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Basic Concepts

In some experiments, the outcomes are
numerical.

o E.g. stock price.

In some other experiments, the outcomes are
not numerical, but they may be associated with
some numerical values of interest.

Example. Selection of students from a given
population, we may wish to consider their grade
point average.

o The students are not numerical, but their GPA scores
are.



Basic Concepts

When dealing with these numerical values, it
IS useful to assign probabillities to them.

This Is done through the notion of a random
variable.

Random Variable X

Sample Space
Q \ -

X

Real Number Line



Main Concepts Related to Random
Variables

Starting with a probabillistic model of an
experiment:

A random variable Is a real-valued function of
the outcome of the experiment.

A function of a random variable defines
another random variable.



‘ Examples

= 5 tosses of a coin.
= This Is a random variable:

The number of heads

= This Is not:




Main Concepts Related to Random
Variables

We can associate with each random variable
certain “averages” of interest, such as the
mean and the variance.

A random variable can be conditioned on an
event or on another random variable.

Notion of independence of a random variable
from an event or from another random
variable.

We’'ll talk about all these in this lecture.



Discrete Random Variable

A random variable is called discrete If Its
range Is either finite or countably infinite.

Example. Two rolls of a die.

o The sum of the two rolls.

o The number of sixes in the two rolls.

o The second roll raised to the fifth power.




Continuous random wvariable

Example. Pick a real number a and associate to it
the numerical value a*.

The random variable a* is continuous, not
discrete.

We'll talk about continuous random variables
later.

The following random variable is discrete:

(1 a>0
sign(a) =< 0 a=0.




Discrete Random Variables: Concepts

A discrete random variable is a real-valued
function of the outcome of a discrete experiment.

A discrete random variable has an associated
probability mass function (PMF), which gives the
probability of each numerical value that the
random variable can take.

A function of a discrete random variable defines
another discrete random variable, whose PMF
can be obtained from the PMF of the original
random variable.
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Probability Mass Function

For a discrete random variable X, the
probability mass function (PMF) of X captures
the probabillities of the values that it can take.

If x IS any possible value of X, the probability

mass of x, denoted py(x), IS the probability of
the event {X = x} consisting of all outcomes

that give rise to a value of X equal to x :
px (x) = P({X = x})



Example

Two independent tosses of a fair coin
X: the number of heads obtained

The PMF of X Is
1/4 ifx=0o0rx =2
px(x) =41/2 ifx=1
0 otherwise



Probability Mass Function

Upper case characters to denote random
variables

a X,Y,Z, ..
Lower case characters to denote real numbers
Q X, ,2Z, ..

o the numerical values of a random variable

We'll write P(X = x) in place of the notation
P({X = x}).

Similarly, we’ll write P(X € S) for the probability
that X takes a value within a set S.



Probability Mass Function

Follows from the additivity and normalization
axioms

px(x) =1
x:all possible
values of X

o The events {X = x} are disjoint, and they form a
partition of the sample space

For any set S of real numbers

P(X€S) = ) px(x)

XES



Probability Mass Function

For each possible value x of X:

o Collect all the possible outcomes that give rise to
the event {X = x}.

o Add their probabilities to obtain py (x).
px(x)

| Sample Spacif???ééé;v

Event {X = x}



Important specific distributions

Binomial random variable
Geometric random variable

Poisson random variable



‘ Bernoulli Random Variable

= The Bernoulli random variable takes the two
values 1 and O

X €{0,1}

» Its PMF Is

_ip ifx=1
pX(x)_{l—p ifx =0




Example of Bernoulli Random Variable

The state of a telephone at a given time that
can be either free or busy.

A person who can be either healthy or sick
with a certain disease.

The preference of a person who can be either
for or against a certain political candidate.



The Binomial Random Variable

A biased coin Is tossed n times.

Each toss is independently of prior tosses

o Head with probability p.
o Tail with probability 1 — p.

The number X of heads up is a binomial
random variable.



The Binomial Random Variable

We refer to X as a binomial random variable
with parameters n and p.

Fork =0,1,..,n.
n
px() = PO = k) = () pH(1 = p) "



The Binomial Random Variable

Normalization

> (Jrra-pr=

py (k)

px(k)
A Binomial PMF n=9,p=1/2 A Binomial PMF
‘ ‘ n = Large, p = Small
| 0. | _
of 7 56 78 9 . 0 p .



