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Continuous Random Variables

We've learned discrete random variables,
which can be used for dice rolling, coin
flipping, etc.

Random variables with a continuous range of
possible values are quite common.

o velocity of a vehicle traveling along the highway

Continuous random variables are useful:
o finer-grained than discrete random variables
o able to exploit powerful tools from calculus.



Continuous r.v. and PDFs

A random variable X is called continuous if
there is a function fy = 0, called the
probability density function of X, or PDF, s.t.

P(X € B) = ffx(x)dx
B

for every subset B € R.
o We assume the integral is well-defined.

Compared to discrete case: replace
summation by integral.



PDF

In particular, when B = |a, b],
b
Pla<X<b)= f fx(x)dx
a

IS the area under the graph of PDF.

’ ‘m
a ‘1'>

b

Event {a< X< b}



PDF

Pla<X<a)= f;fx(x)dx = 0.

Pla<X<b)=Pa<X<b)
=P(a<X<b)=Pla<X<Db)

The entire area under the graph is equal to 1.

joofx(x)dx =P(—0o<X<m=1

M
a b s

Event {a< X< b}




‘ Interpretation of PDF

= fy(x): “probability mass per unit length”
xX+06

o P(Ix,x +6]) = [ f(©)dt ~ fy(x) - 6

* PDF fy(z)




Example 1: Uniform

Consider a random variable X takes value In
interval [a, b].

Any subintervals of the same length have the
same probability.

It IS called uniform random variable.



‘ Example 1: Uniform

= Its PDF has the form
(1
fx(x)=p —a’
L0,

........

ifa<x<b

otherwise




Example 2: Piecewise Constant

When sunny, driving time is 15-20 minutes.
When rainy, driving time is 20-25 minutes.
With all times equally likely in each case.
Sunny with prob. 2/3, rainy with prob. 1/3
The PDF of driving time X Is

Cq, if 15 <x <20

fx(X) — 4 Co, if20<x <25
0, otherwise



Example 2: Piecewise Constant

Cq, if15 <x <20
fx(x) =<c,,  if20<x <25
0, otherwise

= P(sunny) = f - fx(x)dx = 5¢;
= P(rainy) = f fX(x)dx = 5¢,

1
C2:_

2
3
1

Solvmg this gives ¢, = et



Example 3: large values

Consider a random variable X with PDF

(1

— j <
0o =12 TOSFET

0, otherwise

Note that [~ fy(x)dx = f —dx = x|, =1
o Soit’s a valid PDF.

But 11m fx(x) = llr(I)l F— = +00.

There, a PDF can take arbitrarily large values.



Expectation

The expectation of a continuous random

variable X is defined by
BIX] = | xfi(dx

As for discrete random variables, the
expectation can be interpreted as

o "center of gravity" of the PDF

o anticipated average value of X in a large number
of independent repetitions of the experiment.



Function of random wvariable

For any real-valued function g, Y = g(X) Is
also a random variable.

The expectation of g(X) Is
BlgC0] = [ g(fxCodx.



Moments and variance

The nth moment of X Is defined by E[X"].
The variance of X Is defined by
Var[X] = E[(X — E[X])?]
= |~ (x = ELXD2 fy (x)dx
0 < Var[X] = E[X?] — (E[X])?
o Please verify the equality.

If Y = aX + b, then
E[Y] = aE[X] + b, var[Y] = a*Var[X].




Example: Uniform

Consider a uniform random variable with PDF

(1 _
fX(X)=<b—a' lfanSb
.0, otherwise
b 1 1 1 _op_ atb
E[X]—faxbadx—bazx‘ —
x* 4 _ 1 1 31b _ a’+ab+b’
f dx — X | = —
_ (b-a)?

Var[X] = E[XZ] — E[X]? =

12



‘ Example: Exponential

= An exponential random variable has PDF

(e ifx>0
fx(x) = { 0, otherwise

= Note: f(0) = A.

A fx(iF)

XQ»

0 T




‘ Example: Exponential

= Note: 7 Ae™dx = —e™|? = 1.
0 d(e ™) /dx = —le™**,
= Tall: P(X = Cl) — faOOAe—Axdx — _e—lx‘i: — e—Aa

) fx(z) fx(z)

)\' Q» large )\

0 £ 0 T




Example: Exponential

= foox/le_’lxdx = —fooox de™**

[ e oo 1
— —Ax‘ e~ X dy = ‘ —
0 J, A 10
o Recall integral by parts: [ udv = uv — [ vdu.

