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Basic Concepts

 In some experiments, the outcomes are 
numerical.
 E.g. stock price.

 In some other experiments, the outcomes are 
not numerical, but they may be associated with 
some numerical values of interest.

 Example. Selection of students from a given 
population, we may wish to consider their grade 
point average.
 The students are not numerical, but their GPA scores 

are.



Basic Concepts

 When dealing with these numerical values, it 

is useful to assign probabilities to them.

 This is done through the notion of a random 

variable.

Sample Space

Ω

Random Variable 𝑋

𝑥

Real Number Line



Main Concepts Related to Random 

Variables

 Starting with a probabilistic model of an 

experiment:

 A random variable is a real-valued function of 

the outcome of the experiment.

 A function of a random variable defines 

another random variable.



Examples

 5 tosses of a coin. 

 This is a random variable: 

The number of heads

 This is not:



Main Concepts Related to Random 

Variables

 We can associate with each random variable 

certain “averages” of interest, such as the 

mean and the variance.

 A random variable can be conditioned on an 

event or on another random variable.

 Notion of independence of a random variable 

from an event or from another random 

variable.

 We’ll talk about all these in this lecture.



Discrete Random Variable

 A random variable is called discrete if its 

range is either finite or countably infinite.

 Example. Two rolls of a die. 

 The sum of the two rolls.

 The number of sixes in the two rolls.

 The second roll raised to the fifth power.



Continuous random variable

 Example. Pick a real number 𝑎 and associate to it 
the numerical value 𝑎2.

 The random variable 𝑎2 is continuous, not 
discrete.

 We’ll talk about continuous random variables 
later.

 The following random variable is discrete:

𝑠𝑖𝑔𝑛 𝑎 = ቐ
1 𝑎 > 0
0 𝑎 = 0
−1 𝑎 < 0

.



Discrete Random Variables: Concepts

 A discrete random variable is a real-valued 

function of the outcome of a discrete experiment.

 A discrete random variable has an associated 

probability mass function (PMF), which gives the 

probability of each numerical value that the 

random variable can take. 

 A function of a discrete random variable defines 

another discrete random variable, whose PMF 

can be obtained from the PMF of the original 

random variable. 
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Probability Mass Function

 For a discrete random variable 𝑋, the 

probability mass function (PMF) of 𝑋 captures 

the probabilities of the values that it can take.

 If 𝑥 is any possible value of 𝑋, the probability 

mass of 𝑥, denoted 𝑝𝑋(𝑥), is the probability of 

the event 𝑋 = 𝑥 consisting of all outcomes 

that give rise to a value of 𝑋 equal to 𝑥 :

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥



Example

 Two independent tosses of a fair coin

 𝑋: the number of heads obtained

 The PMF of 𝑋 is

𝑝𝑋 𝑥 = ቐ
1/4 if 𝑥 = 0 or 𝑥 = 2
1/2 if 𝑥 = 1
0 otherwise



Probability Mass Function

 Upper case characters to denote random 
variables

 𝑋, 𝑌, 𝑍, …

 Lower case characters to denote real numbers 

 𝑥, 𝑦, 𝑧, …

 the numerical values of a random variable

 We’ll write 𝑃(𝑋 = 𝑥) in place of the notation 
𝑃( 𝑋 = 𝑥 ).

 Similarly, we’ll write 𝑃 𝑋 ∈ 𝑆 for the probability 
that 𝑋 takes a value within a set 𝑆.



Probability Mass Function

 Follows from the additivity and normalization 
axioms


𝑥: 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋

𝑝𝑋 𝑥 = 1

 The events 𝑋 = 𝑥 are disjoint, and they form a 
partition of the sample space

 For any set 𝑆 of real numbers

𝑃 𝑋 ∈ 𝑆 =

𝑥∈𝑆

𝑝𝑋(𝑥)



Probability Mass Function

 For each possible value 𝑥 of 𝑋:

 Collect all the possible outcomes that give rise to 

the event 𝑋 = 𝑥 .

 Add their probabilities to obtain 𝑝𝑋(𝑥).

Event 𝑋 = 𝑥

Sample space 

Ω

𝑝𝑋(𝑥)



Important specific distributions

 Binomial random variable

 Geometric random variable

 Poisson random variable



Bernoulli Random Variable

 The Bernoulli random variable takes the two 

values 1 and 0

𝑋 ∈ 0,1

 Its PMF is

𝑝𝑋 𝑥 = ቊ
𝑝 if 𝑥 = 1
1 − 𝑝 if 𝑥 = 0



Example of Bernoulli Random Variable

 The state of a telephone at a given time that 

can be either free or busy.

 A person who can be either healthy or sick 

with a certain disease.

 The preference of a person who can be either 

for or against a certain political candidate.



The Binomial Random Variable

 A biased coin is tossed 𝑛 times.

 Each toss is independently of prior tosses

 Head with probability 𝑝.

 Tail with probability 1 − 𝑝.

 The number 𝑋 of heads up is a binomial 

random variable.



The Binomial Random Variable

 We refer to 𝑋 as a binomial random variable 

with parameters 𝑛 and 𝑝.

 For 𝑘 = 0,1, … , 𝑛.

𝑝𝑋 𝑘 = 𝑃 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘



The Binomial Random Variable

 Normalization 



𝑘=0

𝑛
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 1



The Geometric Random Variable

 Independently and repeatedly toss a biased 

coin with probability of a head 𝑝, where 0 <
𝑝 < 1. 

 The geometric random variable is the number 

𝑋 of tosses needed for a head to come up for 

the first time.



The Geometric Random Variable

 The PMF of a geometric random variable

𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝

 𝑘 − 1 tails followed by a head.

 Normalization condition is satisfied:



𝑘=1

∞

𝑝𝑋 𝑘 =

𝑘=1

∞

1 − 𝑝 𝑘−1𝑝 = 𝑝

𝑘=0

∞

1 − 𝑝 𝑘

= 𝑝 ⋅
1

1− 1−𝑝
= 1



The Geometric Random Variable

 The 𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 decreases as a 

geometric progression with parameter 1 − 𝑝.



The Poisson Random Variable

 A Poisson random variable takes 

nonnegative integer values.