The Geometric Random Variable

Independently and repeatedly toss a biased
coin with probabillity of a head p, where 0 <

p <1.

The geometric random variable is the number
X of tosses needed for a head to come up for
the first time.



The Geometric Random Variable

The PMF of a geometric random variable

px(k) = (1 —-p)<'p
o k — 1 talls followed by a head.

Normalization condition is satisfied:

i px(k) = i(l -p)lp=p i(l — p)~
k=1 k=1 k=0
1

1

P ay T



The Geometric Random Variable

The py (k) = (1 — p)* 'p decreases as a
geometric progression with parameter 1 — p.

A pylk)

Hl“!!!-
1 2 3 K




‘ The Poisson Random Variable

= A Poisson random variable takes
nonnegative integer values.
= The PMF
/1k

px (k) = e‘ﬁﬁ, k=01,2,..

= Normalization condition

- A2 23

v A
Ze il (1+/1+2!+3!+---

=e et =1




Poisson random variable can be viewed as a
binomial random variable with very small p
and very large n.

More precisely, the Poisson PMF with
parameter A is a good approximation for a
binomial PMF with parameters n and p where
A =np,nislarge and p i1s small.

o See the wiki page for a proof.



https://en.wikipedia.org/wiki/Poisson_limit_theorem

Examples

Because of the above connection, Poisson
random variables are used in many scenarios.

X 1s the number of typos in a book of n words.

o The probability that any one word is misspelled is very
small.

X Is the number of cars involved in accidents in a

city on a given day.

o The probability that any one car is involved in an
accident is very small.



The Poisson Random Variable

YL

For Poisson random variable py (k) = e™* -

o A <1, monotonically decreasing
o A > 1, first iIncreases and then decreases

px(k) A Px(k)

Poisson L =05 Poisson A =3

e *~06
i - y

=
ol 1 2 3 k 01234 7

\
=~ ¥




Content

Basic Concepts

Probability Mass Function

Functions of Random Variables
Expectation, Mean, and Variance

Joint PMFs of Multiple Random Variables
Conditioning

Independence



Functions of Random Variables

Consider a probability model of today’s
weather

o X = the temperature in degrees Celsius

o Y = the temperature in degrees Fahrenheit

Their relation is given by
Y =1.8X + 32

In this example, Y Is a linear function of X, of

the form
Y=gX)=aX+b



Functions of Random Variables

We may also consider nonlinear functions,
such as

Y =log(X)
In general, If Y = g(X) Is a function of a
random variable X, then Y Is also a random
variable.

The PMF py of Y = g(X) can be calculated
from PMF py of X

py(¥) = Zx;g(x):y px (x)



‘ Example

= The PMF of X Is

_J1/9 if xisaninteger and x € [—4,4]
px(x) = :
0 otherwise

» LetY = |X|. Then the PMF of Y Is

(2/9 ify=1234
py(y) =91/9 ify =0
. 0 otherwise




Example

Visualization of the relation between X and Y

A px(x) Y =|X] A py(y)
2
9
1 1
| | | |§LH/|| 9_\
\
4 -3 22 Ny 1 3 4 X 1 2 3 4 y



‘ Example

= Let Z = X%. Then the PMF of Z is

2/9 ifz=1,4,916
pz(z) =41/9 ifz=0
0 otherwise
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Expectation

Sometimes it Is desirable to summarize the
values and probabilities by one number.

The expectation of X Is a weighted average
of the possible values of X.

o Weights: probabillities.
Formally, the expected value of a random
variable X, with PMF py(x), is
E[X] — Zx xpx(x)
Names: expected value, expectation, mean




Example

Two Independent coin tosses
0 P(H) =%

o X =the number of heads

Binomial random variable with parameters
n=2andp=3/4.



Example

The PMF is

(1/4)° ifk =0
px(k) =42-(1/4)-(3/4) ifk=1
(3/4)° ifk =2

The mean IS

(Y 13\, 3\
E[X]—O-(Z) +1.<2.Z.Z)+ (Z)



Expectation

Consider the mean as the center of gravity of

the PMF . .
1 =21 .
A

Center of gravity
¢ = mean = E[X]

Zx(x — C)pX(x) =0
= ¢ = Yy Xpx(x)




Variance

Besides the mean, there are several other
Important guantities.

The kth moment is E|X*]
o So the first moment is just the mean.