E[X?] = fooo x2 e *dx

E[X] =f—2

2 ., —Ax

00 °° 9 2
= —x“e ‘ + | 2xe Mdx = -
0

0 A
Var[X] = E[X?] — E[X]? = 1/4?



Example

Time X of a meteorite first lands in Sahara.
An exponential r.v. with mean of 10 days.
Since E[X] = 1/, we have 1 = 1/;,.
Question: What'’s the probability of it first lands
In 6am — 6pm of the first day?

1 1 3
P(z=x=<7)=P(x=27)-P(x=3

1 3

—e 40 —e 40 = (0.0476.
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 Cumulative Distribution Function

= The cumulative distribution function, or CDF,
of a random variable X is

Fy(x) =P(X <x)
B {Zka py(k), discrete

f_xoo fx(y)dy, continuous

= The CDF Fy(x) “accumulates” probability “up
to” the value x.




‘ CDF for discrete case

B A A N i S
I)\(_Z) .......... p\(Z)
i
&
0 TR B L | R PR S T
A PMF py(z) A CDF Fy(z)
l ..........................
1 I n
0 .1'» ()I




‘ CDF for continuous case

A PDF fy(x) * CDF F_\»(.r)
1
b-a




Properties

Fy Is monotonically increasing:
If x <y, then Fy(x) < Fx(y).
lim Fy(x) =0, lirll Fy(x)=1
X—+ 00

X——00

If X Is discrete, Fy IS plecewise constant.

If X Is continuous, Fy is continuous and

* dF
@ = [ fde, ) =700,



Example: maximum of several random

variables
Take a test three times with score in {1,.., 10}
The final score Is the maximum of the scores
X = max(Xq, X5, X3)

Each X; takes values {1, .., 10} eually likely,
and different X;’s are independent.

The CDF of the final score X Is

Fy(k) =P(X < k)
=P(X, <k)P(X, <k)P(X;<k)
= (k/10)?



Example: maximum of several random

variables
Take a test three times with score in {1,..,10}

The final score Is the maximum of the scores
X = maX(Xl,Xz,Xg)

Each X; takes values {1, .., 10} eually likely,
and different X;’s are independent.

The PDF of the final score X Is

Py(k) = Fx(k) — Fx(k—1) = (3)3 (H)B

10 10




Example: Geometric and Exponential

CDN for geometric random variable:

1-(1-p"
Fgeo(n) = Xig=1p(1 =) =p—7—>

=1—(1—p)*forn=1,2,..
CDN for random variable:
When x < 0: Forp(x) = P(X <0) =0

When x > 0: = [ de~Mdt
_ _e—u‘x _
0




‘ Example: Geometric and Exponential

= Egeo(n) =1-(1-p)", Fexp(x) =1—-e
w Ife 9 =1 —p, then Foxp(n8) = Fyep(n).

A Exponential CDF 1 - Az

0 x
Geometric CDF: 1 - (1 -p)" withp =1 - ¢




Content

Continuous Random Variables and PDFs
Cumulative Distribution Functions
Normal Random Variables

Joint PDFs of Multiple Random Variables
Conditioning

The Continuous Bayes’ Rule



Normal Random Variable

A continuous random variable X 1s normal, or
Gaussian, If it has a PDF

fe) = e 3
X) = e 20
X \V2TTo

for some o > 0.
It can be verified that

f ) «/71 _(x_lé)zd 1
e 20 X =
_o V2O




Example

» A
/ . N
-1 0 ] 2 X R -1 0 1 2 3 T
Normal PDF fy(z) Normal CDF Fy(x)

A normal PDF and CDF with u = 1,04 = 1.

o The PDF is symmetric around its mean u, and has
a characteristic bell shape.



Example

5 A
/ A
-1 0 | 2 R - -1 0 1 2 3 T
Normal PDF fy(z) Normal CDF Fy(x)

A normal PDF and CDF with u = 1,04 = 1.
(x=p)*
o As x gets further from u. the term e 242
decreases very rapidly. In this figure, the PDF is
very close to zero outside the interval [—1,3].