 The PMF

𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
，𝑘 = 0, 1, 2, … ,

 Normalization condition



𝑘=0

∞

𝑒−𝜆
𝜆𝑘

𝑘!
= 𝑒−𝜆 1 + 𝜆 +

𝜆2

2!
+
𝜆3

3!
+⋯

= 𝑒−𝜆𝑒𝜆 = 1



 Poisson random variable can be viewed as a 

binomial random variable with very small 𝑝
and very large 𝑛.

 More precisely, the Poisson PMF with 

parameter 𝜆 is a good approximation for a 

binomial PMF with parameters 𝑛 and 𝑝 where 

𝜆 = 𝑛𝑝, 𝑛 is large and 𝑝 is small.

 See the wiki page for a proof.

https://en.wikipedia.org/wiki/Poisson_limit_theorem


Examples

 Because of the above connection, Poisson 

random variables are used in many scenarios.

 𝑋 is the number of typos in a book of 𝑛 words. 

 The probability that any one word is misspelled is very 

small.

 𝑋 is the number of cars involved in accidents in a 

city on a given day.

 The probability that any one car is involved in an 

accident is very small.



The Poisson Random Variable

 For Poisson random variable 𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!

 𝜆 ≤ 1, monotonically decreasing

 𝜆 > 1, first increases and then decreases
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Functions of Random Variables

 Consider a probability model of today’s 

weather

 𝑋 = the temperature in degrees Celsius 

 𝑌 = the temperature in degrees Fahrenheit        

 Their relation is given by

𝑌 = 1.8𝑋 + 32

 In this example, 𝑌 is a linear function of 𝑋, of 

the form

𝑌 = 𝑔 𝑋 = 𝑎𝑋 + 𝑏



Functions of Random Variables

 We may also consider nonlinear functions, 

such as  

𝑌 = log 𝑋

 In general, if 𝑌 = 𝑔(𝑋) is a function of a 

random variable 𝑋, then 𝑌 is also a random 

variable.

 The PMF 𝑝𝑌 of 𝑌 = 𝑔(𝑋) can be calculated 

from PMF 𝑝𝑋 of 𝑋

𝑝𝑌 𝑦 = σ𝑥:𝑔 𝑥 =𝑦 𝑝𝑋 𝑥



Example 

 The PMF of 𝑋 is

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 Let 𝑌 = |𝑋|. Then the PMF of 𝑌 is

𝑝𝑌 𝑦 = ቐ
2/9 if 𝑦 = 1,2,3,4
1/9 if 𝑦 = 0
0 otherwise



Example

 Visualization of the relation between 𝑋 and 𝑌



Example 

 Let 𝑍 = 𝑋2. Then the PMF of 𝑍 is 

𝑝𝑍 𝑧 = ቐ
2/9 if 𝑧 = 1, 4, 9, 16
1/9 if 𝑧 = 0
0 otherwise
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Expectation

 Sometimes it is desirable to summarize the 

values and probabilities by one number.

 The expectation of 𝑋 is a weighted average

of the possible values of 𝑋. 

 Weights: probabilities.

 Formally, the expected value of a random 

variable 𝑋, with PMF 𝑝𝑋 𝑥 , is

𝐄 𝑋 = σ𝑥 𝑥𝑝𝑋(𝑥)

 Names: expected value, expectation, mean



Example 

 Two independent coin tosses

 𝑃 𝐻 =
3

4

 𝑋 = the number of heads 

 Binomial random variable with parameters 

𝑛 = 2 and 𝑝 = 3/4. 



Example

 The PMF is

𝑝𝑋 𝑘 = ൞

1/4 2 if 𝑘 = 0

2 ⋅ 1/4 ⋅ 3/4 if 𝑘 = 1

3/4 2 if 𝑘 = 2

 The mean is 

𝐄 𝑋 = 0 ⋅
1

4

2

+ 1 ⋅ 2 ⋅
1

4
⋅
3

4
+ 2 ⋅

3

4

2

=
3

2



Expectation

 Consider the mean as the center of gravity of 

the PMF

σ𝑥 𝑥 − 𝑐 𝑝𝑋 𝑥 = 0

⇒ 𝑐 = σ𝑥 𝑥𝑝𝑋(𝑥) .       

Center of gravity

𝑐 = mean = 𝐄[𝑋]



Variance

 Besides the mean, there are several other 

important quantities.

 The 𝑘th moment is 𝐄 𝑋𝑘

 So the first moment is just the mean. 

 Variance of 𝑋, denoted by var(𝑋), is
var 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2

 The second moment of 𝑋 − 𝐄 𝑋 .

 The variance is always non-negative: 

𝑣𝑎𝑟 𝑋 ≥ 0



Standard deviation 

 Variance is closely related to another 

measure.

 Standard deviation of 𝑋, denoted by 𝜎𝑋, is

𝜎𝑋 = var 𝑋



Example

 Suppose that the PMF of 𝑋 is

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 The expectation

𝐄 𝑋 =

𝑥

𝑥𝑝𝑋 𝑥 =
1

9


𝑥=−4

4

𝑥 = 0

 Can also be seen from symmetry.



Example

 Let 𝑍 = 𝑋 − 𝐄 𝑋 2 = 𝑋2. The PMF of 𝑍

𝑝𝑍 𝑧 = ቐ
2/9 if 𝑧 = 1, 4, 9, 16
1/9 if 𝑧 = 0
0 otherwise

 The variance of 𝑋 is then

var 𝑋 = 𝐄 𝑍 = σ𝑧 𝑧𝑝𝑍(𝑧)

= 0 ⋅
1

9
+ 1 ⋅

2

9
+ 4 ⋅

2

9
+ 9 ⋅

2

9
+ 16 ⋅

2

9
=

60

9



Expectation for 𝑔 𝑋

 There is a simpler way of computing 

𝑣𝑎𝑟 𝑔 𝑋 .

 Let 𝑋 be a random variable with PMF 𝑝𝑋(𝑥), 
and let 𝑔(𝑋) be a real-valued function of 𝑋.