Variance of X, denoted by var(X), Is
var(X) = E[(X — E[X])?]
o The second moment of X — E[X].

The variance Is always non-negative:
var(X) = 0



Standard deviation

Variance is closely related to another
measure.

Standard deviation of X, denoted by oy, IS
oy = /var(X)




Example

Suppose that the PMF of X is
(x) = 1/9 if xis aninteger and x € [—4,4]
P 0 otherwise

The expectation

E[X] = Z:XPX(X) _9 z

xX=—4
Can also be seen from symmetry.



Example

Let Z = (X — E[X])? = X*. The PMF of Z
(2/9 ifz=1,49,16
pz(z) =41/9 ifz=0

. 0 otherwise

The variance of X Is then
var(X) = E|Z] = )., zp;(2)

=0.1+1.E+4.E+9.3+16.3=@

9 9 9 9 9 9




Expectation for g(X)

There Is a simpler way of computing
var(g(X)).

Let X be a random variable with PMF py (x),
and let g(X) be a real-valued function of X.

The expected value of the random variable
Y =g(X)Is

Elg(01 = ) g(px(x)



Expectation for g(X)

Using the formula py (¥) = Xy g0x)=y) Px (X):
Elg(X)] = E[Y]
= 2y Yoy (V)
= Ly Y Lix|g(x)=y} Px (X)
= Ly {x|gG=y} YPx (X)
=2y Z{x|g(x)=y}g(x)pX(x)
= Y 9(X)px (x)



Variance example

The PMF of X
Dy (x) = {1/9 if x is an integer and x € [—4,4]
0  otherwise
The variance
var(X) = E[(X — E[X])?]
= Xx(x — E[X])?px (x)
= %Z;Lc=—4 x?

=(164+9+4+14+0+1+9+16)/9
60

9



Mean of aX + b

Let Y be a linear function of X
Y=aX+0b

The mean of Y

E[Y] = ) (ax + b)py(x)

X

= aprX(x) + prX(x) = aE|[X] + b

X
The expectation scales linearly.



Variance of aX + b

Let Y be a linear fu

nction of X

Y=aX+0b

The variance of Y
var(Y) = )., (ax -

- b — E[aX + b])*pyx (x)

— Zx(ax i}

- b — aE[X] — b)*px(x)

= a® Yx(x — E[X])?px (%)
= a*var(X)

The variance scale

S quadratically.



Variance as moments

Fact. var(X) = E[X?] — (E[X])?.

var(X) = E

(X — E[X])?]
X? — 2XE[X]
X?] — 2E|XE[
X?] — 2E[X]E
X*] — (E[XD?

+ (E[XD~]

X1,
| X

+ (E
+ (E

X
X




Example: Average time

Distance between class and home is 2 miles
P(weather is good) = 0.6

Speed:
o V = 5 miles/hour if weather is good.
o V = 30 miles/hour if weather is bad.

Question: What is the mean of the time T to
get to class?



Example: Average time

The PMF of T

pr(t) =4

The mean of T

f

\

2
0.6 iftzghours
0.4 ift = 2 h
4 i =30 OUurs

2 4

2
E[T] =06 =+ 04— = —

5 30 15



Example: Average time

Wrong calculation by speed V
The mean of speed V
E[V]=06-5+4+0.4-30=15

The mean of time T
2 2

E[V] 15
To summarize, in this example we have

T=§ and E[T]—E[];tﬁ



‘ Example: Bernoulls

= Consider the Bernoulli random variable X
with PMF
_ip ifx=1
px(x) = {1 —p ifx=0

= [tS mean, second moment, and variance:
E[X]=1-p+0-(1—-p)=p
E[X*]=1°-p+0-(1-p)=p
var(X) = E[X?] — (E[X])* =p —p* =p(1 — p)




Example: Uniform

What is the mean and variance of the roll of a
fair six-sided die?

(

1/6 ifk=1,2,3,4,5,6

k — ) ) ) ) )

Px () 10 otherwise

The mean E[X] = 3.5 and the variance
var(X) = E[X?] — (E[X])?

