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Basic Concepts

 In some experiments, the outcomes are 
numerical.
 E.g. stock price.

 In some other experiments, the outcomes are 
not numerical, but they may be associated with 
some numerical values of interest.

 Example. Selection of students from a given 
population, we may wish to consider their grade 
point average.
 The students are not numerical, but their GPA scores 

are.



Basic Concepts

 When dealing with these numerical values, it 

is useful to assign probabilities to them.

 This is done through the notion of a random 

variable.

Sample Space

Ω

Random Variable 𝑋

𝑥

Real Number Line



Main Concepts Related to Random 

Variables

 Starting with a probabilistic model of an 

experiment:

 A random variable is a real-valued function of 

the outcome of the experiment.

 A function of a random variable defines 

another random variable.



Examples

 5 tosses of a coin. 

 This is a random variable: 

The number of heads

 This is not:



Main Concepts Related to Random 

Variables

 We can associate with each random variable 

certain “averages” of interest, such as the 

mean and the variance.

 A random variable can be conditioned on an 

event or on another random variable.

 Notion of independence of a random variable 

from an event or from another random 

variable.

 We’ll talk about all these in this lecture.



Discrete Random Variable

 A random variable is called discrete if its 

range is either finite or countably infinite.

 Example. Two rolls of a die. 

 The sum of the two rolls.

 The number of sixes in the two rolls.

 The second roll raised to the fifth power.



Continuous random variable

 Example. Pick a real number 𝑎 and associate to it 
the numerical value 𝑎2.

 The random variable 𝑎2 is continuous, not 
discrete.

 We’ll talk about continuous random variables 
later.

 The following random variable is discrete:

𝑠𝑖𝑔𝑛 𝑎 = ቐ
1 𝑎 > 0
0 𝑎 = 0
−1 𝑎 < 0

.



Discrete Random Variables: Concepts

 A discrete random variable is a real-valued 

function of the outcome of a discrete experiment.

 A discrete random variable has an associated 

probability mass function (PMF), which gives the 

probability of each numerical value that the 

random variable can take. 

 A function of a discrete random variable defines 

another discrete random variable, whose PMF 

can be obtained from the PMF of the original 

random variable. 
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Probability Mass Function

 For a discrete random variable 𝑋, the 

probability mass function (PMF) of 𝑋 captures 

the probabilities of the values that it can take.

 If 𝑥 is any possible value of 𝑋, the probability 

mass of 𝑥, denoted 𝑝𝑋(𝑥), is the probability of 

the event 𝑋 = 𝑥 consisting of all outcomes 

that give rise to a value of 𝑋 equal to 𝑥 :

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥



Example

 Two independent tosses of a fair coin

 𝑋: the number of heads obtained

 The PMF of 𝑋 is

𝑝𝑋 𝑥 = ቐ
1/4 if 𝑥 = 0 or 𝑥 = 2
1/2 if 𝑥 = 1
0 otherwise



Probability Mass Function

 Upper case characters to denote random 
variables

 𝑋, 𝑌, 𝑍, …

 Lower case characters to denote real numbers 

 𝑥, 𝑦, 𝑧, …

 the numerical values of a random variable

 We’ll write 𝑃(𝑋 = 𝑥) in place of the notation 
𝑃( 𝑋 = 𝑥 ).

 Similarly, we’ll write 𝑃 𝑋 ∈ 𝑆 for the probability 
that 𝑋 takes a value within a set 𝑆.



Probability Mass Function

 Follows from the additivity and normalization 
axioms

෍
𝑥: 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋

𝑝𝑋 𝑥 = 1

 The events 𝑋 = 𝑥 are disjoint, and they form a 
partition of the sample space

 For any set 𝑆 of real numbers

𝑃 𝑋 ∈ 𝑆 =෍

𝑥∈𝑆

𝑝𝑋(𝑥)



Probability Mass Function

 For each possible value 𝑥 of 𝑋:

 Collect all the possible outcomes that give rise to 

the event 𝑋 = 𝑥 .

 Add their probabilities to obtain 𝑝𝑋(𝑥).

Event 𝑋 = 𝑥

Sample space 

Ω

𝑝𝑋(𝑥)



Important specific distributions

 Binomial random variable

 Geometric random variable

 Poisson random variable



Bernoulli Random Variable

 The Bernoulli random variable takes the two 

values 1 and 0

𝑋 ∈ 0,1

 Its PMF is

𝑝𝑋 𝑥 = ቊ
𝑝 if 𝑥 = 1
1 − 𝑝 if 𝑥 = 0



Example of Bernoulli Random Variable

 The state of a telephone at a given time that 

can be either free or busy.

 A person who can be either healthy or sick 

with a certain disease.

 The preference of a person who can be either 

for or against a certain political candidate.



The Binomial Random Variable

 A biased coin is tossed 𝑛 times.

 Each toss is independently of prior tosses

 Head with probability 𝑝.

 Tail with probability 1 − 𝑝.

 The number 𝑋 of heads up is a binomial 

random variable.



The Binomial Random Variable

 We refer to 𝑋 as a binomial random variable 

with parameters 𝑛 and 𝑝.

 For 𝑘 = 0,1, … , 𝑛.

𝑝𝑋 𝑘 = 𝑃 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘



The Binomial Random Variable

 Normalization 

෍

𝑘=0

𝑛
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 1



The Geometric Random Variable

 Independently and repeatedly toss a biased 

coin with probability of a head 𝑝, where 0 <
𝑝 < 1. 

 The geometric random variable is the number 

𝑋 of tosses needed for a head to come up for 

the first time.



The Geometric Random Variable

 The PMF of a geometric random variable

𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝

 𝑘 − 1 tails followed by a head.

 Normalization condition is satisfied:

෍

𝑘=1

∞

𝑝𝑋 𝑘 =෍

𝑘=1

∞

1 − 𝑝 𝑘−1𝑝 = 𝑝෍

𝑘=0

∞

1 − 𝑝 𝑘

= 𝑝 ⋅
1

1− 1−𝑝
= 1



The Geometric Random Variable

 The 𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 decreases as a 

geometric progression with parameter 1 − 𝑝.



The Poisson Random Variable

 A Poisson random variable takes 

nonnegative integer values.

 The PMF

𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
，𝑘 = 0, 1, 2, … ,

 Normalization condition

෍

𝑘=0

∞

𝑒−𝜆
𝜆𝑘

𝑘!
= 𝑒−𝜆 1 + 𝜆 +

𝜆2

2!
+
𝜆3

3!
+⋯

= 𝑒−𝜆𝑒𝜆 = 1



 Poisson random variable can be viewed as a 

binomial random variable with very small 𝑝
and very large 𝑛.