 The expected value of the random variable 

𝑌 = 𝑔(𝑋) is 

𝐄 𝑔 𝑋 =

𝑥

𝑔 𝑥 𝑝𝑋(𝑥)



Expectation for 𝑔 𝑋

 Using the formula 𝑝𝑌 𝑦 = σ{𝑥|𝑔 𝑥 =𝑦}𝑝𝑋(𝑥):

𝐄 𝑔 𝑋 = 𝐄 𝑌

= σ𝑦 𝑦𝑝𝑌(𝑦)

= σ𝑦 𝑦σ{𝑥|𝑔 𝑥 =𝑦}𝑝𝑋(𝑥)

= σ𝑦 σ{𝑥|𝑔 𝑥 =𝑦} 𝑦𝑝𝑋(𝑥)

= σ𝑦 σ{𝑥|𝑔 𝑥 =𝑦}𝑔(𝑥)𝑝𝑋(𝑥)

= σ𝑥 𝑔 𝑥 𝑝𝑋(𝑥)



Variance example

 The PMF of 𝑋

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 The variance

var 𝑋 = 𝐄 𝑋 − 𝐄[𝑋] 2

= σ𝑥 𝑥 − 𝐄 𝑋 2𝑝𝑋(𝑥)

=
1

9
σ𝑥=−4
4 𝑥2

= 16 + 9 + 4 + 1 + 0 + 1 + 9 + 16 /9

=
60

9



Mean of 𝑎𝑋 + 𝑏

 Let 𝑌 be a linear function of 𝑋
𝑌 = 𝑎𝑋 + 𝑏

 The mean of 𝑌

𝐄 𝑌 =

𝑥

𝑎𝑥 + 𝑏 𝑝𝑋(𝑥)

= 𝑎

𝑥

𝑥𝑝𝑋(𝑥) + 𝑏

𝑥

𝑝𝑋(𝑥) = 𝑎𝐄 𝑋 + 𝑏

 The expectation scales linearly.



Variance of 𝑎𝑋 + 𝑏

 Let 𝑌 be a linear function of 𝑋
𝑌 = 𝑎𝑋 + 𝑏

 The variance of 𝑌

var 𝑌 = σ𝑥 𝑎𝑥 + 𝑏 − 𝐄 𝑎𝑋 + 𝑏 2𝑝𝑋(𝑥)

= σ𝑥 𝑎𝑥 + 𝑏 − 𝑎𝐄 𝑋 − 𝑏 2𝑝𝑋(𝑥)

= 𝑎2σ𝑥 𝑥 − 𝐄 𝑋 2𝑝𝑋(𝑥)

= 𝑎2var(𝑋)

 The variance scales quadratically.



Variance as moments

 Fact. 𝑣𝑎𝑟 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2.

 𝑣𝑎𝑟 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝑋𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝐄 𝑋𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝐄 𝑋 𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2



Example: Average time

 Distance between class and home is 2 miles

 𝑃 weather is good = 0.6

 Speed: 

 𝑉 = 5 miles/hour if weather is good.

 𝑉 = 30 miles/hour if weather is bad.

 Question: What is the mean of the time 𝑇 to 

get to class?



Example: Average time

 The PMF of 𝑇

𝑝𝑇 𝑡 =
0.6 if 𝑡 =

2

5
ℎ𝑜𝑢𝑟𝑠

0.4 if 𝑡 =
2

30
ℎ𝑜𝑢𝑟𝑠

 The mean of 𝑇

𝐄 𝑇 = 0.6 ⋅
2

5
+ 0.4 ⋅

2

30
=

4

15



Example: Average time

 Wrong calculation by speed 𝑉

 The mean of speed 𝑉
𝐄 𝑉 = 0.6 ⋅ 5 + 0.4 ⋅ 30 = 15

 The mean of time 𝑇
2

𝐄[𝑉]
=

2

15

 To summarize, in this example we have

𝑇 =
2

𝑉
and     𝐄 𝑇 = 𝐄

2

𝑉
≠

2

𝐄[𝑉]



Example: Bernoulli

 Consider the Bernoulli random variable 𝑋
with PMF

𝑝𝑋 𝑥 = ቊ
𝑝 if 𝑥 = 1
1 − 𝑝 if 𝑥 = 0

 Its mean, second moment, and variance:

𝐄 𝑋 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝
𝐄 𝑋2 = 12 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)



Example: Uniform

 What is the mean and variance of the roll of a 

fair six-sided die?

𝑝𝑋 𝑘 = ቊ
1/6 if 𝑘 = 1,2,3,4,5,6
0 otherwise

 The mean 𝐄 𝑋 = 3.5 and the variance

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
1

6
12 + 22 + 32 + 42 + 52 + 62 − 3.52

= 35/12



Example: Uniform integers

 General, a discrete uniformly distributed 

random variable

 Range: contiguous integer values 𝑎, 𝑎 + 1,… , 𝑏

 Probability: equal probability

 The PMF is

𝑝𝑋 𝑘 = ቐ
1

𝑏 − 𝑎 + 1
if 𝑘 = 𝑎, 𝑎 + 1,… , 𝑏

0 otherwise



Example: Uniform integers

 The mean 

𝐄 𝑋 =
𝑎 + 𝑏

2
 For variance, first consider 𝑎 = 1 and 𝑏 = 𝑛

 The second moment 

𝐄 𝑋2 =
1

𝑛


𝑘=1

𝑛

𝑘2 =
1

6
(𝑛 + 1)(2𝑛 + 1)



Example: Uniform integers

 The variance for special case 

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
1

6
𝑛 + 1 2𝑛 + 1 −

1

4
𝑛 + 1 2

=
𝑛2−1

12



Example: Uniform integers

 For the case of general integers a and b

 𝑋: discrete uniform over [𝑎, 𝑏]

 𝑌: discrete uniform over [1, 𝑏 − 𝑎 + 1]

 Relation between 𝑋 and 𝑌
𝑌 = 𝑋 − 𝑎 + 1

 Thus

var 𝑋 = var 𝑌 =
𝑏 − 𝑎 + 1 2 − 1

12



Example: Poisson

 Recall Poisson PMF

𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
𝑘 = 0,1,2, … ,

 Mean:

𝐄 𝑋 = 

𝑘=0

∞

𝑘𝑒−𝜆
𝜆𝑘

𝑘!
= 

𝑘=1

∞

𝑘𝑒−𝜆
𝜆𝑘

𝑘!