Mean and variance

= The PDF is symmetric around u, SO
E[X] = u

= It turns out that Var[X]| = o°.




Variance

Var|X]

" L pre e d
=J__ X —p)e 202 dx

0'2 \/3?0-2 _y2/2 x—U
=T l-wyie Py [y =)

0'2 ( __2) o0 0'2 (0 _ﬁ
==\-ye )| T +=[_ e zdy
(integral by parts)

g2 fo0  _.2
=\/T_7Tf—ooe y/zdy



Standard Normal

The normal random variable with zero mean

and unit variance Is a standard normal. Its
CDF is denoted by &:

d(y) = P(Y <y) = —t*/2q¢

1 (Y
— e
V2T f_oo
By symmetry, it holds

P(—y) =1-P(y)



‘ Standard Normal

Mean = () 1
Variance = 1 ®(0.7) |

& / : 2y

R R 0T By

Area = ®(0.7) £ | =

Standard normal PDF Standard normal CDF ®(y)




‘ Standard Normal

= Table of ®(x) for positive x.

0 &(—0.5)=1—-d(0.5) =1-.6915 =.3085

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 {| .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5339
0.1 || .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 || .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 || .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 || .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 || .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 || .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 || .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 || .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 || .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389




1.0 || .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 || .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 || .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 || .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 || .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 || .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 || .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 || .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 || .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 || 9713 9719 9726 .9732 .9738 .9744 9750 .9756 .9761 .9767
2.0 || 9772 9778 9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 || 9821 .9826 .9830 .9834 .9838 .9842 9846 .9850 .9854 .9857
2.2 || .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 || 9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 || 9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 || 9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 || .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 || 9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 || 9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 || 9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 || 9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 || .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 || 19993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 || 9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 || 9997 .9997 .9997 .9997 .9997 .9997 .9997 9997 .9997 .9998




Standard Normal

Let X be a normal random variable with mean u
and variance ¢?. Then

X —
Y = -
o)

IS normal and
__E[X]-u _ _ _
E[Y] = = 0, Varl|Y] = —~ = 1
Thus, Y Is standard normal.

o This fact allows us to calculate the probability of any
event defined in terms of X: we redefine the event in
terms of y, and then use the standard normal table.




Example 1: Using the normal table

annual snowfall at a certain place

normal r.v. with mean u = 60 and standard
deviation g = 20.

Question: What is the probability that this year’s
snowfall will be at least 80 inches?

P(X280)=P(=2222) =P(Y 2 1)
—1—®(1) =1 —.8413 = .1587

20 20



Example 1: Using the normal table

In general, we can calculate the CDF for a
normal random variable as follows.

For a normal random variable X with mean u
and variance g%, we

o first “standardize" X, I.e., subtract u and divide by
o2, to obtain a standard normal random variable Y

o read the CDF value from standard normal table:

s = (525 =p (r <70 =0 ()




Example 2: Signal detection

A binary message Is transmitted as a signal s,
which is either +1 or —1.

The communication corrupts the transmission
with additional normal noise with mean u = 0
and variance o~.

The receiver concludes that the signal —1 (or
4+ 1) was transmitted If the value received is
< 0 (or = 0, respectively).



‘ Example 2: Signal detection 2

Transmitter

Normal zero-mean

noise N with

variance o® l

Signal

# Noisy Channel

s=+lor-l

Region of error
when -1 is
transmitted

)

Region of error
when +1 is
transmitted

+1if s+ N>0

Receiver

-1 if s+ N<0

.




Example 2: Signal detection 3

Question: What Is the probability of error?

The error occurs whenever —1 Is transmitted
and the noise N Is at least 1, or whenever +1
IS transmitted and the noise Is smaller than

— 1.

P(N>1)=1-P(N < 1)
1-P(E<=H) =1- 0 (=F)

o) o) o)

1-o(3)




Normal Random Variable

Normal random variables play an important
role in a broad range of probabilistic models.

The main reason is that they model well the
additive effect of many independent factors.