 More precisely, the Poisson PMF with 

parameter 𝜆 is a good approximation for a 

binomial PMF with parameters 𝑛 and 𝑝 where 

𝜆 = 𝑛𝑝, 𝑛 is large and 𝑝 is small.

 See the wiki page for a proof.

https://en.wikipedia.org/wiki/Poisson_limit_theorem


Examples

 Because of the above connection, Poisson 

random variables are used in many scenarios.

 𝑋 is the number of typos in a book of 𝑛 words. 

 The probability that any one word is misspelled is very 

small.

 𝑋 is the number of cars involved in accidents in a 

city on a given day.

 The probability that any one car is involved in an 

accident is very small.



The Poisson Random Variable

 For Poisson random variable 𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!

 𝜆 ≤ 1, monotonically decreasing

 𝜆 > 1, first increases and then decreases
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Functions of Random Variables

 Consider a probability model of today’s 

weather

 𝑋 = the temperature in degrees Celsius 

 𝑌 = the temperature in degrees Fahrenheit        

 Their relation is given by

𝑌 = 1.8𝑋 + 32

 In this example, 𝑌 is a linear function of 𝑋, of 

the form

𝑌 = 𝑔 𝑋 = 𝑎𝑋 + 𝑏



Functions of Random Variables

 We may also consider nonlinear functions, 

such as  

𝑌 = log 𝑋

 In general, if 𝑌 = 𝑔(𝑋) is a function of a 

random variable 𝑋, then 𝑌 is also a random 

variable.

 The PMF 𝑝𝑌 of 𝑌 = 𝑔(𝑋) can be calculated 

from PMF 𝑝𝑋 of 𝑋

𝑝𝑌 𝑦 = σ𝑥:𝑔 𝑥 =𝑦 𝑝𝑋 𝑥



Example 

 The PMF of 𝑋 is

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 Let 𝑌 = |𝑋|. Then the PMF of 𝑌 is

𝑝𝑌 𝑦 = ቐ
2/9 if 𝑦 = 1,2,3,4
1/9 if 𝑦 = 0
0 otherwise



Example

 Visualization of the relation between 𝑋 and 𝑌



Example 

 Let 𝑍 = 𝑋2. Then the PMF of 𝑍 is 

𝑝𝑍 𝑧 = ቐ
2/9 if 𝑧 = 1, 4, 9, 16
1/9 if 𝑧 = 0
0 otherwise
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Expectation

 Sometimes it is desirable to summarize the 

values and probabilities by one number.

 The expectation of 𝑋 is a weighted average

of the possible values of 𝑋. 

 Weights: probabilities.

 Formally, the expected value of a random 

variable 𝑋, with PMF 𝑝𝑋 𝑥 , is

𝐄 𝑋 = σ𝑥 𝑥𝑝𝑋(𝑥)

 Names: expected value, expectation, mean



Example 

 Two independent coin tosses

 𝑃 𝐻 =
3

4

 𝑋 = the number of heads 

 Binomial random variable with parameters 

𝑛 = 2 and 𝑝 = 3/4. 



Example

 The PMF is

𝑝𝑋 𝑘 = ൞

1/4 2 if 𝑘 = 0

2 ⋅ 1/4 ⋅ 3/4 if 𝑘 = 1

3/4 2 if 𝑘 = 2

 The mean is 

𝐄 𝑋 = 0 ⋅
1

4

2

+ 1 ⋅ 2 ⋅
1

4
⋅
3

4
+ 2 ⋅

3

4

2

=
3

2



Expectation

 Consider the mean as the center of gravity of 

the PMF

σ𝑥 𝑥 − 𝑐 𝑝𝑋 𝑥 = 0

⇒ 𝑐 = σ𝑥 𝑥𝑝𝑋(𝑥) .       

Center of gravity

𝑐 = mean = 𝐄[𝑋]



Variance

 Besides the mean, there are several other 

important quantities.

 The 𝑘th moment is 𝐄 𝑋𝑘

 So the first moment is just the mean. 

 Variance of 𝑋, denoted by var(𝑋), is
var 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2

 The second moment of 𝑋 − 𝐄 𝑋 .

 The variance is always non-negative: 

𝑣𝑎𝑟 𝑋 ≥ 0



Standard deviation 

 Variance is closely related to another 

measure.

 Standard deviation of 𝑋, denoted by 𝜎𝑋, is

𝜎𝑋 = var 𝑋



Example

 Suppose that the PMF of 𝑋 is

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 The expectation

𝐄 𝑋 =෍

𝑥

𝑥𝑝𝑋 𝑥 =
1

9
෍

𝑥=−4

4

𝑥 = 0

 Can also be seen from symmetry.



Example

 Let 𝑍 = 𝑋 − 𝐄 𝑋 2 = 𝑋2. The PMF of 𝑍

𝑝𝑍 𝑧 = ቐ
2/9 if 𝑧 = 1, 4, 9, 16
1/9 if 𝑧 = 0
0 otherwise

 The variance of 𝑋 is then

var 𝑋 = 𝐄 𝑍 = σ𝑧 𝑧𝑝𝑍(𝑧)

= 0 ⋅
1

9
+ 1 ⋅

2

9
+ 4 ⋅

2

9
+ 9 ⋅

2

9
+ 16 ⋅

2

9
=

60

9



Expectation for 𝑔 𝑋

 There is a simpler way of computing 

𝑣𝑎𝑟 𝑔 𝑋 .

 Let 𝑋 be a random variable with PMF 𝑝𝑋(𝑥), 
and let 𝑔(𝑋) be a real-valued function of 𝑋.