= 𝜆

𝑘=1

∞

𝑒−𝜆
𝜆𝑘−1

(𝑘 − 1)!
= 𝜆 

𝑚=0

∞

𝑒−𝜆
𝜆𝑚

𝑚!

= 𝜆
 Variance: 𝑣𝑎𝑟 𝑋 = 𝜆.

 Verification left as exercise.



The Quiz Problem

 A person is given two questions and must 

decide which question to answer first. 

 𝑃(question 1 correct) = 0.8 Prize=$100 

 𝑃(question 2 correct) = 0.5 Prize=$200

 If incorrectly answer the first question, then no 

second question. 

 How to choose the first question so that 

maximize the expected prize?



Tree illustration



The Quiz Problem

 Answer question 1 first: Then the PMF of 𝑋 is                                                                                                                  

𝑝𝑋 0 = 0.2
𝑝𝑋 100 = 0.8 ⋅ 0.5
𝑝𝑋 300 = 0.8 ⋅ 0.5

 We have 

𝐄 𝑋 = 0.8 ⋅ 0.5 ⋅ 100 + 0.8 ⋅ 0.5 ⋅ 300 = 160



The Quiz Problem

 Answer question 2 first: Then the PMF of 𝑋 is                                                                                                                  

𝑝𝑋 0 = 0.5
𝑝𝑋 200 = 0.5 ⋅ 0.2
𝑝𝑋 300 = 0.5 ⋅ 0.8

 We have 

𝐄 𝑋 = 0.5 ⋅ 0.2 ⋅ 200 + 0.5 ⋅ 0.8 ⋅ 300 = 140

 It is better to answer question 1 first.



The Quiz Problem

 Let us now generalize the analysis.

 𝑝1: 𝑃(correctly answering question 1)

 𝑝2: 𝑃(correctly answering question 2)

 𝑣1: prize for question 1

 𝑣2: prize for question 2 



The Quiz Problem

 Answer question 1 first

𝐄 𝑋 = 𝑝1 1 − 𝑝2 𝑣1 + 𝑝1𝑝2 𝑣1 + 𝑣2
= 𝑝1𝑣1 + 𝑝1𝑝2𝑣2

 Answer question 2 first 

𝐄 𝑋 = 𝑝2 1 − 𝑝1 𝑣2 + 𝑝2𝑝1 𝑣2 + 𝑣1
= 𝑝2𝑣2 + 𝑝2𝑝1𝑣1



The Quiz Problem

 It is optimal to answer question 1 first if and 

only if

𝑝1𝑣1 + 𝑝1𝑝2𝑣2 ≥ 𝑝2𝑣2 + 𝑝2𝑝1𝑣1
 Or equivalently

𝑝1𝑣1
1 − 𝑝1

≥
𝑝2𝑣2
1 − 𝑝2

 Rule: Order the questions in decreasing 

value of the expression 𝑝𝑣/(1 − 𝑝)
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Multiple Random Variables

 Probabilistic models often involve several 

random variables of interest. 

 Example: In a medical diagnosis context, the 

results of several tests may be significant.

 Example: In a networking context, the 

workloads of several gateways may be of 

interest.



Joint PMFs of Multiple Random Variables

 Consider two discrete random variables 𝑋
and 𝑌 associated with the same experiment.

 The joint PMF of 𝑋 and 𝑌 is denoted by 𝑝𝑋,𝑌. 

It specifies the probability of the values that 𝑋
and 𝑌 can take.

 If 𝑥, 𝑦 is a pair of values that 𝑋, 𝑌 can 

take, then the probability mass of 𝑥, 𝑦 is the 

probability of the event 𝑋 = 𝑥, 𝑌 = 𝑦 :

𝑃𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 .



 The joint PMF determines the probability of 

any event that can be specified in terms of 

the random variables 𝑋 and 𝑌.

 For example, if 𝐴 is the set of all pairs 

(𝑥, 𝑦) that have a certain property, then

𝑃 𝑋, 𝑌 ∈ 𝐴 = 

𝑥,𝑦 ∈𝐴

𝑝𝑋,𝑌(𝑥, 𝑦)



Joint PMFs of Multiple Random Variables

 The PMFs of 𝑋 and 𝑌

𝑝𝑋 𝑥 = σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦) , 𝑝𝑌 𝑦 = σ𝑥 𝑝𝑋,𝑌(𝑥, 𝑦)

 The formula can be verified by 

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥

= σ𝑦𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

= σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

 𝑝𝑋, 𝑝𝑌 are the marginal PMFs.



Joint PMFs of Multiple Random Variables

 Computing the marginal 

MPFs 𝑝𝑋 and 𝑝𝑌 of 𝑝𝑋,𝑌
from table.

 The joint PMF 𝑝𝑋,𝑌 is 

arranged in a two-

dimensional table.



Joint PMFs of Multiple Random Variables

 The marginal PMF of 

𝑋 or 𝑌 at a given value 

is obtained by adding 

the table entries along 

a corresponding 

column or row, 

respectively. 



Functions of Multiple Random Variables

 One can generate new random variables by 

applying functions on several random 

variables.

 Consider 𝑍 = 𝑔(𝑋, 𝑌).

 Its PMF can be calculated from the joint PMF 

𝑝𝑋,𝑌 according to

𝑝𝑍 𝑧 = 

{(𝑥,𝑦)|𝑔 𝑥,𝑦 =𝑧}

𝑝𝑋,𝑌(𝑥, 𝑦)



Functions of Multiple Random Variables

 The expected value rule for multiple variables

𝐄 𝑔 𝑋, 𝑌 =

𝑥,𝑦

𝑔 𝑥, 𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

 For special case, 𝑔 is linear and of the form 

𝑎𝑋 + 𝑏𝑌 + 𝑐, we have 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐

 “linearity of expectation” --- regardless of 

dependence of 𝑋 and 𝑌.



More than Two Random Variables

 We can also consider three or more random 
variables.

