𝑛)

 𝑝𝑁(𝑖)𝑓𝑌|𝑁(𝑦|𝑖)𝑖

 



Example: Signal Detection 

 A binary signal 𝑆 is transmitted with 

𝑃 𝑆 = 1 = 𝑝, 𝑃 𝑆 = −1 = 1 − 𝑝 

 The received signal is 𝑌 = 𝑁 + 𝑆, where 𝑁 is 

standard normal noise. 

 What is the prob. that 𝑆 = 1, as a function of 

the observed value 𝑦 of 𝑌? 

 Conditional on 𝑆 = 𝑠, the random variable 𝑌 

has a normal distribution with mean 𝑠 and 

variance 1. 

 



Example: Signal Detection 

𝑃 𝑆 = 1 𝑌 = 𝑦  =
𝑝𝑆(1)𝑓𝑌|𝑆(𝑦|1)

𝑓𝑌(𝑦)
  

   =

𝑝

2𝜋
𝑒− 𝑦−1 2/2

𝑝

2𝜋
𝑒− 𝑦−1 2/2+

1−𝑝

2𝜋
𝑒− 𝑦+1 2/2

  

   =
𝑝𝑒𝑦

𝑝𝑒𝑦+(1−𝑝)𝑒−𝑦  



Example: Signal Detection 

 Notice that 

lim
𝑦→−∞

𝑃(𝑆 = 1|𝑌 = 𝑦) = 0 

lim
𝑦→∞

𝑃(𝑆 = 1|𝑌 = 𝑦) = 1 

    which is consistent with intuition. 

 