 The expected value of the random variable 

𝑌 = 𝑔(𝑋) is 

𝐄 𝑔 𝑋 =෍

𝑥

𝑔 𝑥 𝑝𝑋(𝑥)



Expectation for 𝑔 𝑋

 Using the formula 𝑝𝑌 𝑦 = σ{𝑥|𝑔 𝑥 =𝑦}𝑝𝑋(𝑥):

𝐄 𝑔 𝑋 = 𝐄 𝑌

= σ𝑦 𝑦𝑝𝑌(𝑦)

= σ𝑦 𝑦σ{𝑥|𝑔 𝑥 =𝑦}𝑝𝑋(𝑥)

= σ𝑦 σ{𝑥|𝑔 𝑥 =𝑦} 𝑦𝑝𝑋(𝑥)

= σ𝑦 σ{𝑥|𝑔 𝑥 =𝑦}𝑔(𝑥)𝑝𝑋(𝑥)

= σ𝑥 𝑔 𝑥 𝑝𝑋(𝑥)



Variance example

 The PMF of 𝑋

𝑝𝑋 𝑥 = ቊ
1/9 if 𝑥 is an integer and 𝑥 ∈ [−4,4]
0 otherwise

 The variance

var 𝑋 = 𝐄 𝑋 − 𝐄[𝑋] 2

= σ𝑥 𝑥 − 𝐄 𝑋 2𝑝𝑋(𝑥)

=
1

9
σ𝑥=−4
4 𝑥2

= 16 + 9 + 4 + 1 + 0 + 1 + 9 + 16 /9

=
60

9



Mean of 𝑎𝑋 + 𝑏

 Let 𝑌 be a linear function of 𝑋
𝑌 = 𝑎𝑋 + 𝑏

 The mean of 𝑌

𝐄 𝑌 =෍

𝑥

𝑎𝑥 + 𝑏 𝑝𝑋(𝑥)

= 𝑎෍

𝑥

𝑥𝑝𝑋(𝑥) + 𝑏෍

𝑥

𝑝𝑋(𝑥) = 𝑎𝐄 𝑋 + 𝑏

 The expectation scales linearly.



Variance of 𝑎𝑋 + 𝑏

 Let 𝑌 be a linear function of 𝑋
𝑌 = 𝑎𝑋 + 𝑏

 The variance of 𝑌

var 𝑌 = σ𝑥 𝑎𝑥 + 𝑏 − 𝐄 𝑎𝑋 + 𝑏 2𝑝𝑋(𝑥)

= σ𝑥 𝑎𝑥 + 𝑏 − 𝑎𝐄 𝑋 − 𝑏 2𝑝𝑋(𝑥)

= 𝑎2σ𝑥 𝑥 − 𝐄 𝑋 2𝑝𝑋(𝑥)

= 𝑎2var(𝑋)

 The variance scales quadratically.



Variance as moments

 Fact. 𝑣𝑎𝑟 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2.

 𝑣𝑎𝑟 𝑋 = 𝐄 𝑋 − 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝑋𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝐄 𝑋𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 2𝐄 𝑋 𝐄 𝑋 + 𝐄 𝑋 2

= 𝐄 𝑋2 − 𝐄 𝑋 2



Example: Average time

 Distance between class and home is 2 miles

 𝑃 weather is good = 0.6

 Speed: 

 𝑉 = 5 miles/hour if weather is good.

 𝑉 = 30 miles/hour if weather is bad.

 Question: What is the mean of the time 𝑇 to 

get to class?



Example: Average time

 The PMF of 𝑇

𝑝𝑇 𝑡 =
0.6 if 𝑡 =

2

5
ℎ𝑜𝑢𝑟𝑠

0.4 if 𝑡 =
2

30
ℎ𝑜𝑢𝑟𝑠

 The mean of 𝑇

𝐄 𝑇 = 0.6 ⋅
2

5
+ 0.4 ⋅

2

30
=

4

15



Example: Average time

 Wrong calculation by speed 𝑉

 The mean of speed 𝑉
𝐄 𝑉 = 0.6 ⋅ 5 + 0.4 ⋅ 30 = 15

 The mean of time 𝑇
2

𝐄[𝑉]
=

2

15

 To summarize, in this example we have

𝑇 =
2

𝑉
and     𝐄 𝑇 = 𝐄

2

𝑉
≠

2

𝐄[𝑉]



Example: Bernoulli

 Consider the Bernoulli random variable 𝑋
with PMF

𝑝𝑋 𝑥 = ቊ
𝑝 if 𝑥 = 1
1 − 𝑝 if 𝑥 = 0

 Its mean, second moment, and variance:

𝐄 𝑋 = 1 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝
𝐄 𝑋2 = 12 ⋅ 𝑝 + 0 ⋅ 1 − 𝑝 = 𝑝

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)



Example: Uniform

 What is the mean and variance of the roll of a 

fair six-sided die?

𝑝𝑋 𝑘 = ቊ
1/6 if 𝑘 = 1,2,3,4,5,6
0 otherwise

 The mean 𝐄 𝑋 = 3.5 and the variance

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
1

6
12 + 22 + 32 + 42 + 52 + 62 − 3.52

= 35/12



Example: Uniform integers

 General, a discrete uniformly distributed 

random variable

 Range: contiguous integer values 𝑎, 𝑎 + 1,… , 𝑏

 Probability: equal probability

 The PMF is

𝑝𝑋 𝑘 = ቐ
1

𝑏 − 𝑎 + 1
if 𝑘 = 𝑎, 𝑎 + 1,… , 𝑏

0 otherwise



Example: Uniform integers

 The mean 

𝐄 𝑋 =
𝑎 + 𝑏

2
 For variance, first consider 𝑎 = 1 and 𝑏 = 𝑛

 The second moment 

𝐄 𝑋2 =
1

𝑛
෍

𝑘=1

𝑛

𝑘2 =
1

6
(𝑛 + 1)(2𝑛 + 1)



Example: Uniform integers

 The variance for special case 

var 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
1

6
𝑛 + 1 2𝑛 + 1 −

1

4
𝑛 + 1 2

=
𝑛2−1

12



Example: Uniform integers

 For the case of general integers a and b

 𝑋: discrete uniform over [𝑎, 𝑏]

 𝑌: discrete uniform over [1, 𝑏 − 𝑎 + 1]

 Relation between 𝑋 and 𝑌
𝑌 = 𝑋 − 𝑎 + 1

 Thus

var 𝑋 = var 𝑌 =
𝑏 − 𝑎 + 1 2 − 1

12



Example: Poisson

 Recall Poisson PMF

𝑝𝑋 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
𝑘 = 0,1,2, … ,

 Mean:

𝐄 𝑋 = ෍

𝑘=0

∞

𝑘𝑒−𝜆
𝜆𝑘

𝑘!
= ෍

𝑘=1

∞

𝑘𝑒−𝜆
𝜆𝑘

𝑘!

= 𝜆෍

𝑘=1

∞

𝑒−𝜆
𝜆𝑘−1

(𝑘 − 1)!
= 𝜆 ෍

𝑚=0

∞

𝑒−𝜆
𝜆𝑚

𝑚!