The sum of a large number of independent
and identically distributed (not necessarily
normal) random variables = normal CDF.

o regardless of CDF of individual random variables.
o More on this in Chapter 5.
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Joint PDFs

Two continuous random variables associated
with the same experiment are jointly
continuous and can be described in terms of
a joint PDF fyx y If fxy IS nonnegative function
that satisfies

P eB)= || fuxCy)dxdy

(x,y)EB
for every subset B of the two-dimensional plane.



Joint PDFs

Normalization: [~ [~ fyy(x,y)dxdy =1

To Interpret the joint PDF, let § be a small
positive number,

Pa<X<a+6§c<Y<c+9)

c+d ra+d
- | foy (o y)dx dy ~ fyy(a, 0)5?
C a

fxy(a,c): “probability per unit area” in the
vicinity of (a, ¢).



Marginal Probability

P(Xe€ A)=P(X €AY € (—o,0))
— fA f_ fX,Y(x» y)dy dx

Recall P(X € A) = [ __, fx(x)dx
Thus the marginal PDF of X is given by

fx () = [ ., fry (e y)dy
Similarly, the marginal PDF of Y is

fr(y) = fjooo fxy(x,y)dx



Example: 2D Unitorm PDF

Romeo and Juliet have a date at a given time

Each will arrive with a delay between 0 and 1
hour.

Let X,Y denote their delays.

Assume that no pairs in the unit square Is
more likely than others



Example: 2D Unitorm PDF

Then the joint PDF is of the form

¢c f0<x<1,0<y<1
0 otherwise

fry (e, y) =1

By [© [ fyy(x,y)dxdy = 1, we get
c=1



2D Uniform PDF

In general, let S be a subset of the two
dimensional plane. The corresponding
uniform joint PDF on S Is defined by

r
fxy(x,¥) =jareaof S it(x,y) €3

\ 0 otherwise




2D Uniform PDF

For any subset A c S, the probability that
(X,Y)liesinAlis

P €)= || furCoy)drdy
(x,y)EA

B 1 ﬂ dnd _areaofA
"~ areaof S A= area of S

(x,y)EA




Example 2

Suppose the joint
PDFof X,Y Is a
constant c on S and
0 outside.

Question: What Is ¢?

Question: What are
the marginal PDFs of
XandY?




Example 2

Suppose the joint
PDFof X,Y Is a
constant c on S and
0 outside.

The area of S Is 4,
soc = 1/4.

The marginal PDFs
of X,Y are shown in
the figure.




Example: Buffon’s Needle

A surface Is ruled with
parallel lines, which at E

distance d from each other. /,«<fﬁn
Suppose we throw a needle /
of length [ randomly. VA

Question: What 1s the

probability that the needle
will intersect one of the lines?

o Assume [ < d so that the needle cannot intersect
two lines simultaneously.



Example: Buffon’s Needle

X: the distance from the

middle point of the needle
and the nearest of the
parallel lines

L
'y

e

®: the acute angle formed

'
T : ”
/1
/,
’

by the needle and the lines



We model (X, ®) with a uniform joint P

4

fX,@(xi 8) — E

0

d
if x € 10,—

L 2_
otherwise

and 8 €




= The needle will intersect one of the lines If

and only If

[
X < =sin0@
< 5 sin




Example: Buffon’s Needle

So the probability of intersection Is

[
P (X < —sin G)) = ff fxe(x,0)dxdo
2 Xsé sin 6

4 /2 (é) sin 6 4 T/2 l
ndjo fo xd6 ndfo (2)51n6’d6’

21 /2 21
_nd( cos 6) 0 " g




Joint CDF's

If X and Y are two random variables
associated with the same experiment, we
define their joint CDF by

Fyy(x,y) =P(X <x,Y <)



Joint CDF's

If X and Y are described by a joint PDF fy v,

then
FX,Y(x;Y) — P(X < X,Y Sy)

= f_xoo f_io fxy(s, t)dsdt

and
2

. X,Y
fX,Y(x'y) _ axay (x’y)




Example

Let X and Y be described by a uniform PDF
on the unit square [0,1]4.
The joint CDF Is given by

FX,Y(xiy) — P(X <xY < y) = Xy
Then

0%Fxy 0% (xy)
‘ — — 1 —
axay (x'y) axay (x'y) fX,Y(x’y)

for all (x,y) in the unit square.