 The joint PMF of three random variables 𝑋, 𝑌, 
and 𝑍

𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧

 The marginal PMFs are

𝑝𝑋,𝑌 𝑥, 𝑦 = σ𝑧 𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧

and

𝑝𝑋 𝑥 = σ𝑦σ𝑧 𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧



More than Two Random Variables

 The expected value rule for functions

𝐄 𝑔 𝑋, 𝑌, 𝑍 = σ𝑥,𝑦,𝑧𝑔 𝑥, 𝑦, 𝑧 𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧)

 If 𝑔 is linear and of the form 

𝑔 𝑋, 𝑌, 𝑍 = 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑
then

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑

= 𝑎𝐄[𝑋] + 𝑏𝐄[𝑌] + 𝑐𝐄[𝑍] + 𝑑



More than Two Random Variables

 Generalization to more than three random 

variables.

 For any random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 

any scalars 𝑎1, 𝑎2, . . . , 𝑎𝑛, we have

𝐄 𝑎1𝑋1 + 𝑎2𝑋2 +⋯+ 𝑎𝑛𝑋𝑛
= 𝑎1𝐄 𝑋1 + 𝑎2𝐄 𝑋2 +⋯+ 𝑎𝑛𝐄[𝑋𝑛]



Example: Mean of the Binomial

 300 students in probability class 

 Each student has probability 1/3 of getting an 

A, independently of any other student. 

 𝑋: the number of students that get an A.

 Question: What is the mean of 𝑋?



Example: Mean of the Binomial

 Let 𝑋𝑖 be the random variable for 𝑖th student

𝑋𝑖 = ቊ
1 if the 𝑖th student gets an A
0 otherwise

 Each 𝑋𝑖 is a Bernoulli random variable 

 𝐄 𝑋𝑖 = 𝑝 = 1/3

 𝐕𝐚𝐫 𝑋𝑖 = 𝑝(1 − 𝑝) = (1/3)(2/3) = 2/9



Example: Mean of the Binomial

 The random variable 𝑋 can be expressed as 

their sum

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

 Using the linearity of 𝑋 as a function of the 𝑋𝑖

𝐄 𝑋 =

𝑖=1

300

𝐄 𝑋𝑖 =

𝑖=1

300
1

3
= 300 ⋅

1

3
= 100



Example: Mean of the Binomial

 If we repeat this calculation for a general 

number of students 𝑛 and probability of A 

equal to 𝑝, we obtain

𝐸 𝑋 =

𝑖=1

𝑛

𝐸 𝑋𝑖 = 𝑛𝑝



Example: The Hat Problem

 Suppose that 𝑛 people throw their hats in a 

box.

 Each picks up one hat at random. 

 𝑋: the number of people that get back their 

own hat

 Question: What is the expected value of 𝑋?



Example: The Hat Problem

 For the 𝑖th person, we introduce a random 

variable 𝑋𝑖

𝑋𝑖 = ቊ
1 if the 𝑖th his own
0 otherwise

 Since 𝑃 𝑋𝑖 = 1 =
1

𝑛
and 𝑃 𝑋𝑖 = 0 = 1 −

1

𝑛

𝐸 𝑋𝑖 = 1 ⋅
1

𝑛
+ 0 ⋅ 1 −

1

𝑛
=
1

𝑛



Example: The Hat Problem

 We know 

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

 Thus 

𝐄 𝑋 = 𝐄 𝑋1 + 𝐄 𝑋2 +⋯+ 𝐄 𝑋𝑛 = 𝑛 ⋅
1

𝑛
= 1



Summary of Facts About Joint PMFs

 The joint PMF of 𝑋 and 𝑌 is defined by

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

 The marginal PMFs of 𝑋 and 𝑌 can be 

obtained from the joint PMF, using the 

formulas

𝑝𝑋 𝑥 = σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦) , 𝑝𝑌 𝑦 = σ𝑥 𝑝𝑋,𝑌(𝑥, 𝑦)



Summary of Facts About Joint PMFs

 A function 𝑔(𝑋, 𝑌) of 𝑋 and 𝑌 defines another 
random variable

𝐄 𝑔 𝑋, 𝑌 =

𝑥,𝑦

𝑔 𝑥, 𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

If 𝑔 is linear, of the form 𝑎𝑋 + 𝑏𝑌 + 𝑐,
𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐

 These naturally extend to more than two 
random variables.
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Conditioning

 In a probabilistic model, a certain event 𝐴 has 

occurred 

 Conditional probability captures this 

knowledge. 

 Conditional probabilities are like ordinary 

probabilities (satisfy the three axioms) except 

 refer to a new universe: event 𝐴 is known to have 

occurred



Conditioning a Random Variable on an 

Event

 The conditional PMF of a random variable 𝑋, 

conditioned on a particular event 𝐴 with 

𝑃(𝐴) > 0, is defined by

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴

=
𝑃({𝑋 = 𝑥} ∩ 𝐴)

𝑃(𝐴)



Conditioning a Random Variable on an 

Event

 Consider the events {𝑋 = 𝑥} ∩ 𝐴: 

 They are disjoint for different values of 𝑥.

 Their union is 𝐴.

 Thus 𝑃 𝐴 = σ𝑥 𝑃({𝑋 = 𝑥} ∩ 𝐴)

 Combining this and 
𝑝𝑋|𝐴 𝑥 = 𝑃({𝑋 = 𝑥} ∩ 𝐴)/𝑃 𝐴 (last slide), 
we can see that 

σ𝑥 𝑝𝑋|𝐴 𝑥 = 1

 So 𝑝𝑋|𝐴 is a legitimate PMF.



Conditioning a Random Variable on an 

Event

 The conditional PMF is calculated similar to 

its unconditional counterpart.

 To obtain 𝑝𝑋|𝐴(𝑥)

 Add the probabilities of the outcomes 𝑋 = 𝑥

 Conditioning event 𝐴

 Normalize by dividing with 𝑃(𝐴)



Conditioning a Random Variable on an 

Event

 Visualization and calculation of the 

conditional PMF 𝑝𝑋|𝐴(𝑥)



Example: dice

 𝑋: the roll of a fair 6-sided dice 

 𝐴: the roll is an even number

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴)

=
𝑃(𝑋 = 𝑥 𝑎𝑛𝑑 𝐴)

𝑃(𝐴)

= ቐ
1

3
if 𝑥 = 2,4,6

0 otherwise



Conditioning one random variable on 

another

 We have talked about conditioning a random 

variable 𝑋 on an event 𝐴. 