= 𝜆
 Variance: 𝑣𝑎𝑟 𝑋 = 𝜆.

 Verification left as exercise.



The Quiz Problem

 A person is given two questions and must 

decide which question to answer first. 

 𝑃(question 1 correct) = 0.8 Prize=$100 

 𝑃(question 2 correct) = 0.5 Prize=$200

 If incorrectly answer the first question, then no 

second question. 

 How to choose the first question so that 

maximize the expected prize?



Tree illustration



The Quiz Problem

 Answer question 1 first: Then the PMF of 𝑋 is                                                                                                                  

𝑝𝑋 0 = 0.2
𝑝𝑋 100 = 0.8 ⋅ 0.5
𝑝𝑋 300 = 0.8 ⋅ 0.5

 We have 

𝐄 𝑋 = 0.8 ⋅ 0.5 ⋅ 100 + 0.8 ⋅ 0.5 ⋅ 300 = 160



The Quiz Problem

 Answer question 2 first: Then the PMF of 𝑋 is                                                                                                                  

𝑝𝑋 0 = 0.5
𝑝𝑋 200 = 0.5 ⋅ 0.2
𝑝𝑋 300 = 0.5 ⋅ 0.8

 We have 

𝐄 𝑋 = 0.5 ⋅ 0.2 ⋅ 200 + 0.5 ⋅ 0.8 ⋅ 300 = 140

 It is better to answer question 1 first.



The Quiz Problem

 Let us now generalize the analysis.

 𝑝1: 𝑃(correctly answering question 1)

 𝑝2: 𝑃(correctly answering question 2)

 𝑣1: prize for question 1

 𝑣2: prize for question 2 



The Quiz Problem

 Answer question 1 first

𝐄 𝑋 = 𝑝1 1 − 𝑝2 𝑣1 + 𝑝1𝑝2 𝑣1 + 𝑣2
= 𝑝1𝑣1 + 𝑝1𝑝2𝑣2

 Answer question 2 first 

𝐄 𝑋 = 𝑝2 1 − 𝑝1 𝑣2 + 𝑝2𝑝1 𝑣2 + 𝑣1
= 𝑝2𝑣2 + 𝑝2𝑝1𝑣1



The Quiz Problem

 It is optimal to answer question 1 first if and 

only if

𝑝1𝑣1 + 𝑝1𝑝2𝑣2 ≥ 𝑝2𝑣2 + 𝑝2𝑝1𝑣1
 Or equivalently

𝑝1𝑣1
1 − 𝑝1

≥
𝑝2𝑣2
1 − 𝑝2

 Rule: Order the questions in decreasing 

value of the expression 𝑝𝑣/(1 − 𝑝)



Content

 Basic Concepts

 Probability Mass Function

 Functions of Random Variables

 Expectation, Mean, and Variance

 Joint PMFs of Multiple Random Variables

 Conditioning

 Independence



Multiple Random Variables

 Probabilistic models often involve several 

random variables of interest. 

 Example: In a medical diagnosis context, the 

results of several tests may be significant.

 Example: In a networking context, the 

workloads of several gateways may be of 

interest.



Joint PMFs of Multiple Random Variables

 Consider two discrete random variables 𝑋
and 𝑌 associated with the same experiment.

 The joint PMF of 𝑋 and 𝑌 is denoted by 𝑝𝑋,𝑌. 

It specifies the probability of the values that 𝑋
and 𝑌 can take.

 If 𝑥, 𝑦 is a pair of values that 𝑋, 𝑌 can 

take, then the probability mass of 𝑥, 𝑦 is the 

probability of the event 𝑋 = 𝑥, 𝑌 = 𝑦 :

𝑃𝑋,𝑌 𝑥, 𝑦 = 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 .



 The joint PMF determines the probability of 

any event that can be specified in terms of 

the random variables 𝑋 and 𝑌.

 For example, if 𝐴 is the set of all pairs 

(𝑥, 𝑦) that have a certain property, then

𝑃 𝑋, 𝑌 ∈ 𝐴 = ෍

𝑥,𝑦 ∈𝐴

𝑝𝑋,𝑌(𝑥, 𝑦)



Joint PMFs of Multiple Random Variables

 The PMFs of 𝑋 and 𝑌

𝑝𝑋 𝑥 = σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦) , 𝑝𝑌 𝑦 = σ𝑥 𝑝𝑋,𝑌(𝑥, 𝑦)

 The formula can be verified by 

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥

= σ𝑦𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

= σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

 𝑝𝑋, 𝑝𝑌 are the marginal PMFs.



Joint PMFs of Multiple Random Variables

 Computing the marginal 

MPFs 𝑝𝑋 and 𝑝𝑌 of 𝑝𝑋,𝑌
from table.

 The joint PMF 𝑝𝑋,𝑌 is 

arranged in a two-

dimensional table.



Joint PMFs of Multiple Random Variables

 The marginal PMF of 

𝑋 or 𝑌 at a given value 

is obtained by adding 

the table entries along 

a corresponding 

column or row, 

respectively. 



Functions of Multiple Random Variables

 One can generate new random variables by 

applying functions on several random 

variables.

 Consider 𝑍 = 𝑔(𝑋, 𝑌).

 Its PMF can be calculated from the joint PMF 

𝑝𝑋,𝑌 according to

𝑝𝑍 𝑧 = ෍

{(𝑥,𝑦)|𝑔 𝑥,𝑦 =𝑧}

𝑝𝑋,𝑌(𝑥, 𝑦)



Functions of Multiple Random Variables

 The expected value rule for multiple variables

𝐄 𝑔 𝑋, 𝑌 =෍

𝑥,𝑦

𝑔 𝑥, 𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

 For special case, 𝑔 is linear and of the form 

𝑎𝑋 + 𝑏𝑌 + 𝑐, we have 

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐

 “linearity of expectation” --- regardless of 

dependence of 𝑋 and 𝑌.



More than Two Random Variables

 We can also consider three or more random 
variables.

 The joint PMF of three random variables 𝑋, 𝑌, 
and 𝑍

𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧

 The marginal PMFs are

𝑝𝑋,𝑌 𝑥, 𝑦 = σ𝑧 𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧

and

𝑝𝑋 𝑥 = σ𝑦σ𝑧 𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧



More than Two Random Variables

 The expected value rule for functions

𝐄 𝑔 𝑋, 𝑌, 𝑍 = σ𝑥,𝑦,𝑧𝑔 𝑥, 𝑦, 𝑧 𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧)

 If 𝑔 is linear and of the form 

𝑔 𝑋, 𝑌, 𝑍 = 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑
then

𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑

= 𝑎𝐄[𝑋] + 𝑏𝐄[𝑌] + 𝑐𝐄[𝑍] + 𝑑



More than Two Random Variables

 Generalization to more than three random 

variables.