=~ (12 + 22 + 32 + 42 + 5% 4 62) — 3.52
= 35/12




Example: Uniform integers

General, a discrete uniformly distributed
random variable

o Range: contiguous integer values a,a + 1, ..., b
o Probability: equal probability
The PMF Is

1 .
py(k)={p_—qr1 UTk=aa+l..b

0 otherwise



Example: Uniform integers

The mean

+b
E[X]:“2

For variance, firstconsidera=1and b =n
The second moment

E[X?] = %Z k2 = 1(n +1)(2n + 1)
k=1

6



Example: Uniform integers

The variance for special case
var(X) = E[X?] — (E[X])*
=-(n+1)2n+1) - (n + 1)?

n¢—-1
12




Example: Uniform integers

For the case of general integers a and b

o X: discrete uniform over [a, b]
o Y: discrete uniform over [1,b — a + 1]

Relation between X and Y
Y=X—-a+1
Thus
(b—a+1)* -1
12

var(X) = var(Y) =



Example: Poisson

Recall Poisson PMF

px (k) = e~ —
Mean:

Variance. var|X] = A.
o Verification left as exercise.



The Quiz Problem

A person is given two questions and must
decide which question to answer first.

0 P(question 1 correct) = 0.8  Prize=$100

0 P(question 2 correct) = 0.5  Prize=$200

o If incorrectly answer the first question, then no
second guestion.

How to choose the first question so that
maximize the expected prize?



‘ Tree illustration

02 / 30
0.5, $100 $ 200
0.8
0.5 $300 $ 300
Question 1 Question 2

answered first answered first




The Quiz Problem

Answer question 1 first: Then the PMF of X Is

1 (100) = 0.8 - 0.5
1 (300) = 0.8- 0.5

We have
E[X]=0.8-05-1004+0.8-0.5-300 = 160



The Quiz Problem

Answer question 2 first: Then the PMF of X Is

px(0) = 0.5
px(200) = 0.5-0.2
px(300) = 0.5-0.8

We have
E[X]=0.5-0.2-2004+0.5-0.8-300 = 140

It is better to answer question 1 first.



The Quiz Problem

Let us now generalize the analysis.
0 pq. P(correctly answering question 1)
0 p,. P(correctly answering question 2)
0 vq. prize for question 1

0 v, prize for question 2




The Quiz Problem

Answer question 1 first
E[X] =p1(1 = p2)v1 + p1p2(v1 + v2)
= p1V1 + P1P2 V2

Answer question 2 first
E[X] = p(1 —p1)vs + pop1(v2 + v1)
= P2V + P2P1V1



The Quiz Problem

It Is optimal to answer question 1 first if and
only if
P1V1 t P1D2V2 = P2V2 + P2P1V1

Or equivalently
P1V1 P2V

=
1-p1 1-p;

Rule: Order the questions in decreasing

value of the expression pv /(1 —p)
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Multiple Random Variables

Probabilistic models often involve several
random variables of interest.

Example: In a medical diagnosis context, the
results of several tests may be significant.

Example: In a networking context, the
workloads of several gateways may be of
Interest.



Joint PMFs of Multiple Random Variables

Consider two discrete random variables X
and Y associated with the same experiment.

The joint PMF of X and Y Is denoted by py y.
It specifies the probability of the values that X
and Y can take.

If (x,y) is a pair of values that (X,Y) can

take, then the probability mass of (x, y) Is the

probability of the event {X = x,Y = y}:
Pxy(x,y) =P(X =x,Y =y).



The joint PMF determines the probabillity of
any event that can be specified in terms of
the random variables X and Y.

For example, if A4 is the set of all pairs
(x,y) that have a certain property, then

PV EA) = ) pry(xy)

(x,y)EA



Joint PMFs of Multiple Random Variables

The PMFsof X and Y

px(x) = Ly pxy (0, Y), pr(y) = XxPxy(x,¥)
The formula can be verified by
px(x) = P(X = x)
:ZyP(X:x'Y:y)
= Zy Pxy(x,y)
pPx, Py are the marginal PMFs.



‘ Joint PMFs of Multiple Random Variables

= Computing the marginal
MPFs py and py of pxy

o [1/20f1/20 {1/20 Joi 258

from table g
. . /20 | 2/20 |3/20 |1/20 :
3 11/20 | 2/20 |3/ ) e s Row sums

marginal PMF py(y)

2 |11/20 | 2/20 | 3/20 |1/20 | ey

1 |1/20 | 1/20]1/20| 0 |

= The joint PMF py y IS l J | '
arranged in a tWO— 3/20 (;“;21(11“ 8/20 3/20
dimensional table.