 Now let’s consider conditioning a random 

variable 𝑋 on another random variable 𝑌.

 Let 𝑋 and 𝑌 be two random variables 

associated with the same experiment.

 The experimental value 𝑌 = 𝑦 (𝑝𝑌 𝑦 > 0) 

provides partial knowledge about the value of 

𝑋. 



Conditioning one random variable on 

another

 The knowledge is captured by the conditional 

PMF 𝑝𝑋|𝑌 of 𝑋 given 𝑌, which is defined as 

𝑝𝑋|𝐴 for 𝐴 = {𝑌 = 𝑦}:

𝑝𝑋|𝑌 𝑥 𝑦 = 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)

 Using the definition of conditional 

probabilities

𝑝𝑋|𝑌 𝑥 𝑦 =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑌 = 𝑦)
=
𝑝𝑋,𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)



Conditioning one random variable on 

another

 Fix some 𝑦, with 𝑝𝑌 𝑦 > 0 and consider 

𝑝𝑋|𝑌(𝑥|𝑦) as a function of 𝑥.

 This function is a valid PMF for X: 

 Assigns nonnegative values to each possible x

 These values add to 1

 Has the same shape as 𝑝𝑋,𝑌(𝑥, 𝑦)

 σ𝑥 𝑝𝑋|𝑌 𝑥 𝑦 = 1



Conditioning one random variable on 

another

 Visualization of the conditional PMF 𝑝𝑋|𝑌(𝑥|𝑦)



Conditioning one random variable on 

another

 It is convenient to calculate the joint PMF by 

a sequential approach and the formula

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦),

 Or its counterpart

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌|𝑋(𝑦|𝑥).

 This method is entirely similar to the use of 

the multiplication rule from previous lectures. 



Example: Question answering

 A professor independently answers each of 

her students’ questions incorrectly with 

probability ¼.

 In each lecture the professor is asked 0,1, or 

2 questions with equal probability 1/3.

 𝑋: the number of questions professor is asked 

 𝑌: the number of questions she answers wrong in 

a given lecture



Example: Question answering

 Construct the joint PMF 𝑝𝑋,𝑌(𝑥, 𝑦): calcualte 

all the probabilities 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦).

 Using a sequential description of the 

experiment and the multiplication rule 

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)



Example: Question answering

 For example, 

𝑝𝑋,𝑌 1,1 = 𝑝𝑋 𝑥 𝑝𝑌|𝑋 𝑦, 𝑥 =
1

4
⋅
1

3
=

1

12



Example: Question answering

 We can compute other useful information 

from two-dimensional table.

 For example,

𝑃 at least one wrong answer

= 𝑝𝑋,𝑌 1,1 + 𝑝𝑋,𝑌 2,1 + 𝑝𝑋,𝑌 2,2

=
4

48
+

6

48
+

1

48
=

11

48



Conditioning one random variable on 

another

 The conditional PMF can also be used to 

calculate the marginal PMFs.

𝑝𝑋 𝑥 =

𝑦

𝑝𝑋,𝑌(𝑥, 𝑦) =

𝑦

𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)

 This formula provides a divide-and-conquer

method for calculating marginal PMFs.



Summary of Facts About Conditional 

PMFs

 Conditional PMFs are similar to ordinary 

PMFs, but refer to a universe where the 

conditioning event is known to have occurred.

 The conditional PMF of 𝑋 given an event 𝐴
with 𝑃(𝐴) > 0, is defined by

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴

and satisfies

σ𝑥 𝑝𝑋|𝐴 𝑥 = 1



Summary of Facts About Conditional 

PMFs

 The conditional PMF of 𝑋 given 𝑌 can be 

used to calculate the marginal PMFs with the 

formula

𝑝𝑋 𝑥 =

𝑦

𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)

This is analogous to the divide-and-conquer

approach for calculating probabilities using 

the total probability theorem.



Conditional Expectations

 The conditional expectation of 𝑋 given an 

event 𝐴 with 𝑃(𝐴) > 0, is defined by

𝐄 𝑋 𝐴 =

𝑥

𝑥𝑝𝑋|𝐴(𝑥|𝐴)

For a function 𝑔(𝑋), it is given by

𝐄 𝑔(𝑋) 𝐴 =

𝑥

𝑔(𝑥)𝑝𝑋|𝐴(𝑥|𝐴)



Conditional Expectations

 The conditional expectation of 𝑋 given a 

value 𝑦 of 𝑌 is defined by

𝐄 𝑋 𝑌 = 𝑦 =

𝑥

𝑥𝑝𝑋|𝑌(𝑥|𝑦)

 The total expectation theorem

𝑬 𝑋 =

𝑦

𝑝𝑌(𝑦) 𝐄 𝑋 𝑌 = 𝑦



Conditional Expectations

 Let 𝐴1, … , 𝐴𝑛 be disjoint events that form a 

partition of the sample space, and assume 

that 𝑃(𝐴𝑖) > 0 for all 𝑖. Then

𝐄 𝑋 = σ𝑖=1
𝑛 𝑃 𝐴𝑖 𝐄[𝑋|𝐴𝑖]

 Indeed, 

𝐄 𝑋 = σ𝑥 𝑥𝑝𝑋 𝑥
= σ𝑥 𝑥 σ𝑖=1

𝑛 𝑃 𝐴𝑖 𝑝𝑥|𝐴𝑖 𝑥 𝐴𝑖
= σ𝑖=1

𝑛 𝑃 𝐴𝑖 σ𝑥 𝑥𝑝𝑥|𝐴𝑖 𝑥 𝐴𝑖
= σ𝑖=1

𝑛 𝑃 𝐴𝑖 𝐄 𝑋|𝐴𝑖



Conditional Expectation

 Messages transmitted by a computer in 

Boston through a data network are destined 

 for New York with probability 0.5

 for Chicago with probability 0.3

 for San Francisco with probability 0.2

 The transit time 𝑋 of a message is random 

 𝐄 𝑋 = 0.05 for New York

 𝐄 𝑋 = 0.1 for Chicago

 𝐄 𝑋 = 0.3 for San Francisco



Conditional Expectation

 By total expectation theorem

𝐄 𝑋 = 0.5 ⋅ 0.05 + 0.3 ⋅ 0.1 + 0.2 ⋅ 0.3

= 0.115



Mean and Variance of the Geometric 

Random Variable

 You write a software program over and over, 

 probability 𝑝 that it works correctly 

 independently from previous attempts 

 𝑋: the number of tries until the program works 

correctly

 Question: What is the mean and variance of 

𝑋?