 For any random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 

any scalars 𝑎1, 𝑎2, . . . , 𝑎𝑛, we have

𝐄 𝑎1𝑋1 + 𝑎2𝑋2 +⋯+ 𝑎𝑛𝑋𝑛
= 𝑎1𝐄 𝑋1 + 𝑎2𝐄 𝑋2 +⋯+ 𝑎𝑛𝐄[𝑋𝑛]



Example: Mean of the Binomial

 300 students in probability class 

 Each student has probability 1/3 of getting an 

A, independently of any other student. 

 𝑋: the number of students that get an A.

 Question: What is the mean of 𝑋?



Example: Mean of the Binomial

 Let 𝑋𝑖 be the random variable for 𝑖th student

𝑋𝑖 = ቊ
1 if the 𝑖th student gets an A
0 otherwise

 Each 𝑋𝑖 is a Bernoulli random variable 

 𝐄 𝑋𝑖 = 𝑝 = 1/3

 𝐕𝐚𝐫 𝑋𝑖 = 𝑝(1 − 𝑝) = (1/3)(2/3) = 2/9



Example: Mean of the Binomial

 The random variable 𝑋 can be expressed as 

their sum

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

 Using the linearity of 𝑋 as a function of the 𝑋𝑖

𝐄 𝑋 =෍

𝑖=1

300

𝐄 𝑋𝑖 =෍

𝑖=1

300
1

3
= 300 ⋅

1

3
= 100



Example: Mean of the Binomial

 If we repeat this calculation for a general 

number of students 𝑛 and probability of A 

equal to 𝑝, we obtain

𝐸 𝑋 =෍

𝑖=1

𝑛

𝐸 𝑋𝑖 = 𝑛𝑝



Example: The Hat Problem

 Suppose that 𝑛 people throw their hats in a 

box.

 Each picks up one hat at random. 

 𝑋: the number of people that get back their 

own hat

 Question: What is the expected value of 𝑋?



Example: The Hat Problem

 For the 𝑖th person, we introduce a random 

variable 𝑋𝑖

𝑋𝑖 = ቊ
1 if the 𝑖th his own
0 otherwise

 Since 𝑃 𝑋𝑖 = 1 =
1

𝑛
and 𝑃 𝑋𝑖 = 0 = 1 −

1

𝑛

𝐸 𝑋𝑖 = 1 ⋅
1

𝑛
+ 0 ⋅ 1 −

1

𝑛
=
1

𝑛



Example: The Hat Problem

 We know 

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

 Thus 

𝐄 𝑋 = 𝐄 𝑋1 + 𝐄 𝑋2 +⋯+ 𝐄 𝑋𝑛 = 𝑛 ⋅
1

𝑛
= 1



Summary of Facts About Joint PMFs

 The joint PMF of 𝑋 and 𝑌 is defined by

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

 The marginal PMFs of 𝑋 and 𝑌 can be 

obtained from the joint PMF, using the 

formulas

𝑝𝑋 𝑥 = σ𝑦 𝑝𝑋,𝑌(𝑥, 𝑦) , 𝑝𝑌 𝑦 = σ𝑥 𝑝𝑋,𝑌(𝑥, 𝑦)



Summary of Facts About Joint PMFs

 A function 𝑔(𝑋, 𝑌) of 𝑋 and 𝑌 defines another 
random variable

𝐄 𝑔 𝑋, 𝑌 =෍

𝑥,𝑦

𝑔 𝑥, 𝑦 𝑝𝑋,𝑌(𝑥, 𝑦)

If 𝑔 is linear, of the form 𝑎𝑋 + 𝑏𝑌 + 𝑐,
𝐄 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐄 𝑋 + 𝑏𝐄 𝑌 + 𝑐

 These naturally extend to more than two 
random variables.



Content

 Basic Concepts

 Probability Mass Function

 Functions of Random Variables

 Expectation, Mean, and Variance

 Joint PMFs of Multiple Random Variables

 Conditioning

 Independence



Conditioning

 In a probabilistic model, a certain event 𝐴 has 

occurred 

 Conditional probability captures this 

knowledge. 

 Conditional probabilities are like ordinary 

probabilities (satisfy the three axioms) except 

 refer to a new universe: event 𝐴 is known to have 

occurred



Conditioning a Random Variable on an 

Event

 The conditional PMF of a random variable 𝑋, 

conditioned on a particular event 𝐴 with 

𝑃(𝐴) > 0, is defined by

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴

=
𝑃({𝑋 = 𝑥} ∩ 𝐴)

𝑃(𝐴)



Conditioning a Random Variable on an 

Event

 Consider the events {𝑋 = 𝑥} ∩ 𝐴: 

 They are disjoint for different values of 𝑥.

 Their union is 𝐴.

 Thus 𝑃 𝐴 = σ𝑥 𝑃({𝑋 = 𝑥} ∩ 𝐴)

 Combining this and 
𝑝𝑋|𝐴 𝑥 = 𝑃({𝑋 = 𝑥} ∩ 𝐴)/𝑃 𝐴 (last slide), 
we can see that 

σ𝑥 𝑝𝑋|𝐴 𝑥 = 1

 So 𝑝𝑋|𝐴 is a legitimate PMF.



Conditioning a Random Variable on an 

Event

 The conditional PMF is calculated similar to 

its unconditional counterpart.

 To obtain 𝑝𝑋|𝐴(𝑥)

 Add the probabilities of the outcomes 𝑋 = 𝑥

 Conditioning event 𝐴

 Normalize by dividing with 𝑃(𝐴)



Conditioning a Random Variable on an 

Event

 Visualization and calculation of the 

conditional PMF 𝑝𝑋|𝐴(𝑥)



Example: dice

 𝑋: the roll of a fair 6-sided dice 

 𝐴: the roll is an even number

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴)

=
𝑃(𝑋 = 𝑥 𝑎𝑛𝑑 𝐴)

𝑃(𝐴)

= ቐ
1

3
if 𝑥 = 2,4,6

0 otherwise



Conditioning one random variable on 

another

 We have talked about conditioning a random 

variable 𝑋 on an event 𝐴. 