Expectation

If X and Y are jointly continuous random
variables and g Is some function, then
Z=gX7Y)

IS also a random variable.
And

E[g(X,Y)] = f f 906 ) fiy (x, y)dxdy



Expectation

If g(X,Y) is a linear function:
gX,Y)=aX+bY +c
for some scalars a, b, c.

then
ElaX 4+ bY + c] = aE|X]| + DE|Y] + ¢

“linearity of expectation”



More than two random variables

The joint PDF of X,Y and Z satisfies

P((X,Y,Z) €B) = f f fxyz(x,v,z)dxdydz

(x,y,z)EB
for any set B.
Marginal:
3 fry(ey) = 2 fry.z(x,y, 2)dz
o fx(0) = 2 o0 fryz(x,y, 2)dy dz



More than two random variables

E[g(X,Y,2)] =
f_oo f_oo f—oo g(x, Y, Z)fX,Y,Z(XJ Y, Z)dx dy dz

If g Is linear, of the form aX + bY + cZ, then
ElaX 4+ bY + cZ]| = aE|X]| + bE[Y] + cE|Z]

In general,
E[a1X1 + + aan] — alE[Xl] + + anE[Xn]
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Conditioning

Similar to the case of discrete random
variables, we can condition a random
variable

a2 Oh an event, or

o on another random variable,

and define the concepts of conditional PDF
and conditional expectation.



Conditioning a r.v. on an event

The conditional PDF of a continuous random
variable X, given an event 4 with P(4) > 0, is
defined as a nonnegative function fx, that

satisfies

PO EBIA) = | fraGdx,
B

for any subset B of the real line.



Conditioning a r.v. on an event

In particular, taking B = R
| faucode=1

SO fx|a Is a legitimate PDF.



Conditioning on event {X € A}

If we condition on event {X € A}, with
P(X € A) > 0, then

P(X e B|X € A)
- P(X€B,X €A
 P(X € 4)

_ fAanX(x)dx
-~ P(X € 4)




Conditioning on event {X € A}

Comparing with t

fX|{X€A}(x) = lP(X €A’

ne earlier formula gives

( fx(x)

if X € A4,

0, otherwise.

o The conditional PDF Is zero outside the

conditioning set.

o Within the conditioning set, the conditional PDF
has the same shape as the unconditional one,
except that scaled by a factor 1/P(X € A)



‘ Conditioning on event {X € A}

fX|{xeA}(l‘)

-\




Example: exp. t.v. 1s memoryless

The time T until a new light bulb burns out is
an exponential random variable with
parameter A.

Alice turns the light on, leaves the room, and
when she returns, t time units later, finds the
light bulb is still on, which corresponds to the
event

A={T >t}



Example: exp. t.v. 1s memoryless

Let X be the additional time until the light bulb
burns out.

Question: What'’s the conditional CDF of X given
the event A7
P(X>x|A)=P(T>t+x|T >1t)
 P(T>t+xandT >t) P(T>t+x)
- P(T > t)  P(T>1t)
e—)l(t+x)

— — e

—Ax




Example: exp. t.v. 1s memoryless

Last slide: P(X > x|A) = e .

Recall tall probability of exponential r.v.:
P(X = a) = e 2.

Observation: The conditional CDF of X Is

exponential with parameter A, regardless of

the time t that elapsed between the lighting
of the bulb and Alice's arrival.

Thus the exponential random variable is
called memoryless.



Conditioning with multiple r.v.

Suppose X and Y are jointly continuous random
variables, with joint PDF fy y.

If we condition on a positive probabllity event of
the form C = {(X,Y) € A}, we have

fX,Y|C(x» y) = 5

(fxy (%, ¥)

xy\X,Y) .

’ f E A,
L 0 otherwise.

The conditional PDF of X, given event C, IS

fX|C(x) = j_ fX,Y|C(x:y)dy



Total probability theorem

If the events 44, -+, 4,, form a partition of the
sample space, then

f () = ) P(AD)fra, ()
=1

Next we give a proof.



Proof of total probability theorem

By the total probability theorem from Chapter
1, we have

P(X <x) =X, P(ADPX < x|4;)
This formula can be written as

fx fx(@)dt = Zn: P(A;) fx fxia,(t)dt
% i=1 — %

Then take the derivative with respect to x and
get the result.