Mean and Variance of the Geometric 

Random Variable

 𝑋 is a geometric random variable with PMF

𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 𝑘 = 1,2, …

 The mean and variance of 𝑋

𝐄 𝑋 = σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1𝑝

var 𝑋 = σ𝑘=1
∞ 𝑘 − 𝐄 𝑋 2 1 − 𝑝 𝑘−1𝑝



Mean and Variance of the Geometric 

Random Variable

 Evaluating these infinite sums is somewhat 

tedious. 

 As an alternative, we will apply the total 

expectation theorem.

 Let 

𝐴1 = 𝑋 = 1 = {first try is a success}
and 



Mean and Variance of the Geometric 

Random Variable

 If the first try is successful, we have 𝑋 = 1
𝐄 𝑋 𝑋 = 1 = 1

 If the first try fails (𝑋 > 1), we have wasted 

one try, and we are back where we started.

 The expected number of remaining tries is 𝐄[𝑋]

 We have 

𝐄 𝑋 𝑋 > 1 = 1 + 𝐄[𝑋]



Mean and Variance of the Geometric 

Random Variable

 Thus 

𝐄 𝑋
= 𝑃 𝑋 = 1 𝐄 𝑋 𝑋 = 1 + 𝑃 𝑋 > 1 𝐄 𝑋 𝑋 > 1
= 𝑝 + (1 − 𝑝)(1 + 𝐄 𝑋 )

 Solving this equation gives

𝐄[𝑋] =
1

𝑝



Mean and Variance of the Geometric 

Random Variable

 Similar reasoning 

𝐄 𝑋2 𝑋 = 1 = 1

and

𝐄 𝑋2 𝑋 > 1 = 𝐄 1 + 𝑋 2

= 1 + 2𝐄 𝑋 + 𝐄[𝑋2]

 So

𝐄 𝑋2 = 𝑝 ⋅ 1 + 1 − 𝑝 1 + 2𝐄 𝑋 + 𝐄 𝑋2



Mean and Variance of the Geometric 

Random Variable

 We obtain 

𝐄 𝑋2 =
2

𝑝2
−
1

𝑝

 and conclude that 

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
2

𝑝2
−
1

𝑝
−

1

𝑝2
=
1 − 𝑝

𝑝2
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Independence of a r.v. from an event

 Idea is similar to the independence of two 

events. 

 Knowing the occurrence of the conditioning 

event tells us nothing about the value of the 

random variable.



Independence of a r.v. from an event

 Formally, the random variable 𝑋 is 

independent of the event 𝐴 if

𝑃 𝑋 = 𝑥 and 𝐴 = 𝑃 𝑋 = 𝑥 𝑃 𝐴 = 𝑝𝑋 𝑥 𝑃(𝐴)

 Same as requiring that the events 𝑋 = 𝑥
and 𝐴 are independent, for any choice 𝑥.



Independence of a r.v. from an event

 Consider 𝑃(𝐴) > 0

 By the definition of the conditional PMF

𝑝𝑋|𝐴 𝑥 = 𝑃(𝑋 = 𝑥 and 𝐴)/𝑃(𝐴)

 Independence is the same as the condition

𝑝𝑋|𝐴 𝑥 = 𝑝𝑋 𝑥 for all 𝑥



Independence of a r.v. from an event

 Consider two independent tosses of a fair 

coin.

 𝑋: the number of heads 

 𝐴: the number of heads is even

 The PMF of 𝑋

𝑝𝑋 𝑥 = ቐ

1/4 if 𝑥 = 0
1/2 if 𝑥 = 1
1/4 if 𝑥 = 2



Independence of a r.v. from an event

 We know 𝑃 𝐴 =
1

2

 The conditional PMF

𝑝𝑋|𝐴 𝑥 = ቐ
1/2 if 𝑥 = 0
0 if 𝑥 = 1
1/2 if 𝑥 = 2

 The PMFs 𝑝𝑋 and 𝑝𝑋|𝐴 are different 

⇒ 𝑋 and 𝐴 are not independent



Independence of random variables

 The notion of independence of two random 

variables is similar. 

 Two random variables 𝑋 and 𝑌 are 

independent if

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 for all 𝑥, 𝑦

 Same as requiring that the two events 

𝑋 = 𝑥 and {𝑌 = 𝑦} be independent for every 

𝑥 and 𝑦.



Independence of random variables

 By the formula

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋|𝑌 𝑥 𝑦 𝑝𝑌 𝑦

 Independence is equivalent to the condition 

𝑝𝑋|𝑌 𝑥 𝑦 = 𝑝𝑋 𝑥

for all 𝑦 with 𝑝𝑌(𝑦) > 0 and all 𝑥.

 Independence means that the experimental 

value of 𝑌 tells us nothing about the value of 

𝑋.



Independence of random variables

 𝑋 and 𝑌 are conditionally independent, if 

given a positive probability event 𝐴
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝐴 = 𝑃 𝑋 = 𝑥 𝐴 𝑃(𝑌 = 𝑦|𝐴)

 Using this chapter’s notation

𝑝𝑋,𝑌|𝐴 𝑥, 𝑦 = 𝑝𝑋|𝐴 𝑥 𝑝𝑌|𝐴(𝑦)

 Or equivalently, 

𝑝𝑋|𝑌,𝐴 𝑥 𝑦 = 𝑝𝑋|𝐴 𝑥

for all 𝑥, 𝑦 such that 𝑝𝑌|𝐴 𝑦 > 0.