 Now let’s consider conditioning a random 

variable 𝑋 on another random variable 𝑌.

 Let 𝑋 and 𝑌 be two random variables 

associated with the same experiment.

 The experimental value 𝑌 = 𝑦 (𝑝𝑌 𝑦 > 0) 

provides partial knowledge about the value of 

𝑋. 



Conditioning one random variable on 

another

 The knowledge is captured by the conditional 

PMF 𝑝𝑋|𝑌 of 𝑋 given 𝑌, which is defined as 

𝑝𝑋|𝐴 for 𝐴 = {𝑌 = 𝑦}:

𝑝𝑋|𝑌 𝑥 𝑦 = 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)

 Using the definition of conditional 

probabilities

𝑝𝑋|𝑌 𝑥 𝑦 =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑌 = 𝑦)
=
𝑝𝑋,𝑌(𝑥, 𝑦)

𝑝𝑌(𝑦)



Conditioning one random variable on 

another

 Fix some 𝑦, with 𝑝𝑌 𝑦 > 0 and consider 

𝑝𝑋|𝑌(𝑥|𝑦) as a function of 𝑥.

 This function is a valid PMF for X: 

 Assigns nonnegative values to each possible x

 These values add to 1

 Has the same shape as 𝑝𝑋,𝑌(𝑥, 𝑦)

 σ𝑥 𝑝𝑋|𝑌 𝑥 𝑦 = 1



Conditioning one random variable on 

another

 Visualization of the conditional PMF 𝑝𝑋|𝑌(𝑥|𝑦)



Conditioning one random variable on 

another

 It is convenient to calculate the joint PMF by 

a sequential approach and the formula

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦),

 Or its counterpart

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌|𝑋(𝑦|𝑥).

 This method is entirely similar to the use of 

the multiplication rule from previous lectures. 



Example: Question answering

 A professor independently answers each of 

her students’ questions incorrectly with 

probability ¼.

 In each lecture the professor is asked 0,1, or 

2 questions with equal probability 1/3.

 𝑋: the number of questions professor is asked 

 𝑌: the number of questions she answers wrong in 

a given lecture



Example: Question answering

 Construct the joint PMF 𝑝𝑋,𝑌(𝑥, 𝑦): calcualte 

all the probabilities 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦).

 Using a sequential description of the 

experiment and the multiplication rule 

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)



Example: Question answering

 For example, 

𝑝𝑋,𝑌 1,1 = 𝑝𝑋 𝑥 𝑝𝑌|𝑋 𝑦, 𝑥 =
1

4
⋅
1

3
=

1

12



Example: Question answering

 We can compute other useful information 

from two-dimensional table.

 For example,

𝑃 at least one wrong answer

= 𝑝𝑋,𝑌 1,1 + 𝑝𝑋,𝑌 2,1 + 𝑝𝑋,𝑌 2,2

=
4

48
+

6

48
+

1

48
=

11

48



Conditioning one random variable on 

another

 The conditional PMF can also be used to 

calculate the marginal PMFs.

𝑝𝑋 𝑥 =෍

𝑦

𝑝𝑋,𝑌(𝑥, 𝑦) =෍

𝑦

𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)

 This formula provides a divide-and-conquer

method for calculating marginal PMFs.



Summary of Facts About Conditional 

PMFs

 Conditional PMFs are similar to ordinary 

PMFs, but refer to a universe where the 

conditioning event is known to have occurred.

 The conditional PMF of 𝑋 given an event 𝐴
with 𝑃(𝐴) > 0, is defined by

𝑝𝑋|𝐴 𝑥 = 𝑃 𝑋 = 𝑥 𝐴

and satisfies

σ𝑥 𝑝𝑋|𝐴 𝑥 = 1



Summary of Facts About Conditional 

PMFs

 The conditional PMF of 𝑋 given 𝑌 can be 

used to calculate the marginal PMFs with the 

formula

𝑝𝑋 𝑥 =෍

𝑦

𝑝𝑌 𝑦 𝑝𝑋|𝑌(𝑥|𝑦)

This is analogous to the divide-and-conquer

approach for calculating probabilities using 

the total probability theorem.



Conditional Expectations

 The conditional expectation of 𝑋 given an 

event 𝐴 with 𝑃(𝐴) > 0, is defined by

𝐄 𝑋 𝐴 =෍

𝑥

𝑥𝑝𝑋|𝐴(𝑥|𝐴)

For a function 𝑔(𝑋), it is given by

𝐄 𝑔(𝑋) 𝐴 =෍

𝑥

𝑔(𝑥)𝑝𝑋|𝐴(𝑥|𝐴)



Conditional Expectations

 The conditional expectation of 𝑋 given a 

value 𝑦 of 𝑌 is defined by

𝐄 𝑋 𝑌 = 𝑦 =෍

𝑥

𝑥𝑝𝑋|𝑌(𝑥|𝑦)

 The total expectation theorem

𝑬 𝑋 =෍

𝑦

𝑝𝑌(𝑦) 𝐄 𝑋 𝑌 = 𝑦



Conditional Expectations

 Let 𝐴1, … , 𝐴𝑛 be disjoint events that form a 

partition of the sample space, and assume 

that 𝑃(𝐴𝑖) > 0 for all 𝑖. Then

𝐄 𝑋 = σ𝑖=1
𝑛 𝑃 𝐴𝑖 𝐄[𝑋|𝐴𝑖]

 Indeed, 

𝐄 𝑋 = σ𝑥 𝑥𝑝𝑋 𝑥
= σ𝑥 𝑥 σ𝑖=1

𝑛 𝑃 𝐴𝑖 𝑝𝑥|𝐴𝑖 𝑥 𝐴𝑖
= σ𝑖=1

𝑛 𝑃 𝐴𝑖 σ𝑥 𝑥𝑝𝑥|𝐴𝑖 𝑥 𝐴𝑖
= σ𝑖=1

𝑛 𝑃 𝐴𝑖 𝐄 𝑋|𝐴𝑖



Conditional Expectation

 Messages transmitted by a computer in 

Boston through a data network are destined 

 for New York with probability 0.5

 for Chicago with probability 0.3

 for San Francisco with probability 0.2

 The transit time 𝑋 of a message is random 

 𝐄 𝑋 = 0.05 for New York

 𝐄 𝑋 = 0.1 for Chicago

 𝐄 𝑋 = 0.3 for San Francisco



Conditional Expectation

 By total expectation theorem

𝐄 𝑋 = 0.5 ⋅ 0.05 + 0.3 ⋅ 0.1 + 0.2 ⋅ 0.3

= 0.115



Mean and Variance of the Geometric 

Random Variable

 You write a software program over and over, 

 probability 𝑝 that it works correctly 

 independently from previous attempts 

 𝑋: the number of tries until the program works 

correctly

 Question: What is the mean and variance of 

𝑋?