Joint PMFs of Multiple Random Variables

The marginal PMF of

X orY atagivenvalue froni”
s obtained by adding
the table entries along |12 o]l e
a corresponding Comdiie s
column or row, 1 J j l
respectively.




Functions of Multiple Random Variables

One can generate new random variables by
applying functions on several random
variables.

Consider Z = g(X,Y).

Its PMF can be calculated from the joint PMF
px y according to

pz(z) = 2 Pxy(X,Yy)

{9 (x,y)=2}



Functions of Multiple Random Variables

The expected value rule for multiple variables

Elg( V)] = ) (e 9Py ()
X,y

For special case, g Is linear and of the form
aX + bY + c, we have
ElaX 4+ bY + c] = aE|X] + DE|Y] + ¢

“linearity of expectation” --- regardless of
dependence of X and Y.



More than Two Random Variables

We can also consider three or more random
variables.

The joint PMF of three random variables X, Y,
and Z

pX,Y,Z(xrin) — P(X — X,Y — y,Z — Z)
The marginal PMFs are

Pxy (x,y) =2, Pxy z (x,¥,2)
and

px(x) = Zy Dz PX,Y,Z(X» Y, Z)



More than Two Random Variables

The expected value rule for functions

El[g(X,Y,Z)] = Xxy 29y, 2)Dxy2(x, Y, Z)

If g Is linear and of the form
gX,Y,Z)=aX+bY +cZ+d
then

E[aX + bY + cZ + d]
= aE[X] + bE[Y] + cE[Z] + d



‘ More than Two Random Variables

= Generalization to more than three random
variables.

= For any random variables X, X,, ..., X,; and
any scalars a4, a,,...,a,, we have
Ela; X; + a, X, + -+ a, X, ]
= a,E[X;] + a,E|X5] + -+ + a,E[X,,]




Example: Mean of the Binomial

300 students in probability class

Each student has probability 1/3 of getting an
A, independently of any other student.

X: the number of students that get an A.

Question: What Is the mean of X?



Example: Mean of the Binomial

Let X; be the random variable for ith student

1 if the ith student getsan A
0 otherwise

l

Each Xl- IS a Bernoulli random variable
0 E|X;]=p=1/3
0 Var[X ] p(1—-p)=(1/3)(2/3)=2/9



Example: Mean ot the Binomial

The random variable X can be expressed as
their sum
X=X, +X,+-+X,

Using the linearity of X as a function of the X;
300 300

1 1
E[X] = EE[xi] — 2§= 300 - = 100
=1 =1



Example: Mean of the Binomial

If we repeat this calculation for a general
number of students n and probability of A
equal to p, we obtain

E[X] = ) E[X] =np



Example: The Hat Problem

Suppose that n people throw their hats in a
box.

Each picks up one hat at random.

X: the number of people that get back their
own hat

Question: What is the expected value of X?



Example: The Hat Problem

For the ith person, we introduce a random
variable X;

v — 1 if the ith his own
' 0 otherwise

1
n

Since P(X; = 1) = % and P(X; =0) = 1 —

1 1 1
o1 o (1-1) -
n n n



Example: The Hat Problem

We know
X=X, +X,+-+X,

Thus
E[X] = E[X{] + E[X,] + -+ E[X,,] = n-%z 1



Summary ot Facts About Joint PMFs

The joint PMF of X and Y Is defined by

pxy(x,y) =PX =xY =y)

The marginal PMFs of X and Y can be
obtained from the joint PMF, using the
formulas

px(x) = Zy Pxy(X,y), py(y) = 2x Pxy(X,y)



Summary ot Facts About Joint PMFs

A function g(X,Y) of X and Y defines another
random variable

Elg(X, )] = ) g )pxy(x,y)
X,y
If g Is linear, of the form aX + bY + c,
ElaX + bY + c| = aE[X]| + DE|Y] + c

These naturally extend to more than two
random variables.
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Conditioning

In a probabilistic model, a certain event A has
occurred

Conditional probability captures this
knowledge.

Conditional probabillities are like ordinary
probabilities (satisfy the three axioms) except

o refer to a new universe: event 4 Is known to have
occurred



Conditioning a Random Variable on an
Event
The conditional PMF of a random variable X,

conditioned on a particular event 4 with
P(A) > 0, Is defined by

pxja(x) = P(X = x|4)
- P({X =x}nA)

P(A)




Conditioning a Random Variable on an
Event

Consider the events {X = x} N A:
o They are disjoint for different values of x.
o Their union is A.