Independence of random variables

 If 𝑋 and 𝑌 are independent random variables, 

then

𝐄 𝑋𝑌 = 𝐄 𝑋 ⋅ 𝐄[𝑌]

 Shown by the following calculation

𝐄 𝑋𝑌 = σ𝑥σ𝑦 𝑥𝑦 ⋅ 𝑝𝑋,𝑌(𝑥, 𝑦)

= σ𝑥σ𝑦 𝑥𝑦 ⋅ 𝑝𝑋 𝑥 𝑝𝑌(𝑦)

= σ𝑥 𝑥𝑝𝑋(𝑥) ⋅ σ𝑦 𝑦𝑝𝑌(𝑦)

= 𝐄 𝑋 ⋅ 𝐄[𝑌]



Independence of random variables

 Conditional independence may not imply 

unconditional independence.

 𝑋 and 𝑌 are not independent

 𝑝𝑋|𝑌 1 1 = 𝑃 𝑋 = 1 𝑌 = 1

= 0 ≠ 𝑃 𝑋 = 1 = 𝑝𝑋(1)

 Condition on 

𝐴 = {𝑋 ≤ 2, 𝑌 ≥ 3}

 They are independent



Independence of random variables

 A very similar calculation shows that if 𝑋 and 

𝑌 are independent, then so are 𝑔(𝑋) and 

ℎ(𝑌) for any functions 𝑔 and ℎ.

 𝐄 𝑔 𝑋 ℎ(𝑌) = 𝐄 𝑔(𝑋) 𝐄[ℎ(𝑌)]

 Next, we consider variance of sum of 

independent random variables. 



Independence of random variables

 Consider 𝑍 = 𝑋 + 𝑌, where 𝑋 and 𝑌 are 

independent.

 𝐕𝐚𝐫 𝑍 = 𝐄 𝑋 + 𝑌 − 𝐄 𝑋 + 𝑌 2

= 𝐄 𝑋 + 𝑌 − 𝐄 𝑋 − 𝐄 𝑌 2

= 𝐄 𝑋 − 𝐄 𝑋 + 𝑌 − 𝐄 𝑌
2

= 𝐄 𝑋 − 𝐄 𝑋 2 + 𝐄 𝑌 − 𝐄 𝑌 2

+2𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌



Independence of random variables

 Now we compute 𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌 .

 Since 𝑋 and 𝑌 are independent, so are 
𝑋 − 𝐄 𝑋 and 𝑌 − 𝐄 𝑌 . 
 As they are two functions of 𝑋 and 𝑌, respectively.

 Thus 𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌

= 𝐄 𝑋 − 𝐄 𝑋 ⋅ 𝐄[ 𝑌 − 𝐄 𝑌 ]

= 0 ⋅ 0 = 0

 So 𝐕𝐚𝐫 𝑍 = 𝐄 𝑋 − 𝐄 𝑋 2 + 𝐄 𝑌 − 𝐄 𝑌 2

= 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫[𝑌]



Summary of independent r.v.’s

 𝑋 is independent of the event 𝐴 if

𝑝𝑋|𝐴 𝑥 = 𝑝𝑋(𝑥)

that is, if for all 𝑥, the events {𝑋 = 𝑥} and 𝐴
are independent.

 𝑋 and 𝑌 are independent if for all possible 

pairs (𝑥, 𝑦), the events {𝑋 = 𝑥} and 𝑌 = 𝑦
are independent

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦)



Summary of Facts About Independent 

Random Variables

 If 𝑋 and 𝑌 are independent random variables, 

then

1. 𝐄 𝑋𝑌 = 𝐄 𝑋 𝐄 𝑌

2. 𝐄 𝑔 𝑋 ℎ(𝑌) = 𝐄 𝑔(𝑋) 𝐄[ℎ(𝑌)], for any 

functions 𝑔 and ℎ.

3. 𝐕𝐚𝐫 𝑋 + 𝑌 = 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫[𝑌]



Independence of Several Random 

Variables

 All previous results have natural extensions 

to more than two random variables.

 Example: Random variables 𝑋, 𝑌, and 𝑍 are 

independent if 

𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 𝑝𝑍(𝑧)

 Example: If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent 

random variables, then

𝐕𝐚𝐫 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛
= 𝐕𝐚𝐫 𝑋1 + 𝐕𝐚𝐫 𝑋2 +⋯+ 𝐕𝐚𝐫(𝑋𝑛)



Variance of the Binomial

 Consider 𝑛 independent coin tosses 

 𝑃 𝐻 = 𝑝

 𝑋𝑖: Bernoulli random variable for 𝑖th toss 

 Its PMF

𝑝𝑋𝑖 𝑥 = ቊ
1 𝑖th toss comes up a head

0 otherwise



Variance of the Binomial

 Let 𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 be a binomial 

random variable.

 By the independence of the coin tosses

𝐕𝐚𝐫 𝑋 =

𝑖=1

𝑛

𝐕𝐚𝐫 𝑋𝑖 = 𝑛𝑝(1 − 𝑝)



Mean and Variance of the Sample Mean

 Estimate the approval rating of a president 𝐶.

 Ask 𝑛 persons randomly from the voters

 𝑋𝑖 response of the 𝑖th person

 𝑋𝑖 = ቊ
1 𝑖th person approves 𝐶
0 𝑖th person disapproves 𝐶



Mean and Variance of the Sample Mean

 Model 𝑋1, 𝑋2, … , 𝑋𝑛 as independent Bernoulli 

random variables 

 mean 𝑝

 variance 𝑝(1 − 𝑝)

 The sample mean

𝑆𝑛 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛



Mean and Variance of the Sample Mean

 𝑆𝑛 is the approval rating of 𝐶 within our 𝑛-person 

sample.

 Using the linearity of 𝑆𝑛 as a function of the 𝑋𝑖

𝐄 𝑆𝑛 =

𝑖=1

𝑛
1

𝑛
𝐄 𝑋𝑖 =

1

𝑛


𝑖=1

𝑛

𝑝 = 𝑝

and

𝐕𝐚𝐫 𝑆𝑛 =

𝑖=1

𝑛
1

𝑛2
𝐕𝐚𝐫 𝑋𝑖 =

𝑝(1 − 𝑝)

𝑛