Mean and Variance of the Geometric 

Random Variable

 𝑋 is a geometric random variable with PMF

𝑝𝑋 𝑘 = 1 − 𝑝 𝑘−1𝑝 𝑘 = 1,2, …

 The mean and variance of 𝑋

𝐄 𝑋 = σ𝑘=1
∞ 𝑘 1 − 𝑝 𝑘−1𝑝

var 𝑋 = σ𝑘=1
∞ 𝑘 − 𝐄 𝑋 2 1 − 𝑝 𝑘−1𝑝



Mean and Variance of the Geometric 

Random Variable

 Evaluating these infinite sums is somewhat 

tedious. 

 As an alternative, we will apply the total 

expectation theorem.

 Let 

𝐴1 = 𝑋 = 1 = {first try is a success}
and 



Mean and Variance of the Geometric 

Random Variable

 If the first try is successful, we have 𝑋 = 1
𝐄 𝑋 𝑋 = 1 = 1

 If the first try fails (𝑋 > 1), we have wasted 

one try, and we are back where we started.

 The expected number of remaining tries is 𝐄[𝑋]

 We have 

𝐄 𝑋 𝑋 > 1 = 1 + 𝐄[𝑋]



Mean and Variance of the Geometric 

Random Variable

 Thus 

𝐄 𝑋
= 𝑃 𝑋 = 1 𝐄 𝑋 𝑋 = 1 + 𝑃 𝑋 > 1 𝐄 𝑋 𝑋 > 1
= 𝑝 + (1 − 𝑝)(1 + 𝐄 𝑋 )

 Solving this equation gives

𝐄[𝑋] =
1

𝑝



Mean and Variance of the Geometric 

Random Variable

 Similar reasoning 

𝐄 𝑋2 𝑋 = 1 = 1

and

𝐄 𝑋2 𝑋 > 1 = 𝐄 1 + 𝑋 2

= 1 + 2𝐄 𝑋 + 𝐄[𝑋2]

 So

𝐄 𝑋2 = 𝑝 ⋅ 1 + 1 − 𝑝 1 + 2𝐄 𝑋 + 𝐄 𝑋2



Mean and Variance of the Geometric 

Random Variable

 We obtain 

𝐄 𝑋2 =
2

𝑝2
−
1

𝑝

 and conclude that 

𝐕𝐚𝐫 𝑋 = 𝐄 𝑋2 − 𝐄 𝑋 2

=
2

𝑝2
−
1

𝑝
−

1

𝑝2
=
1 − 𝑝

𝑝2
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Independence of a r.v. from an event

 Idea is similar to the independence of two 

events. 

 Knowing the occurrence of the conditioning 

event tells us nothing about the value of the 

random variable.



Independence of a r.v. from an event

 Formally, the random variable 𝑋 is 

independent of the event 𝐴 if

𝑃 𝑋 = 𝑥 and 𝐴 = 𝑃 𝑋 = 𝑥 𝑃 𝐴 = 𝑝𝑋 𝑥 𝑃(𝐴)

 Same as requiring that the events 𝑋 = 𝑥
and 𝐴 are independent, for any choice 𝑥.



Independence of a r.v. from an event

 Consider 𝑃(𝐴) > 0

 By the definition of the conditional PMF

𝑝𝑋|𝐴 𝑥 = 𝑃(𝑋 = 𝑥 and 𝐴)/𝑃(𝐴)

 Independence is the same as the condition

𝑝𝑋|𝐴 𝑥 = 𝑝𝑋 𝑥 for all 𝑥



Independence of a r.v. from an event

 Consider two independent tosses of a fair 

coin.

 𝑋: the number of heads 

 𝐴: the number of heads is even

 The PMF of 𝑋

𝑝𝑋 𝑥 = ቐ

1/4 if 𝑥 = 0
1/2 if 𝑥 = 1
1/4 if 𝑥 = 2



Independence of a r.v. from an event

 We know 𝑃 𝐴 =
1

2

 The conditional PMF

𝑝𝑋|𝐴 𝑥 = ቐ
1/2 if 𝑥 = 0
0 if 𝑥 = 1
1/2 if 𝑥 = 2

 The PMFs 𝑝𝑋 and 𝑝𝑋|𝐴 are different 

⇒ 𝑋 and 𝐴 are not independent



Independence of random variables

 The notion of independence of two random 

variables is similar. 

 Two random variables 𝑋 and 𝑌 are 

independent if

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 for all 𝑥, 𝑦

 Same as requiring that the two events 

𝑋 = 𝑥 and {𝑌 = 𝑦} be independent for every 

𝑥 and 𝑦.



Independence of random variables

 By the formula

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋|𝑌 𝑥 𝑦 𝑝𝑌 𝑦

 Independence is equivalent to the condition 

𝑝𝑋|𝑌 𝑥 𝑦 = 𝑝𝑋 𝑥

for all 𝑦 with 𝑝𝑌(𝑦) > 0 and all 𝑥.

 Independence means that the experimental 

value of 𝑌 tells us nothing about the value of 

𝑋.



Independence of random variables

 𝑋 and 𝑌 are conditionally independent, if 

given a positive probability event 𝐴
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝐴 = 𝑃 𝑋 = 𝑥 𝐴 𝑃(𝑌 = 𝑦|𝐴)

 Using this chapter’s notation

𝑝𝑋,𝑌|𝐴 𝑥, 𝑦 = 𝑝𝑋|𝐴 𝑥 𝑝𝑌|𝐴(𝑦)

 Or equivalently, 

𝑝𝑋|𝑌,𝐴 𝑥 𝑦 = 𝑝𝑋|𝐴 𝑥

for all 𝑥, 𝑦 such that 𝑝𝑌|𝐴 𝑦 > 0.