Thus P(4) =), P{X =x}NnA)
Combining this and
pxja(x) = P({X = x} n A)/P(A) (last slide),
we can see that

Dix PX|A(X) =1

S0 px 4 Is a legitimate PMF.



Conditioning a Random Variable on an
Event

The conditional PMF 1s calculated similar to
Its unconditional counterpart.

To obtain py4(x)

o Add the probabilities of the outcomes X = x
o Conditioning event A
o Normalize by dividing with P(A)



Conditioning a Random Variable on an
Event

= Visualization and calculation of the
conditional PMF px 4 (x)

Sample space
Q




Example: dice

X: the roll of a fair 6-sided dice

A: the roll iIs an even number
PX|A(X) = P(X = x|A)
~ P(X =xand A)
B P(A)

1 if x = 2,4,6
=13 ifx =24,
0 otherwise



Conditioning one random variable on
another

We have talked about conditioning a random
variable X on an event A.

Now let’s consider conditioning a random
variable X on another random variable Y.

Let X and Y be two random variables
associated with the same experiment.

The experimental value Y =y (py(y) > 0)
provides partial knowledge about the value of

X.



Conditioning one random variable on
another

The knowledge is captured by the conditional
PMF px,y of X given'Y, which is defined as
pxia for A ={Y =y}

pxy(xly) = P(X = x|Y = y)
Using the definition of conditional
probabilities

PX=xY=y) pxy(x)

Pxjy (xly) = P(Y = v) Py (¥)



Conditioning one random variable on
another

Fix some y, with py(y) > 0 and consider
px|y(x|y) as a function of x.

This function Is a valid PMF for X:

o Assigns nonnegative values to each possible x
o These values add to 1
o Has the same shape as py y(x,y)

0 XxPxpy(xly) =1



Conditioning one random variable on
another

= Visualization of the conditional PMF pxy (x|y)

Conditional PMF
wiviz |3
A Px|y\T| )

| |

Conc 1111 ona lI\IF

A Px|y(a |

Conditional PMF
px|y(z|1)

4

Joint PMF py v (z.y)

Lo




Conditioning one random variable on
another

It Is convenient to calculate the joint PMF by
a sequential approach and the formula

PX,Y(X, y) = PY()’)PXW(XD’),
Or its counterpart
pxy(x,y) = PX(X)PY|X(3’|X)-

This method is entirely similar to the use of
the multiplication rule from previous lectures.



Example: Question answering

A professor independently answers each of
ner students’ questions incorrectly with
orobabillity Ya.

n each lecture the professor is asked 0,1, or
2 questions with equal probability 1/3.
o X: the number of questions professor is asked

o Y:the number of guestions she answers wrong in
a given lecture




Example: Question answering

Construct the joint PMF py y(x,y): calcualte
all the probabilities P(X = x,Y = y).

Using a sequential description of the
experiment and the multiplication rule

pxy (X, y) = by Wpxy (X|y)



‘ Example: Question answering
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Example: Question answering

We can compute other useful information
from two-dimensional table.

For example,
P(at least one wrong answer)

= pxy(L1) + pxy(2,1) + pxy(2,2)
4 6 1 11
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Conditioning one random variable on
another

The conditional PMF can also be used to
calculate the marginal PMFs.

px(x) = z Pxy(x,y) = z py V)poxy (x|y)
y y

This formula provides a divide-and-conguer
method for calculating marginal PMFs.



Summary of Facts About Conditional
PMFEs

Conditional PMFs are similar to ordinary
PMFs, but refer to a universe where the
conditioning event is known to have occurred.

The conditional PMF of X given an event A
with P(A4) > 0, is defined by
pxja(x) = P(X = x|A)

and satisfies
Dix pX|A(x) =1



Summary of Facts About Conditional
PMFEs

The conditional PMF of X given Y can be
used to calculate the marginal PMFs with the
formula

px(x) = Z py V)pxy (x|y)
y

This Is analogous to the divide-and-congquer
approach for calculating probabilities using
the total probability theorem.