Example: Taking train

The metro train arrives at the station every
guarter hour starting at 6:00 a.m.

You walk into the station between 7:10-7:30
a.m. uniformly.

Question: What’s the PDF of the time you have to
wait for the first train to arrive?



Example: Taking train

Denote the time of your arrival by X, which is
then a uniform random variable on 7:10-7:30

Let Y be the walting time.

Let A and B be the events
A=1{7:10 < X < 7:15} = {board 7: 15 train}
B={7:15< X <7:30} = {board 7: 30 train}



Example: Taking train

Condition on event 4, Y Is uniform on 0-5
Condition on event B, Y Is uniform on 0-15
Total probabillity theorem:

fr) = P(A)fy1ay) + P(B) fris(¥)
For 0 <y <5,

()_1 131 _1
) =35+ 157 16
For5 <y <15,
()_1 (3.1 1
) =2-0+272=75



‘ Example: Taking train

: fy(x) 4 f}'!A(!I)
1/5
1/20
— - —
:10 7:15 30 =z 3 Yy
(a) (b)
. f)'iB("/) ‘f}'(.’l)
v 1/10
1/15 1/20
- - T -
15 y D D 1
(c) (d) .




Conditioning one r.v. on another

Let X and Y be continuous random variables
with joint PDF fy y.

For any y with f(y) > 0, the conditional PDF of
X giventhatY =y, Is

fxy(x,y)
(x|y) == -

P =786

This is analogous to the formula
p (xly) _ PX,Y(XJ Y)

Xl Py (y)

for the discrete case.



Conditioning one random variable on

another
Because

() = j fer (oY),

then

rOO

J fX|Y(x|y)dx — 11
for any fixed y.

Thus fxy(x|y) is a legitimate PDF.




Example: Circular uniform PDFEF

Bob throws a dart at a circular target of radius
r.

He always hits the target.

All points of impact
(x,y) are equally likely. / |
Then the joint PDF of \/ -

the random variables
X,Y 1s uniform.




Example: Circular uniform PDFEF

Because the area of the circle is mr?,

1 ) 2 2
fryCey) =gz X FYTSTE
0 otherwise.

To calculate the conditional PDF fyy(x]y), let
us find the marginal PDF fy (y).



Example: Circular uniform PDFEF

For [yl > 7, fxy(x|ly) =0

For |y| <,
fr() :f fX,Y(x;Y)dx
1 1 Jr2-y?
— — dx = — dx
nr x2+y2<r? nr —\/ryz
B 2\/7"2 — y?

T2



Example: Circular uniform PDFEF

The conditional PDF Is

1
fxy (%) nr?
Y m\/ﬁ,ﬂz_yz
1
_ e 2 2 < 42
2\/r2—y2’ if x“+y“<r

Thus for a fixed value of y, the conditional
PDF fxy Is uniform.



Conditional probability on zero event

Let us fix some small positive numbers §; and §,,
and condition on the event

B={y<Y<y+6,}
Then
Px<X<x+6]|y<Y<y+56,)
Px<X<x+d6andy <Y <y+9,)
B Py<Y<y+3$6,)
fX,Y(x: y)6,6;
SRS, o

which is independent of 6,




Conditional probability on zero event

Let 6, — 0, we get
Px<X<x+6Y =y) = fxyxly)d;

for §; small, and more generally

r
PXEAIY =3) = | fuy(xly)dx
A

This gives a conditional probability on the
zero event {Y = y}.




Example: Vehicle speed

The speed of a typical vehicle that drives past
a police radar Is an exponential random
variable X with mean 50.

The police radar's measurement Y has an
error which is modeled as a normal random
variable with zero mean and standard
derivation equal to one tenth of the vehicle’s
speed.



Example: Vehicle speed

Question: What is the joint PDF of X and Y'?

X

First, fx(x) = (5—10) e so,forx =0

Also, conditioned on X = x, the measurement
Y has a normal PDF with mean x and
variance x2/100. Thus

(ylx) = o—(y=x)?/(2x%/100)
Frixly V2m(x/10)



Example: Vehicle speed

Thus, for all x = 0 and all y,

fxy(x,y) = fx(x)fy|x()’|x)

1 X 10 _S00-0°

= — @50 e x2

50 2TTX




Conditioning for more than two
random variables

fxyiz(x,y|z) = fX'Y'Z(x'y'Z), if f,(z) > 0.
fz(2)

_ fxyz(xy.z) .
fX|Y,Z(x|:V; z) = fy 202 If fy,z(y, z) > 0.