Independence of random variables

 If 𝑋 and 𝑌 are independent random variables, 

then

𝐄 𝑋𝑌 = 𝐄 𝑋 ⋅ 𝐄[𝑌]

 Shown by the following calculation

𝐄 𝑋𝑌 = σ𝑥σ𝑦 𝑥𝑦 ⋅ 𝑝𝑋,𝑌(𝑥, 𝑦)

= σ𝑥σ𝑦 𝑥𝑦 ⋅ 𝑝𝑋 𝑥 𝑝𝑌(𝑦)

= σ𝑥 𝑥𝑝𝑋(𝑥) ⋅ σ𝑦 𝑦𝑝𝑌(𝑦)

= 𝐄 𝑋 ⋅ 𝐄[𝑌]



Independence of random variables

 Conditional independence may not imply 

unconditional independence.

 𝑋 and 𝑌 are not independent

 𝑝𝑋|𝑌 1 1 = 𝑃 𝑋 = 1 𝑌 = 1

= 0 ≠ 𝑃 𝑋 = 1 = 𝑝𝑋(1)

 Condition on 

𝐴 = {𝑋 ≤ 2, 𝑌 ≥ 3}

 They are independent



Independence of random variables

 A very similar calculation shows that if 𝑋 and 

𝑌 are independent, then so are 𝑔(𝑋) and 

ℎ(𝑌) for any functions 𝑔 and ℎ.

 𝐄 𝑔 𝑋 ℎ(𝑌) = 𝐄 𝑔(𝑋) 𝐄[ℎ(𝑌)]

 Next, we consider variance of sum of 

independent random variables. 



Independence of random variables

 Consider 𝑍 = 𝑋 + 𝑌, where 𝑋 and 𝑌 are 

independent.

 𝐕𝐚𝐫 𝑍 = 𝐄 𝑋 + 𝑌 − 𝐄 𝑋 + 𝑌 2

= 𝐄 𝑋 + 𝑌 − 𝐄 𝑋 − 𝐄 𝑌 2

= 𝐄 𝑋 − 𝐄 𝑋 + 𝑌 − 𝐄 𝑌
2

= 𝐄 𝑋 − 𝐄 𝑋 2 + 𝐄 𝑌 − 𝐄 𝑌 2

+2𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌



Independence of random variables

 Now we compute 𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌 .

 Since 𝑋 and 𝑌 are independent, so are 
𝑋 − 𝐄 𝑋 and 𝑌 − 𝐄 𝑌 . 
 As they are two functions of 𝑋 and 𝑌, respectively.

 Thus 𝐄 𝑋 − 𝐄 𝑋 𝑌 − 𝐄 𝑌

= 𝐄 𝑋 − 𝐄 𝑋 ⋅ 𝐄[ 𝑌 − 𝐄 𝑌 ]

= 0 ⋅ 0 = 0

 So 𝐕𝐚𝐫 𝑍 = 𝐄 𝑋 − 𝐄 𝑋 2 + 𝐄 𝑌 − 𝐄 𝑌 2

= 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫[𝑌]



Summary of independent r.v.’s

 𝑋 is independent of the event 𝐴 if

𝑝𝑋|𝐴 𝑥 = 𝑝𝑋(𝑥)

that is, if for all 𝑥, the events {𝑋 = 𝑥} and 𝐴
are independent.

 𝑋 and 𝑌 are independent if for all possible 

pairs (𝑥, 𝑦), the events {𝑋 = 𝑥} and 𝑌 = 𝑦
are independent

𝑝𝑋,𝑌 𝑥, 𝑦 = 𝑝𝑋 𝑥 𝑝𝑌(𝑦)



Summary of Facts About Independent 

Random Variables

 If 𝑋 and 𝑌 are independent random variables, 

then

1. 𝐄 𝑋𝑌 = 𝐄 𝑋 𝐄 𝑌

2. 𝐄 𝑔 𝑋 ℎ(𝑌) = 𝐄 𝑔(𝑋) 𝐄[ℎ(𝑌)], for any 

functions 𝑔 and ℎ.

3. 𝐕𝐚𝐫 𝑋 + 𝑌 = 𝐕𝐚𝐫 𝑋 + 𝐕𝐚𝐫[𝑌]



Independence of Several Random 

Variables

 All previous results have natural extensions 

to more than two random variables.

 Example: Random variables 𝑋, 𝑌, and 𝑍 are 

independent if 

𝑝𝑋,𝑌,𝑍 𝑥, 𝑦, 𝑧 = 𝑝𝑋 𝑥 𝑝𝑌 𝑦 𝑝𝑍(𝑧)

 Example: If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent 

random variables, then

𝐕𝐚𝐫 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛
= 𝐕𝐚𝐫 𝑋1 + 𝐕𝐚𝐫 𝑋2 +⋯+ 𝐕𝐚𝐫(𝑋𝑛)



Variance of the Binomial

 Consider 𝑛 independent coin tosses 

 𝑃 𝐻 = 𝑝

 𝑋𝑖: Bernoulli random variable for 𝑖th toss 

 Its PMF

𝑝𝑋𝑖 𝑥 = ቊ
1 𝑖th toss comes up a head

0 otherwise



Variance of the Binomial

 Let 𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 be a binomial 

random variable.

 By the independence of the coin tosses

𝐕𝐚𝐫 𝑋 =෍

𝑖=1

𝑛

𝐕𝐚𝐫 𝑋𝑖 = 𝑛𝑝(1 − 𝑝)



Mean and Variance of the Sample Mean

 Estimate the approval rating of a president 𝐶.

 Ask 𝑛 persons randomly from the voters

 𝑋𝑖 response of the 𝑖th person

 𝑋𝑖 = ቊ
1 𝑖th person approves 𝐶
0 𝑖th person disapproves 𝐶



Mean and Variance of the Sample Mean

 Model 𝑋1, 𝑋2, … , 𝑋𝑛 as independent Bernoulli 

random variables 

 mean 𝑝

 variance 𝑝(1 − 𝑝)

 The sample mean

𝑆𝑛 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛



Mean and Variance of the Sample Mean

 𝑆𝑛 is the approval rating of 𝐶 within our 𝑛-person 

sample.

 Using the linearity of 𝑆𝑛 as a function of the 𝑋𝑖

𝐄 𝑆𝑛 =෍

𝑖=1

𝑛
1

𝑛
𝐄 𝑋𝑖 =

1

𝑛
෍

𝑖=1

𝑛

𝑝 = 𝑝

and

𝐕𝐚𝐫 𝑆𝑛 =෍

𝑖=1

𝑛
1

𝑛2
𝐕𝐚𝐫 𝑋𝑖 =

𝑝(1 − 𝑝)

𝑛