Conditional Expectations

The conditional expectation of X given an
event A with P(A) > 0, Is defined by

E[X|4] = ) xpxja(x|A)

X

For a function g(X), it is given by
Elg(X)14] = ) g()pxia(xl4)
X



Conditional Expectations

The conditional expectation of X given a
value y of Y Is defined by

E[X|Y =y] = Z xpxy (x|y)

X
The total expectation theorem

E[X] = ) py)EIXIY =]
y



Conditional Expectations

Let A4, ..., A, be dis]

partition of the sam

oint events that form a
nle space, and assume

that P(A4;) > 0 for a

| i. Then

E[X] = Xi=1 P(ADE[X]A;]

Indeed,
E[X]| = X, xpx (x)

= Yx X Xieq P(A)Dxia,(x|A;)
= Yie1 P(A) Xy xDxja, (x| 4;)
= Xi=1 P(4;) E[X]A;]



Conditional Expectation

Messages transmitted by a computer In
Boston through a data network are destined

o for New York with probability 0.5
o for Chicago with probability 0.3
o for San Francisco with probability 0.2

The transit time X of a message Is random
o E[X] = 0.05 for New York

o E[X] = 0.1 for Chicago

o E[X] = 0.3 for San Francisco




Conditional Expectation

By total expectation theorem
E[X] =05-0.054+0.3-0.1+0.2-0.3
= 0.115



Mean and Variance of the Geometric
Random Variable

You write a software program over and over,
o probability p that it works correctly
o Independently from previous attempts

X: the number of tries until the program works
correctly

Question: What Is the mean and variance of
X?



Mean and Variance of the Geometric
Random Variable

X Is a geometric random variable with PMF
px(k)=1-p)*1p k=12..
The mean and variance of X
E[X] =X k(1 —p)*'p
var(X) = ¥p=,(k — E[XD?*(1 — p)*~'p



Mean and Variance of the Geometric
Random Variable

Evaluating these Iinfinite sums is somewhat
tedious.

As an alternative, we will apply the total
expectation theorem.
Let

A, ={X = 1} = {first try is a success}
and



Mean and Variance of the Geometric
Random Variable

If the first try Is successful, we have X = 1
E[X|X=1] =1

If the first try fails (X > 1), we have wasted
one try, and we are back where we started.

o The expected number of remaining tries is E[X]

We have
E[X|X > 1] =1+ E[X]



Mean and Variance of the Geometric
Random Variable

Thus

E[X]
=P(X =1E[X|X =1]+ P(X > DE[X|X > 1]
=p+ (1 —-p)(+E[X])

Solving this equation gives
1

E[X] =-

[X] >



Mean and Variance of the Geometric
Random Variable

Similar reasoning
E[X?|X =1] =1
and
E[X?|X > 1] = E[(1 + X)?]
=1+ 2E[X] + E[X?]
SO
E[X?]=p-1+ (1 -p)(1+ 2E[X] + E[X?])



Mean and Variance of the Geometric
Random Variable

We obtain
E[X] == ——

and conclude that
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‘ Independence of a r.v. from an event

= |ldea is similar to the independence of two
events.

= Knowing the occurrence of the conditioning
event tells us nothing about the value of the
random variable.




‘ Independence of a r.v. from an event

= Formally, the random variable X Is
Independent of the event A If
P(X =xand A) = P(X = x)P(A) = px(x)P(A)

= Same as requiring that the events {X = x}
and A are independent, for any choice x.




Independence of a r.v. from an event

Consider P(A) > 0

By the definition of the conditional PMF
pxja(x) = P(X = x and A)/P(A)

Independence is the same as the condition
pyia(x) = px(x) forallx



Independence of a r.v. from an event

Consider two independent tosses of a fair
coin.

0 X: the number of heads

o A: the number of heads is even

The PMF of X
1/4 ifx=0
py(x) =<1/2 ifx=1
1/4 ifx =2



Independence of a r.v. from an event

We know P(4) = %
The conditional PMF

1/2 ifx=0
pxjalx) =490 ifx=1
1/2 ifx =2

The PMFs px and px 4 are different
= X and A are not independent



Independence of random variables

The notion of independence of two random
variables is similar.

Two random variables X and Y are
independent if

PX,Y(X; y) = px(xX)py(y) forallx,y

Same as requiring that the two events
{X = x}and {Y = y} be independent for every
x and y.