There Is an analog of the multiplication rule

fxyz(x,y,2) = fX|Y,z(x|3’» Z)fY|z(3’|Z)fz(Z)



Conditional Expectation

For a continuous random variable X, its
conditional expectation E[X]|A] given an event
Awith P(A) > 0is

BIXIA] = | xfgu()dx

The conditional expectation of X given that
Y=vyIs

FIXIY =31 = | xfuy(aly)dx



The expected value rule

For a function g(X), we have

(00)

E[g(X)]A] = f 900 fiea(X)dx

and

00

E[g(X)]Y = y] =f 9(x) fx )y (x|y)dx



Total expectation theorem 1

Let A4, -+, A,, be disjoint events that form a
partition of the sample space, and assume
that P(A;) > 0 for all i. Then

n

f (O = ) P(A)fija ().
i=1
From here, we can get

E[X] = ) P(ADE[X|A].
=1



‘ Total expectation theorem 2

= When conditioned on a random variable, we
have

E[X] = j E[X|Y = y1fy ()dy




Proof

[ EIXIY = y1fy (0)dy

J

J

J

J

rOO

| xyGelyrax| fray

[ %y Gy fr ) dxdy

—o0 =0

rOO rOO

Xfxy(x,y)dxdy

—o0 -0

xfx(x)dx = E[X]




Example: Mean and Variance of a

Piecewise Constant PDF

Suppose the random variable X has the PDF
1/3 if0<x<1
fx(x) =42/3 ifl<x<?2
0 otherwise
Consider the events
A; = {X lies in the first interval [0,1]}
A, = {X lies in the second interval (1,2]}



‘ Example: Mean and Variance of a
Piecewise Constant PDF




Example: Mean and Variance of a

Piecewise Constant PDF

Then

P(A,) =1/3,P(A,) = 2/3.
And the conditional PDFs fx 4, and fx4, are
uniform.

Recall previous result: Uniform random
: a’+ab+b?
variable Y on [a, b] has E[Y?] = .

Thus E[X|A4,] = 1/2, E[X|A4,]=3/2
E[X*|A;] = 1/3,E[X?|4,] = 7/3




Example: Mean and Variance of a

Piecewise Constant PDF
And

E[X] = P(A))E[X]|A;1] + P(A2)E[X]A;]
1.1,23_7

—32'32 &
E[X*] = P(A1)E[X*|A1] + P(A)E[X?|A,]

1 1 27 15

Thus, the variance Is

var[x] = E[x?] — (E[x])? = — -2 _ L

9 36 36




Independence

Two continuous random variables X and Y
are independent If their joint PDF Is the
product of the marginal PDFs

fxy(x,y) = fx()fy ()

for all x, y.
It Is equivalent to

fX|Y(x|y) = fx(x)
for all y with fy-(y) > 0 and all x.



Independence

Three continuous random variables X, Y and
Z are independent If

fryz(x,y,2) = fx () fy V) fz(2)

for all x,y, z.



Example: Independent normal

random wvariables

Let X and Y be independent normal random
variables with means u,, u,,, and variance

ox,0y, respectively. Their joint PDF is of the
form

fX,Y(xI y)

fx)fy ()

32 )2
1 exp{ (x-u0)? (v P‘;/)}

2T 00y 202 205



‘ Example: Independent normal

random variables
The ellipses are the contours of the PDF:

fxy(x,y) = - exp {_ (x—px)? (y—ﬂy)z}
) ¢ 2

TOx 0y 202 205

Ay

(=)
& — %A

1 |




Independence

If X and Y are independent, then any two
events of the form {X € A} and {Y € B} are
iIndependent.

P(X€AandY € B)

[eentyen fry (6, y)dy dx
fxEA erEB fx) fy(y)dy dx

~ fxEA fx(x)dx nyB fr)dy
= P(X € A)P(Y € B)




Independence

In particular, when A = (X < x), B = (Y < y):

PX<x,Y<y)=PX<x)P(Y <y)

Thus Fy y(x,y) = Fx(x)Fy (y).