Independence of random variables

By the formula

pxy (X, y) = pxy (x|y)py (V)

Independence Is equivalent to the condition

for a
Inde

PX|Y(X|)’) = px(x)
| y with py(y) > 0 and all x.

nendence means that the experimental

value of Y tells us nothing about the value of

X.



Independence of random variables

X and Y are conditionally independent, if
given a positive probability event A
PX=xY=y|A) =PX =x|A)PY =y|A)
Using this chapter’'s notation
pX,Y|A(x» y) = pX|A(x)pY|A(y)

Or equivalently,

PX|Y,A(X|)’) = PX|A(X)
for all x, y such that py4(y) > 0.



Independence of random variables

If X and Y are independent random variables,
then
E[XY] = E|X] - E[Y]
Shown by the following calculation
E[XY] — sz:yxy ' pX,Y(x::V)
= Dx Zy xy - px (X)py ()
= Lx XPx (%) - Ly ypy (¥)
= E[X] - E[Y]



Independence of random variables

Conditional independence may not imply
unconditional independence.

X and Y are not independent
apyyD) =PX=1r=1) '}

=0 # P(X — 1) — px(l) t 11/20 |2/20 | 2/20| ©

COndition on 3 | 2/20 |4/20 | 1/20 |2/20

A — {X S Z,Y 2 3} ) 0 1720 1 3/201 1720
o They are independent




Independence of random variables

A very similar calculation shows that if X and
Y are independent, then so are g(X) and
h(Y) for any functions g and h.

E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Next, we consider variance of sum of
iIndependent random variables.



Independence

ConsiderZ =X

iIndependent.
Var(Z) = E[(X -
= E[(X -

of random wvariables

+ Y, where X and Y are

-Y — E[X + Y])?]

-Y — E[X] — E[Y])?]

= E (X — E[X]) + (v — E[v])]

= E[(X

— E[X])?] + E[(Y — E[Y])?]

+2E[(X — E[X])(Y — E[Y])]



Independence of random variables

Now we compute E[(X — E[X])(Y — E[Y])].
Since X and Y are independent, so are
X —E|X|and Y — E|Y].
o As they are two functions of X and Y, respectively.
Thus E[(X — E[X])(Y — E|Y])]
= E[(X — E[X])] - E[(Y — E[Y])]
=0-0=0
So Var(Z) = E[(X — E[X])?*] + E[(Y — E[Y])?]
= Var|X] + Var[Y]




Summary ot independent r.v.’s

X Is Independent of the event A if

PX|A(X) = px(x)
that is, If for all x, the events {X = x}and A
are independent.

X and Y are independent if for all possible
pairs (x,y), the events {X = x}and {Y = y}
are independent

pxy(x,y) = px(X)py ()



Summary of Facts About Independent
Random Variables

If X and Y are independent random variables,

then

1. E[XY] = E[X]E[Y]

2. E[g(X)h(Y)] = E[g(X)]E[R(Y)], for any
functions g and h.

3. Var[X + Y| = Var[X] + Var[Y]



Independence of Several Random

Variables

All previous results have natural extensions
to more than two random variables.

Example: Random variables X, Y, and Z are
independent if

pX,Y,Z(X» v,z) = px(xX)py(¥)pz(2)

Example: If X4, X5, ..., X,, are independent
random variables, then

Var(X; + X, + -+ X,,)

= Var(X;) + Var(X,) + --- + Var(X,,)



Variance of the Binomial

Consider n independent coin tosses
o P(H)=p
o X;: Bernoulli random variable for ith toss

Its PMF

(x) = 1 ith toss comes up a head
Px; 0 otherwise



Variance of the Binomial

Let X = X; + X, + .-+ X,, be a binomial
random variable.

By the independence of the coin tosses

Var(X) = 2 Var(X;) = np(1 —p)
=1



Mean and Variance of the Sample Mean

Estimate the approval rating of a president C.
o Ask n persons randomly from the voters
o X; response of the ith person

v, — 1 ith person approves C
|0 ith person disapproves C



Mean and Variance of the Sample Mean

Model X4, X,, ..., X, as independent Bernoulli
random variables

a meanp

o variance p(1 —p)

The sample mean
X+ X+t Xy

n

n



Mean and Variance of the Sample Mean

S, 1S the approval rating of C within our n-person
sample.

Using the linearity of S,, as a function of the X;
n n
1 1
ElS,] = ) ~E[Xi] == p=p

and

y_pd—p)