Independence

If X and Y are independent, then
E[XY] = E|X]E|Y]

More generally, for any two functions g, h
E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Also, If X and Y are independent, then
Var(X +Y) = Var(X) + Var(Y)



Content
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Cumulative Distribution Functions
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Joint PDFs of Multiple Random Variables
Conditioning

The Continuous Bayes’ Rule



The continuous Bayes’ rule

In many situations, we represent an
unobserved phenomenon by a random
variable X with PDF fy.

We make a noisy measurement Y, which is
modeled in terms of a conditional PDF fy

Once the value of Y is measured, what
Information does it provide on the unknown

value of X?



‘ The continuous Bayes’ rule

| Nleasurement

f\( )

)

fyix(y |z)

-

Inference

2

f‘\'“'(-l'[!/)

= The information is provided by the conditional
PDF fx v (x[y). BY fxfyrix = fxy = frfxjv: 1t

follows that

fX|Y(x|}’) =

fx(x)fy|x(3’|x)

fr)




The continuous Bayes’ rule

Based on the normalization property
f fxiy(xly)dx =1,

an equivalent expression Is

fx(x)fY|X()’|x)

Puar () = [ ) frx lx)dx!

0 fr ) = [ fey (e, y)dx’
= [ D frxOlxDdx’



Example: Light bulbs

A light bulb is known to have an exponentially
distributed lifetime Y.

However, the company has been
experiencing gquality control problems: On
any given day, the parameter 4 of the PDF of
Y Is a uniform random variable A on [1,3/2].

We test a light bulb and record its lifetime.

Question: What can we say about A?
0 Whatiis fy(4]y)?



Example: Light bulbs

The parameter A in terms of a uniform
random variable A with PDF
fa(d) =2, for1<A1<3/2

Then by continuous Bayes' rule, for1 < 1 < %
faD)fyia(y|A)
fA|Y(A|Y) =~ |
L @ fralylt)dt
2e =AY

ff/z 2te~tydt



Inference about a discrete random

variable

In some cases, the unobserved phenomenon
IS iInherently discrete.

Example. Consider a binary signal which is
observed in the presence of normally
distributed noise.

Example. Consider a medical diagnosis that
IS made on the basis of continuous
measurements, such as temperature and
blood counts.



Inference about a discrete random

variable

Instead of working with the conditioning event
{Y = y}, which has zero probabillity, let us first
condition on the event {y <Y <y + 6}, then
take the limitas § — 0.
PAlY =y) = P(Aly <Y <y + §)
- P(AP(y <Y <y+$) N P(A) fy1a(y)d
P(y<Y <y+94) fr(y)é
. P(A)fr1a(y)

fry)




Inference about a discrete random

variable

The denominator fy(y) can be evaluated by
total probability theorem

fr) = P(Afriay) + P(A) fyjac(y)
SO that
P(A)fY|A(y)

PAlY = y) = P(A)fY|A(y) + P(Ac)fy|AC(Y)




Inference about a discrete random

variable
Consider an event A of the form {N = n}
N Is a discrete random variable with PMF py

Let Y be a continuous random variable which
Is described by a conditional PDF fyy(y|n).

PN(”)fY|N(}’|n)

PIN=nlY =y) ==}

_ Pn (n)fY|N()’|n)
ZiPN(i)fY|N(3’|i)




Example: Signal Detection

A binary signal S Is transmitted with
P(S=1)=np, PS=-1)=1—-p
The received signhalisY = N + S, where N Is

standard normal noise.

What is the prob. that S = 1, as a function of
the observed value y of Y?

Conditional on S = s, the random variable Y
has a normal distribution with mean s and
variance 1.



Example: Signal Detection

ps(Dfyis(yl1)
P(S =1|Y = =
( | y) fry)
_P_-(y-1)?/2
_ 2T
P o—(y-1)2/2,17P,—(y+1)2/2
2T 2T
pe”

 peY+(1-ple™Y



Example: Signal Detection

Notice that
Iim P(S=1|Y =y)=0
Y——00
Iim P(S=1Y =y)=1
y—)OO

which is consistent with intuition.



